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ABSTRACT 

Basford, K.E., Kroonenberg, P.M. and DeLacy, I.H., 1991. Three-way methods for multiattribute 
genotype X environment data: an illustrated partial survey. Field Crops Res., 27:131 - 157. 

Several ordination and clustering techniques are discussed with respect to their usefulness in ana- 
lysing multiattribute genotype X environment data. The methods are briefly described and illustrated 
by application to data from the Australian Cotton Cultivar Trials (ACCT), a series of regional variety 
trials designed to investigate various cotton (Gossypium hirsutum (L.)) lines in several locations 
each year. Multivariate techniques applicable to three-way data are necessary to assess these lines 
using yield and lint-quality data. 

By the choice of complementary methods, it is possible to make both global and detailed statements 
about the relative performance of the cotton lines. These techniques can enhance the researcher's 
ability to make informed decisions about the genotype × environment data collected from these trials 
using simultaneous analysis of the attributes of interest. 

I N T R O D U C T I O N  

The existence of significant genotype by environment (G × E) interactions 
has complicated selection and testing strategies for plant breeders for many 
years. They reflect differences in adaptation which may be exploited by 
breeding for specific adaptation (emphasizing favourable interactions) or 
broad adaptation (minimizing interactions ) by selection and by adjustments 
to the test strategy. However, any objective decision requires a full under- 
standing of the nature of such interactions, and various methodologies have 
been proposed for their analysis. These include regression on the environ- 
ment mean (Finlay and Wilkinson, 1963), restriction to similar environ- 
ments (Homer and Frey, 1957 ), pattern analysis methods (Byth et al., 1976 ), 
principal coordinate analysis (Eisemann, 1981 ), canonical variate analysis 
(Seif et al., 1979) and principal component analysis (Goodchild and Boyd, 
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1975; Kempton,  1984; Gauch, 1988; Zobel et al., 1988). Each has proved 
successful in the analysis of univariate G X E data in certain situations. 

Because plant breeders are concerned with more than one attribute, it is of 
interest ot investigate how such analyses are performed. The methods of anal- 
ysis of data collected on many attributes in one environment  (G X A data) 
have been well developed, and are covered in Plant Breeding and Quantita- 
tive Genetics texts. Such standard techniques as correlation, regression, cor- 
related genetic advance and selection indices are used. There has been little 
in the literature on the simultaneous analysis of  multiattribute G × E data. 
Recent exceptions are Basford (1982), Basford and McLachlan (1985), 
Kroonenberg and Basford ( 1989 ) and Basford et al. (1990). The techniques 
discussed there, and some other ordination and clustering methods for the 
analysis of three-way data, are presented here. Our concern is with multivar- 
iate or multiattribute G ×  E interactions which produce a three-way table of 
performance means, i.e., G X E X A data. 

Although this paper is directly concerned with multiattribute G X E data, it 
must be stressed that the methods being described are generally applicable to 
three-way data. These techniques are more familiar in the social-science lit- 
erature, but have not been extensively used in agricultural research. We are 
bringing them to the attention of agricultural scientists and, by putting them 
in a common theoretical framework, demonstrate the relationships between 
them. Their application is demonstrated using the particular case of G X E X A 
data. 

Using the terminology of Carroll and Arabic (1980), these techniques can 
be characterised as three-way methods because they apply to data which can 
be classified in three ways: here, genotypes, environments and attributes 
(G × E X A). Some are called three-way three-mode methods, because they 
treat the data as they come, i.e. a G × E × A array not condensed or manipu- 
lated over any of the ways. Others are called three-way two-mode methods, 
because one of  the entities has been removed or is not measured directly. For 
example, the G X E X A data could be transformed to G X G X E data by com- 
puting per-environment Euclidean distances between each pair of genotypes 
using their standardized attribute scores. 

Two broad classes of  analytical methods can be distinguished in the context 
of  three-way data: ordination, and clustering techniques. As stated in Kruskal 
(1977) and Arabie et al. (1987), the two types are largely complementary, 
and make use of the same information in different ways. Accordingly, we will 
always present the results of  an ordination and a clustering in conjunction. 
Multivariate analysis of variance (MANOVA) can also be applied to three- 
way data, but with a reasonable number  of genotypes, environments and at- 
tributes, most interaction terms are nearly always significant. DeLacy ( 1981 ), 
Gauch (1988) and Gauch and Zobel (1988) all argued that, even for G x E  
data on a single attribute, the standard MANOVA was highly uninformative. 
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The main focus should be on the structure of  the interactions and the similar- 
ity of  the genotypes, which can primarily be evaluated via modelling tech- 
niques. The data which are used as an illustration stem from the Australian 
Cotton Cultivar Trials (ACCT),  in particular, the 1981/82 growing season. 
They consist of  the mean performance x ( i , j , k )  (i = 1 ..... 25 ; j=  1 .... ,8; k =  1,..,4) 
of 25 cotton lines or entries (referred to as genotypes) in eight locations (re- 
ferred to as environments)  on four attributes (lint yield, lint strength, mi- 
cronaire - a measure of  the fineness of  the lint - and lint length). 

Before all but one of  the ordination and cluster analyses to be presented 
here, the raw data x ( i , j , k )  have to be centered and scaled. The chosen form 
is: 

xijk = (x i jk--  ltk -- flj) /Sk (1) 

The data are centered by subtracting the sum of the environment  mean for 
that attribute, i.e. the overall attribute effect , / t (k) ,  and the environment ef- 
fect, ,aft). The genotype means are still present in the data. Byth and DeLacy 
(1989) and Basford et al. (1990) discuss the rationale for this. The data are 
scaled by dividing by the standard deviation for each attribute, calculated 
over all environments,  s (k). 

METHODS OF ANALYSIS 

Generalisations of  principal component  analysis, multidimensional scal- 
ing, the mixture method of clustering, and additive clustering will be dis- 
cussed. Firstly, we consider three-way two-mode methods and then three-way 
three-mode methods. The results of  the cluster analyses will be displayed su- 
perimposed on the results from the ordinations to show how the two tech- 
niques are complementary and can be used to enhance the understanding of  
the interactions. Because our major aim is to convey the flavour of  what can 
be done, most details are left unexplained. No mathematical expositions will 
be given, nor will algorithms for fitting the models be discussed, but the reader 
will be referred to other publications where these can be found. More detailed 
interpretations for the analyses of  the cotton data are possible, but not pre- 
sented here. 

Three-way two-mode data 

One way of  trying to analyse three-way data, especially if one is interested 
in comparing genotypes, is to search for generalisations of  standard cluster- 
analysis techniques. Most cluster techniques take (dis)similarities between 
elements as their starting point, so in the three-way case one might also start 
with converting the basic scores into (dis) similarities. Dissimilarities can be 
defined in terms of  distances between genotypes within each environment  
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over (scaled or standardized) attributes. The most common distance mea- 
sure used for continuous variables is Euclidean distance, so this was chosen 
here. Anderberg ( 1973 ) and Clifford and Williams ( 1976 ) present detailed 
accounts of the choice of (dis)similarity measures. For each environment j, 
the dissimilarity between genotypes i and i', s (i,i'; j )  is defined as 

(2) 

Note that the data set is still three-way, but in the form G X G X E. It should 
be realized that this is not the only way that dissimilarities could be deter- 
mined. One could calculate the Euclidean distance between genotypes for each 
attribute over environments, to produce a G ×  G × A  array. However, the 
G × G X E array is considered more appropriate for these analyses where the 
emphasis is on the investigation of the genotype response over environments. 
Very few cluster techniques have been developed to deal with such data. We 
only know the details of one of them, i.e. the generalisation of the additive 
cluster technique (Shepard and Arabie, 1979) to individual differences clus- 
tering (INDCLUS) by Carroll and Arabie (1983). It is a method for deter- 
mining overlapping clusters where the elements (genotypes here) can belong 
to more than one cluster. 

Far more ordination techniques are available for similarity data, the most 
prominent of which is individual differences scaling (INDSCAL) developed 
by Carroll and Chang (1970). To analyse dissimilarities, a conversion is made 
to similarities, generally by subtraction or addition of constants. For an ov- 
erview of other techniques for sets of (dis) similarity matrices, see Carroll and 
Wish (1974), Carroll and Arabie (1980) or Kroonenberg ( 1983a, ch. 3). A 
possible alternative is to cqmpute the scalar or innerproducts between the 
genotypes across the scaled or standardized attributes, rather than Euclidean 
distances, and treat these 'covariance' matrices between genotypes with 
methods such as STATIS, developed in France (e.g., Lavit, 1988 ). 

Clustering 

The model underlying individual-differences clustering assumes that, for 
all environments, there is one set of overlapping clusters, but that each envi- 
ronment may weight the clusters differently. In an extreme case, it could hap- 
pen that each environment has its own cluster, i.e., each cluster has a nonzero 
weight on only one environment. In general, this will not happen, and most 
environments weight all clusters, but to a different degree. The model can be 
formalized as follows: 
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G 

Si~i I) --- ~ W~g') (~ig(~i, g'~ W(~) ( 3 )  
g =  1 

where: g(i,i'; j) is the estimated similarity between genotypes i and i'; w(g; 
j ) ,  the nonnegative numerical weight of the jth environment on the gth clus- 
ter; 1-0 ~(i,g) indicates whether genotype i is in cluster g or not; and w(0; j )  
is the additive constant for thejth environment, which might sometimes (but 
not here) be taken to represent the weight of that environment on the cluster 
containing all genotypes. According to the model, the similarity between two 
genotypes i and i' for thej th  environment is the sum of the weights w(g;j) of 
those clusters to which they both belong. For instance, if they never belong to 
the same cluster, then their similarity for the jth environment is estimated as 
w(0; j ) ,  but if they both belong to all clusters, then their similarity is esti- 
mated as the sum of all weights w(~, j )  plus w(0; j ) .  The estimation of the 
parameters of the model is very involved, and has both mathematical pro- 
gramming and alternating (or conditional ) least-squares features, the details 
of which can be found in Arabie and Carroll ( 1980 ) and Carroll and Arabie 
( 1983 ). This model has not been widely applied; see, however, Carroll and 
Arabie (1983), Miller and Gelman (1983) and Soli et al. (1986) for some 
illustrative applications. Our INDCLUS analyses were carried out with Ver- 
sion 1 of the stand-alone program INDCLUS (Carroll and Arabie, 1982 ). 

Ordination 

An ordination counterpart for handling G × G × E data is a three-way ge- 
neralisation of multidimensional scaling called Individual Differences Scal- 
ing (INDSCAL). The model is conceptually similar to the clustering method 
above. It assumes that there is one set of common (not necessarily orthogo- 
nal) genotype dimensions for all environments, but that each environment 
may weight these dimensions differently. Again in an extreme case, each en- 
vironment might weight only one dimension, giving as many dimensions as 
there are environments. In general, each environment will weight each di- 
mension differently. A formal description of the model is as follows: 

D 

g~)= ~ w~)aidaCd (4) 
d = l  

where: g( i , i ' ; j )  is the estimated similarity between genotypes i and i'; w(d; 
j ) ,  the nonnegative numerical weight of the jth environment on the dth di- 
mension; and the a (i,d) indicates the weight of genotype i on dimension d. 
Note that there exists only one genotype space for all environments (the a (i,d) 
are not indexed with j ) ,  but that each dimension is weighted differently in 
each environment (the w(d;j) do depend on j ) .  
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As explained in Carroll and Chang (1970), a different but equivalent for- 
malisation (and more common one) can be given in terms of weighted Eu- 
clidean distances. Parameter estimation for this model can be performed in 
different ways. A first algorithm was devised by Carroll and Chang (1970) 
and implemented in their program INDSCAL, a second was constructed by 
Takane et al. ( 1977 ) and implemented in their program ALSCAL and, most 
recently, yet another has been developed by Kiers ( 1989 ), but this is not yet 
publicly available in a program. Many applications of the INDSCAL model 
have appeared, especially in the psychological and market-research literature. 
The one agronomic application known to us is that of Basford (1982), who 
analysed soybean data. Our analyses were performed with ALSCAL as con- 
tained in the general statistical package SPSS (Anonymous, 1987 ). 

Three-way three-mode data 

A distinct disadvantage of the previous approaches is that one of the modes 
disappears from the analysis; in the above formulations it was the attributes. 
This makes it difficult to relate the information obtained from the analysis 
back to the particular attributes. For instance, the size of one (dis) similarity 
might be dominated by differences in one attribute, while that of another 
(dis) similarity by differences in another attribute. In principle, it seems more 
appropriate to refrain from eliminating one of the modes and to analyse the 
untransformed data. 

We are aware of only one appropriate cluster technique - the mixture-max- 
imum-likelihood method of clustering for three-mode data (MIXCLUS3) 
developed by Basford and McLachlan (1985; see also McLachlan and Bas- 
ford, 1988). Quite a few ordination techniques deal with three-way three- 
mode data directly; most prominent among these are Three-mode principal 
component analysis (Three-mode PCA; Tucker, 1966; Kroonenberg, 1983a) 
and Parallel Factor analysis (PARAFAC; Harshman, 1970; Harshman and 
Lundy, 1984). 

Clustering 

The mixture method of clustering uses the measurements on a set of ele- 
ments (genotypes here) to identify clusters in which the genotypes are rela- 
tively homogeneous, while they are heterogeneous between the clusters, as- 
suming the number of clusters, G, is known. Each cluster is assumed to have 
a different mean attribute vector within and across environments, but the 
covariance matrix particular to each cluster is the same across environments. 
This procedure handles the data in the original form x(i,j,k), not centered or 
scaled. Formally, if there are G groups (clusters) from which the genotypes 
have been sampled in unknown proportions 7r(g) (g=  1 ..... G), then the dis- 
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tribution of the vector of attribute values for genotype i (i = 1,...,2 5 ) in envi- 
r o n m e n t j ( j =  1 ..... 8 ) is given by: 

G 

f ( x o ) =  ~ ngfg(xij) (5) 
g =  I 

where: 

fg(x,j) ~ N(~gj,Vg), (g=  I,...,G) 

is the usual assumption of the underlying distribution of the attribute vector 
in each group being multivariate normal. The unknown parameters, i.e. mean 
vectors, covariance matrices and mixing proportions, are estimated using 
maximum-likelihood methods. 

In a sense, the technique is similar to INDCLUS, as it assumes that there 
exists one cluster structure common to all environments, but that the char- 
acteristics of the clusters may vary between clusters and/or  environments. In 
INDCLUS these characteristics are the weights, and in MIXCLUS3 they are 
the mean vectors and covariance matrices. In both techniques, the genotypes 
do not have to belong outright to just one cluster: INDCLUS allows overlap- 
ping clusters ofgenotypes, while MIXCLUS3 estimates the model parameters 
using a probability of cluster membership for each genotype. However in the 
latter, non-overlapping clusters do result when each genotype is assigned to 
the cluster to which it has the highest estimated probability of belonging. Ob- 
viously, the results and interpretations from these two techniques will be rather 
different. 

The mixture method of clustering has been programmed by, and is avail- 
able from, the senior author (K.E.B.). The initial version was listed in Mc- 
Lachlan and Basford ( 1988 ) as K3MM. The method has been applied to the 
aforementioned soybean data by Basford and McLachlan ( 1985 ) and to the 
1980/81 cotton data from the ACCT by Basford et al. (1990). 

Ordination 

Parallel-factor analysis 
One of the simplest models for three-mode data is the so-called PARAFAC 

model. It is a generalisation of component analysis (PCA), but with the inter- 
pretational flavour of factor analysis. Scores are seen as combinations of com- 
ponents or factors, rather than vice versa. For the present data, the model 
assumes that genotypes have scores on factors and that the factor structure of 
the genotypes is the same across all environments and attributes. Both the 
attributes and environments weight these scores independently of each other 
to estimate the original scores. The formal description of the PARAFAC model 
for the estimated scores is: 



1 3 8  K.E. BASFORD ET AL. 

F 

~jk = ~ (ckybjj) a~j (6) 
f = i  

where: a( i f )  are the genotype scores; b( j f ) ,  the environment weights and 
c (k f )  the attribute weights; and F is the number of factors. As is evident 
from (6), weights and scores only vary with one mode at a time. Each attrib- 
ute and each environment weights the genotype scores irrespective of the value 
for the other mode. Thus, for each attribute and in each environment, the 
score vectors are parallel; hence the name of the technique. It is not immedi- 
ately obvious from (6), but the model implies that the genotype factors have 
the same correlations in each environment. The parameters in the model are 
determined, and there is no transformational freedom, as in ordinary factor 
analysis. 

The PARAFAC model has been implemented in a computer program called 
PARAFAC, and is available from the author, Dr. Harshman. Various appli- 
cations have been published; see Harshman and Lundy (1984) for references. 

Three-mode principal-component analysis 
In contrast with PARAFAC, where factors were derived for the genotypes 

and weights for the other two modes, in Three-mode PCA components are 
derived for each of the modes. Each has its own number of components (P, 
Q, and R),  and these components can be interpreted separately. Generally, 
the emphasis is not so much on the dimensional interpretation, but rather on 
the data-reduction aspect of the technique. This is more so because the de- 
rived axes may be nonsingularly transformed without loss of model fit. Thus, 
this approach generalizes a two-mode analysis in which sets of vectors span 
the vectors of the first few principal components, but need not coincide with 
them. In addition to the components for each mode, the model also contains 
parameters g(p,q,r) which weight combinations of components of the three 
modes. Formally, the model becomes: 

P Q R 

~ijk = Y. Y'. ~ aipbjqCkrgpqr (7) 
p = l  q = l  r = l  

The a(i,p), b(j,q), and c(k,r) are the component coefficients for the geno- 
types, environments and attributes, respectively. When a g(p,q,r) is large 
compared with other weights, that combination of the pth, qth, and rth com- 
ponent is far more important in estimating the data values than when it is 
small. Therefore, these weights can be used to select the component combi- 
nations for interpretation. In this application, we will only use these weights 
implicitly to construct more easily interpretable indices, and not discuss them 
explicitly. 

Without going into any details, it can be shown that it is possible to portray 
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the relationships between the genotypes and attributes for each component of 
the environment (or the genotypes and environments for each component of 
the attributes) in one plot. Given an interpretation of an environment com- 
ponent, such a plot indicates which genotypes have comparatively high or low 
scores on which attribute for that environment component (see also below). 

Three-mode PCA has been applied to soybean data (Kroonenberg and Bas- 
ford, 1989) and to cotton data (Basford et al., 1990). These papers contain 
more details on the application of this technique to agronomic data and the 
interpretation of the results. Other applications of Three-mode PCA have been 
referenced in Kroonenberg (1983b). Computer programs implementing the 
model have been written by, and may be obtained from, the second author 
(P.M.K.). 

ILLUSTRATION: DATA FROM 1981/82 ACCT 

Experimental details 

The Australian Cotton Cultivar Trials (ACCT) have been operating since 
1974/75 at six to eleven locations per year throughout the major cotton-grow- 
ing districts in New South Wales and Queensland. In any given year, from 16 
to 30 cotton lines are evaluated by measuring lint yield (t/ha) and other lint- 
quality characteristics, the most important of these being lint strength (g/ 
tex), lint micronaire (combined measure of fibre diameter and maturity), 
and lint length (inches). Details of the trials, entries and locations are con- 
tained in Reid et al. (1989). 

In the 1981/82 growing season, the eight locations used in the ACCT were 
(from north to south) Biloela, Theodore, Darling Downs, St. George, Moo- 
ree, Myall Vale, West Namoi, and Warren (Fig. 1 ). The 25 cotton (Gossy- 
pium hirsutum (L.) ) lines planted are listed in Table 1; the industry standard 
at the time was dp61. The individual experiments were randomized com- 
plete-block designs in Queensland and square-lattice designs in New South 
Wales, each with three replications per location. Using lint yield and the above 
lint-quality characters, mean performance can be tabulated in a three-way 
array, 25 lines (referred to as genotypes) by eight locations (referred to as 
environments ) by four attributes, which plant breeders must interpret. 

Organisation of analyses 

We have briefly described methods to analyse the above data, either in their 
G × G X E form or their G × E × A form. Two cluster procedures (INDCLUS, 
MIXCLUS3) and three ordination procedures (INDSCAL, PARAFAC, 
Three-mode PCA) have been outlined. As our purpose is to provide an ov- 
erview of three-way methods, the results of all five analyses cannot be pre- 
sented in depth. We intend to give the flavour of the results, and comment on 
some comparisons between the techniques. Such comparisons are necessarily 



140 K.E. BASFORD ET AL. 

y 
QLD , R t 

Oor,,o  
/ 

NSW 

Fig. 1. The eleven locations which represent the major cotton-growing districts in eastern Aus- 
tralia used for the Australian Cotton Cultivar Trials (ACCT). 

TABLE 1 

Membership and genetic origin of genotypes (from Reid et al., 1989) according to the four cluster 
MIXCLUS3 solution 

Genotype N Gentic origin j 

A) 
B) 
C) 
D) 

nam,c310,c315,mo63j 4 UQ,UE,UE,U 
m220,10/4,75007 3 UE,A,AS 
286f,42/8,37/10,76023 4 AD,A,A,AS 
dp61 ,dp61 i,dp 16,dp55,dp41,7146n 14 UD,UD,UD,UD,UD,UD 
sicl,siclf, sic2,sic3 AD,AD,AD,AD 
1 h,439g,439h AD,AD,AD 
33/8 A 

~U, U.S.A.; A, Australian; Q, Quality; E, Eastern; S, Short-season; D, Deltapine. 
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limited, because only one dataset is considered. To avoid repetition, we have 
structured the presentation as follows: Firstly, we will discuss the two, rather 
different, cluster results. Secondly, we will present the Three-mode PCA in- 
corporating the cluster results, primarily because of personal familiarity. These 
results will then be supplemented with those from the other ordination tech- 
niques to illustrate differences and similarities. 

1: Clustering 

Mixture method of clustering (G X E x A  data; non-overlapping clusters) 
The mixture method of clustering requires that the underlying number of 

groups or clusters be specified. Determination of the appropriate number to 
best represent the data is not straightforward, and much research is being 
conducted in this area; see, for instance, McLachlan and Basford ( 1988, sec- 
tion 1.10). Approximate tests on the loglikelihood values indicated that a 
significant extra amount of variation was being accounted for by going from 
two to three to four to five to six clusters. However, subjective assessment of 
the estimated probabilities of group membership, the rate of increase in the 
loglikelihood values, and because of less-attractive matching of the five and 
six group solutions with the ordination results, the four-cluster solution was 
chosen to be presented here. The membership of these groups and genetic 
origin of the genotypes (from Reid et al., 1989) are given in Table 1. 

The four clusters (Table 1 and Fig. 2 ) had, for each attribute, distinct prop- 
erties and distinct patterns of response across the environments. The proper- 
ties and response patterns for the clusters reflected different selectional and 
genetic backgrounds of the entries within them. All clusters have variable per- 
formance in yield across the environments, with the largest cluster (D) hav- 
ing the highest yield in most environments. This cluster consists almost exclu- 
sively of genotypes with the Deltapine germplasm, and has relatively weak, 
reasonably long lint, of average fineness. Cluster A consists of Namcala- and 
Coker-derived entries of U.S. origin, with strong, long, and reasonably fine 
lint. Cluster C consists of a mixture of Australian varieties of short, weak, 
coarse-quality lint. Finally, cluster B is one of mixed genetic origin, and has 
the finest-quality, reasonably strong, but short lint. 

In applying this technique, one can choose a common covariance matrix 
between the attributes for all groups, or unrestricted covariance matrices for 
the individual groups. As the latter choice seems more natural, this approach 
was taken. The estimated covariance matrices for each of the groups is not 
presented here, and comments are only made about those correlations which 
had an estimated absolute value greater than 0.4. Groups A, B and C had 
negative correlation ( - 0.4, - 0.7, and - 0.4, respectively) between strength 
and micronaire. Group A had a negative correlation ( - 0.6) between micron- 
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Fig. 2. The expected means for four groups formed by MIXCLUS3 for lint yield and three lint- 
quality attributes plotted against locations. (For environment, here location, abbreviations see 
Fig. 1 ). 

aire and length, while Group B had a positive correlation (0.5) between these 
attributes. Group B also had positive correlations between yield and micron- 
aire (0.7),  and yield and length (0.6),  and a negative correlation between 
yield and strength ( - 0.4). 

From Fig. 2 it becomes obvious that there is not much G X E interaction, 
except for yield, and possibly micronaire. Far more G X A interaction can be 
observed, i.e. clusters perform differently on different attributes. This is con- 
firmed by the different group-correlation structures outlined above. 

Individual-differences clustering (G × G × E data; overlapping clusters) 
As with the mixture method, the number of clusters has to be chosen be- 

forehand, and the optimal solution for that number of  clusters sought. In all 
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analyses, the environment  weights were restricted to be non-negative, because 
negative weights have no substantive interpretation. The environments were 
treated as 'matrix conditional' ,  i.e., they were standardized separately. Due 
to cost limitations, no comparisons with other options were made. The pro- 
gram was run on a mainframe IBM 3083 in The Netherlands, where comput- 
ing costs were exorbitant compared with the ordination programs. (The mix- 
ture cluster analyses were run in Australia on an IBM mainframe on which 
time was free, thereby preventing cost comparisons. ) 

Given our limited experience with this method,  choosing the optimal num- 
ber of  clusters was far from easy. The only thing that increases systematically 
with the increase in the number  of  clusters from four to five to six to seven is 
the overall fit (variance accounted for). The fit for the separate environments 
varied with the number of  clusters; that for the seven-cluster solution is shown 
in Table 2 for comparison with the four-cluster one. The various cluster so- 
lutions did not always converge within the specified number  of  iterations, and 
sometimes showed one or more instances of  negative variances explained. 
The weights of  the clusters for each environment  for the four-cluster solution 
are given in Table 2 with the actual cluster composit ion in Table 3. 

From Table 3, the overlap of the clusters is immediately apparent. Clusters 
III and IV both contain the 14 genotypes of  cluster D from the MIXCLUS3 
solution, as well as two additional (42/8 and m220).  In addition, clusters III 

T A B L E 2  

Cluster  weights o f  e n v i r o n m e n t s  ( I N D C L U S  four  cluster  solut ion ), and  fit o f  I N D C L U S  sol u t ion for 
four  and  seven clusters 

E n v i r o n m e n t  Clus ter  weights~ Fit o f  solut ions  

Clusters  N u m b e r  o f  clusters 

I II III IV T 2 4 7 

Warren 1.16 0.81 1.04 1.40 - 1.74 0.59 0.63 
Moree 0.91 0.79 1.11 1.25 - 1.65 0.55 0.64 
Biloela 0.37 0.63 1.38 0.63 - 1.31 0.51 0.61 
Theodore  0.63 0.88 1.15 1.04 - 1.50 0.50 0.59 
Myall Vale 0.95 0.64 1.30 0.81 - 1.44 0.49 0.62 
St. George 0.39 0.67 1.32 0.25 - 1.01 0.42 0.48 
West  N a m o i  0.56 0.56 0.89 0.56 - 0.99 0.24 0.44 
Darl ing Downs  0.67 0.71 0.90 0.43 - 0 . 9 2  0.22 0.24 

N u m b e r  o f  m e m b e r s  8 7 19 21 25 
Overall  fit 0.44 0.53 
Densi ty  o f  solut ion 0.55 0.55 

tA densi ty  o f  1.00 indicates all genotypes  in all clusters; a densi ty  o f  0.00 indicates each genotype is 
its own cluster. 
2T is the  addi t ive  constant .  
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TABLE3 

Membership genotypes according to the four cluster INDCLUS solution 

Cluster Genotype N Genetic origin 

I ) ham,c310,c315,m220,mo63j, 8 UQ,UE,UE,UE,A,AS 
10/4,75007 A,AS ( = A + B )  2 
dp55 UD (not A or B) 

II) 286f,42/8,37/10,76023 7 AD,A,A,AS ( = C) 
75007,dp61 ,sicotlf AS,UD,AD (not C ) 

III ) dp61,dp6 li,dp 16,dp55,dp41,7146n 19 UD,UD,UD,UD,UD,UD 
sicl,siclf, sic2,sic3 AD,AD,AD,AD 
lh,439g,439h AD,AD,AD 
33/8 A ( = D )  
42/8,m220 A,UE (III&IV) 
c315,75007,286f A,AS,AD (not IV) 

IV ) dp61 ,dp61 i,dp 16,dp55,dp41,7146n 21 UD,UD,UD,UD,UD,UD 
sicl,siclf, sic2,sic3 AD,AD,AD,AD 
lh,439g,439h AD,AD,AD 
33/8 A (=D)  
42/8,m220 A,UE (III&IV) 
10/4,37 / 10,c310,mo63j,76023 A,A,UE,UE,AS 

(not III) 

tU, U.S.A; A, Australian; Q, Quality; E, Eastern; S, Short-season; D, Deltapine. 
2The (A), (B), (C), and (D)  refer to the MIXCLUS3 clusters (see Table 1 ). 

and IV each have three and five genotypes, respectively, which are not con- 
tained in the other cluster. The five and seven genotypes which III and IV 
have over and above those of D are all contained in either I or II, or both, 
while ! and II have only one genotype in common. 

A reasonable explanation for overlap of clusters in two-way data is that 
similarity is multidimensional, and that genotypes are similar to each other 
on different attributes, and therefore can be similar to members of  different 
clusters. In the three-way case, the situation gets even more complex, because 
genotypes may be similar to different genotypes in different environments. 
The two large clusters, III and IV, seem to indicate this especially. In some 
environments, c315, 75005, and 286f  are more similar to the deltapine geno- 
types, while in other environments this is true for 10/4,  37/10,  c310, mo63j, 
and 76023, and in yet other environments it is a bit of  both. For instance, the 
seven-cluster solution shows three big clusters of  20 genotypes each, with an 
intersection of fourteen, and a medium-sized cluster of 13, with an intersec- 
tion of  nine with the larger clusters. 

The cluster weights (Table 2) can be used to evaluate the importance of 
the clusters for each environment. For most environments, cluster III contrib- 
utes more to the solution than IV. However, in Warren, cluster IV is noticea- 
bly more important. In Biloela and St. George, the prominence of cluster III 
is particularly clear, and this is probably also reflected in the lower cohesion 
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of the cluster-I genotypes. Note that the cluster structure is a poor reflection 
of the situation in Darling Downs and West Namoi,  as the clusters found can 
explain only 22% and 24% of  the variability, respectively. For Darling Downs, 
the situation is not much improved when seven clusters are derived. 

MIXCLUS3 and INDCLUS 
It is clear that two cluster techniques carry different information about the 

outcome of  the cotton trials. MIXCLUS3 forces a single-cluster solution even 
if there are differences in cluster composit ion across environments; but, it 
gives more information about the behaviour of  the clusters in terms of the 
attributes (Fig. 2 ). One is able to evaluate the clusters in terms of interest to 
plant breeders. After the INDCLUS clusters have been derived, attribute 
means for the clusters can be computed,  but in MIXCLUS3, clusters have 
been derived so that the differences in the cluster means are optimized in a 
somewhat similar fashion to discriminant analysis. It is therefore to be ex- 
pected that the INDCLUS version of  Fig. 2 would not be as neat. 

INDCLUS has the advantage of allowing overlapping clusters, which, in 
the extreme, allows each environment  to have its own arrangement of  the 
genotypes, and does not necessitate forced allocations. It points to differences 
in cluster composit ion in the environments,  and suggests places to look for 
the nature of those differences. However, one has to go beyond the cluster 
procedure to provide the necessary information. On the other hand, 
INDCLUS can be used in studies where similarities are collected directly, 
unlike MIXCLUS3 which requires the original G × E × A data. 

2: Ordination 

In contrast to clustering methods, where the number  of  clusters must be 
chosen, the number  of  dimensions must be decided on when performing or- 
dination techniques. In our view, the number  of  dimensions used should be 
determined by the detail with which one wants to examine the data. This is 
in contrast to the view that a search should be made for the 'correct' number  
of  dimensions. Our approach can be compared to the 'correct' magnification 
required when using a microscope, where the general rule is to use the lowest 
magnification compatible with observing the phenomena of interest. Too large 
a magnification confuses the overall picture with detail; too small a magnifi- 
cation obscures the interaction. For the ordination analyses presented here, 
we have used a fairly low magnification, since we need a fairly global inter- 
pretation with some detail, as our major purpose is to compare and illustrate 
the various methods. 
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Three-mode principal component analysis - Three-mode PCA (G × E × A 
data) 

The choice of number  of  dimensions of Three-mode PCA is more compli- 
cated than in most techniques, because the number  of  components  has to be 
determined for all three modes. After examining several solutions, it was de- 
cided that either a 2 × 1 × 2-solution, i.e. two components  for the genotypes, 
one for the environments and two for the attributes, could be used with 53% 
variation accounted for, or else a 4X 2 X 4-solution with 72% variation ac- 
counted for. The former, however, reduces the differences between environ- 
ments to proportionality of the G × A interaction, i.e. eliminating all G × E 
interaction. The solution is virtually indistinguishable from an analysis of  the 
25X4 G x A  matrix averaged over environments.  It was noted in the 
MIXCLUS3 analysis (Fig. 2 ) that there was very little G × E interaction be- 
cause the curves were largely parallel. This 2 × 1 × 2-solution would be equiv- 
alent to making the cluster profiles completely parallel. The alternative, i.e., 
the 4 X 2 × 4-analysis, has the advantages that more detail becomes available, 
and that differences between environments can be investigated. For this par- 
ticular dataset, the 2 × 1 × 2-solution is roughly nested in the 4 X 2 X 4, so that 
both the global and the local picture can be examined at the same time. 

In Tables 4, 5, and 6 the (orthogonal) components  of the environments,  
the attributes, and the genotypes are presented for the Three-mode PCA so- 

TABLE4 

Environment components ~ from the ordination analyses: Three-mode PCA, PARAFAC, and INDS- 
CAL/ALSCAL 

Environment Three-mode PCA PARAFAC INDSCAL/ALSCAL 

2 X 1 X 2 4 X 2 X 4 Four factors Four dimensions 

1 1 2 1 2 3 4 1 2 3 4 

Darling Downs 0.67 0.77 -2 .11  0.48 0.94 - 0 . 3 6  0.99 0.28 0.79 0.82 0.88 
Biloela 0.80 0.62 - 1 . 2 9  0.64 0.98 0.45 0.66 0.59 1.13 1.10 1.38 
St. George 0.89 0.95 - 0 . 3 6  0.83 0.90 1.05 1.15 0.63 1.26 0.73 1.92 
Warren 1.13 1.13 0.07 1.25 0.94 0.87 1.38 1.37 0.59 0.65 0.68 
Moree 1.06 1.10 0.17 1.05 1.02 1.12 1.26 1.35 1.10 0.94 0.22 
Theodore 1.11 1.06 0.38 1.26 1.01 0.45 0.89 1.43 0.69 0.45 0.44 
MyallVale 1.15 1.18 0.86 1.14 1.11 1.48 0.97 1.04 1.08 1.32 0.66 
WestNamoi  1.07 1.05 0.91 1.05 1.09 1.46 0.07 0.46 1.14 1.53 0.69 

R 2 0.54 0.68 0.04 0.27 0.25 0.10 0.09 0.33 0.12 0.11 0.07 

tAll columns are scaled such that the sum of squares is equal to 8. The Three-mode PCA values were 
multiplied by x ~ ,  the INDSCAL/ALSCAL values by 1/w (dimension weight). The R2 values of 
PARAFAC are the squared root-mean-squared contributions which can be used because of the or- 
thogonality of the factors. 
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TABLE 5 

Attribute components'  from the ordination analyses: Three-mode PCA, and PARAFAC 

147 

Attribute Three-mode PCA 

2 X l X 2  4 X 2 X 4  

1 2 1 2 3 4 

PARAFAC 

Four factors 

1 2 3 4 

Length 0.49 0.86 0.47 0.86 - 0 . 0 3  - 0 . 1 7  - 0 . 0 0  0.94 0.05 -0 .11  
Micronaire -0 .41  0.15 - 0 . 4 4  0.22 0.84 - 0 . 2 4  - 0 . 4 6  - 0 . t 4  0.00 0.58 
Strength 0.71 - 0 . 3 7  0.69 - 0 . 2 9  0.55 0.38 0.89 0.32 - 0 . 0 5  0.08 
Yield - 0 . 3 0  0.32 - 0 . 3 3  0.35 -0 .01  0.88 -0 .31  - 0 . 0 9  0.64 0.04 

R 2 0.37 0.18 0.38 0.18 0.08 0.08 0.27 0.25 0.10 0.09 

~As the signs of the components are largely arbitrary, they have been oriented in this Table so that the 
largest value has a positive sign. 

lutions, as well as those for the other ordination analyses to be discussed. For 
the two Three-mode PCA analyses ment ioned above, the first component  of 
the environments and the first two of  the attributes are very much alike (Ta- 
bles 4 and 5 ). This is true for the genotypes as well, but the 2 X 1 × 2 compo- 
nents have not been included in Table 6. On their first component,  the envi- 
ronments are largely equal, with lower scores for Darling Downs and Biloela. 
This indicates that the variability of the genotypes over attributes is largely 
the same in all environments (see Fig. 2 ). The second component  of  the en- 
vironments shows a sharp contrast between Darling Downs and Biloela on 
the one hand, and Myall Vale and West Namoi  on the other. 

The need for all four components  to describe the variability between the 
attributes implies that they do not show intense correlation (also evident in 
the MIXCLUS3 analysis ). Because we are dealing with three-mode data, it is 
not ' improper '  to use as many components  as there are variables. It simply 
means that no condensation is necessary or fruitful for that mode. A detailed 
discussion of  the genotypes will be undertaken in conjunction with the attrib- 
ute components.  It is worth noting, from Table 6, that the MIXCLUS3 cluster 
structure can be observed from the first two genotype components.  

It would be useful to express, in a graphical form, the relationships between 
the genotypes in terms of the attributes, as was done in Fig. 2. This is done in 
two parts, one for each of  the two environment  components.  The first envi- 
ronment  component  indicates what the environments have in common,  and 
the second concentrates on the 'true' G X E × A interaction with environment 
differences reflected in the Biloela/Darling Downs compared with Myall Vale/ 
West Namoi contrast. As explained in Kroonenberg and Basford (1989), an 
attractive way to present these relationships is by joint  plots of the genotype 
and attributes, one for each environment  component  (here we include only 
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TABLE 6 

Genotype ~ components from the ordination analyses: Three-mode PCA, PARAFAC, and 1NDSCAL/ 
ALSCAL 

Geno- Three-mode PCA 
type 

Four components 

1 2 3 4 

PARAFAC 1NDSCAL/ALSCAL 

Four factors Four dimensions 

1 2 3 4 I 2 3 4 

nam -2 .85 -0 .85  0.05 -1 .95 
mo6~ -1 .50  -0 .20  1.95 0.40 
c310 -1.35 1.60 1.10 1.40 
c315 -1 .25 0.90 0.45 -1 .10  

10/4 -1 .25 
75007 -0 .30  
m220 -0 .30  

dpl6 -0 .10  
sic3 -0 .05 
dp61i -0 .05 
dp55 -0.05 
sic2 0.15 
lh 0.20 
dp41 0.25 
7146n 0.30 
439g 0.35 
33/8 0.35 
siclf 0.50 
439h 0.55 
sicl 0.65 
dp61 0.80 

-2 .10  -1 .70  0.85 
-2 .10  -0 .35 0.40 
-0 .65 0.25 -0 .85  

0.40 -0 .70  1.70 
-0 .15 0.50 1.65 

1.10 -0 .05  0.35 
0.05 -0 .85 0.05 
0.80 -1 .10  -0 .60  
1.30 -0 .65 -0 .30  
0.50 -0 .85 1.10 
0.35 0.05 0.90 
0.20 - 1.05 0.15 
0.85 0.75 0.35 
0.15 1.30 -0 .65 
0.75 -2 .30  -0 .85 
0.90 0.15 -0 .60  
0.40 0.25 - 1.60 

3.23 1.03 0.75 0.94 -3 .12  0.94 -0.01 0.31 
0.64 1.31 -1 .68  0.93 - l . 1 0  1.71 -0 .73 -0 .43 

-0 .58 2.36 -1 .55 -0 .62  -0 .53 2.25 0.24 0.80 
0.59 1.56 0.41 0.55 -0 .98 1.41 0.68 -0 .78 

2.31 -1 .29  -0 .48 -1 .46  -1 .47  -0 .66  -1.01 2.11 
1.20 -1 .43 -1 .04  -0.41 -0.71 -0 .72  -1 .95  -0 .04  
0.62 -0 .18 -0 .20  0.76 -0 .36  0.27 -1 .10  -0 .79  

-0 .36  0.19 -0 .44  - 1.40 0.21 0.18 0,04 2.03 
-0 .43  0.06 - 1.45 -0 .58  0.18 0.83 - 1.47 -0 .28  
-0 .53  0.74 0.26 -0 .58  -0 .02  0.20 1,41 0.74 

0.12 -0 .18  0.46 --0.87 -0 .56  -0 .74  0,45 -1 .05 
-0 .19  0,28 1.40 -0 .24  0.16 -0 .06  1,44 -0 .82  
-0 .63  0.69 1.09 -0 .42  0.25 0.31 1,47 -0 .42  
-0 .59  -0 .05  0.04 -1 .48 -0 .02  -0 .87  0,87 1.08 
-0 .68  0.05 -0 .35 -0 .74  0.42 -0 .18  -0 ,03  1.61 
-0.21 -0.31 0.88 -0 .73  -0 .16  -1 .10  0,73 -0 .63 
-0 .82  0.52 -0 .17  0.22 0.73 0.75 0,21 0.99 
-0 .57 0.19 -0 .37  1.56 0.55 0.45 -0 ,22 -1 .70  
-0 .25 -0 .22  2.40 -1.01 0.29 -1 .03 1,84 -0 .05 
-0 .80  0.40 0.67 0.77 1.20 0.53 0,54 0.23 
-0 .38  -0 .16 1.06 1.22 1.19 0.28 0.32 -0 .54  

42/8 0.65 -1 .45 -0 .45 -0 .00  0.38 -1 .60  -0 .06  0.02 0.10 -1 .48 -0 .97 0.38 
76023 1.05 -1 .25 1.45 1.20 -0 .85 -1 .28 -1 .88 0.03 0.50 -1 .29  -1 .57  -1.11 
286f 1.10 -0 .65 1.25 -1 .35 -0 .33 -0 .75 0.02 2.46 1.63 -0 .04  -0 .75 -0 .30  
37/10 2.15 -1 .00  0.50 -0 .60  -0 .99  -1 .95 0.22 1.09 1.62 -1 .92 -0 .44  -1 .36 

R 2 0.38 0.19 0.09 0.06 0.27 0.25 0.10 0.09 0.33 0.12 0.11 0.07 

~The genotypes have been arranged in order of increasing value of the first component of the Three- 
mode PCA within each of the groups A, B, D and C from the MIXCLUS3 analysis. 

the one for the first environment component which indicates what the envi- 
ronments have in common - Fig. 3 ), and/or the inner-products of  the attri- 
butes and genotypes in the space displayed by the plots (Tables 7 and 8 ). 

Figure 3 (top) and (bottom) show the first against the second dimension, 
and the third against the fourth dimension, respectively. The genotypes have 
been labelled according to the membership of  four-cluster MIXCLUS3 solu- 
tion, and in Fig. 3 (top) this group composition has been further highlighted. 
It appears that the clusters arise primarily because the genotypes have similar 
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Fig. 3. Common structure for all environments: Top, Joint plot of first and second components 
of genotypes and attributes for first environment component from Three-mode PCA 4 × 2 × 4- 
solution (54% explained variation). A, B, C and D are the clusters from a four-cluster 
MIXCLUS3 analysis. ( # ) ,  cluster A; (*), cluster B; ( X ), cluster C; (11), cluster D. 
Bottom, Joint plot of third and fourth components ofgenotypes and attributes for first environ- 
ment component from Three-mode PCA 4 X 2 X 4-solution ( 13% explained variation ). A, B, C 
and D are the clusters from a four cluster MIXCLUS3 analysis. ( # ) ,  cluster A; (*),  cluster B; 
( X ), cluster C; (11), cluster D. 

profiles on the attributes in all environments, and that lint length and lint 
strength contribute more to the separation between clusters than micronaire 
and lint yield. This is also evident in Fig. 2, where the cluster profiles are not 
as clearly distinguishable on the latter two variables. Yield and micronaire 
contribute more to the differences in the third and fourth dimensions (Table 
5 ), and this is reflected in Fig. 3 (bottom) by their longer arrows. The higher 
dimensions bear no relationship to the four-cluster solution. Even though the 
plots are helpful in interpreting comparisons between genotypes based on the 
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attributes, they are difficult to use. This is especially so given that a four- 
dimensional space is required. 

The inner products between (the vectors of)  each genotype and attribute 
(Table 7 ) are a more usual interpretational device for Three-mode PCA, and 
more experience has been gained with their use. It is reasonably easy to see 
the consistency between this Table and the grouping obtained from the 

T A B L E 7  

Inner  products  between genotypes  and  at tr ibutes. l  First  e n v i r o n m e n t  c o m p o n e n t  (wi th in  cluster or- 
dered with respect to yield) 

Cluster  2 Geno type  Length Strength Micronai re  Yield Selected 
19813 

A)  c315 4.1 3.3 - 0 . 3  0.1 yes 
n a m  2.7 9.3 - 2 . 9  - 2 . 0  yes 
c310 6.0 1.0 - 1.2 - 2 . 5  
mo63j  2.8 3.5 0.1 - 3 . 8  

B) m220  - 0 . 8  1.9 0.3 - 0 . 3  yes 
75007 - 3 . 9  2.1 - 1.5 - 2 . 0  yes 
10 /4  - 3 . 0  4.0 - 4 . 9  - 2 . 3  

C)  3 7 / 1 0  - 5 . 3  - 4 . 1  3.9 1.7 
286f  - 2 . 7  - 1.0 3.9 0.8 
4 2 / 8  - 4 . 2  - 0 . 5  0.1 - 0 . 0  
76023 - 3.6 - 2.7 2.3 - 2.2 

D) 439h - 0 . 2  - 1.2 - !.4 4.0 yes 
dp61 - 0 . 5  - 0 . 9  2.5 2.4 yes 
sic2 0.9 - 0 . 5  - 0 . 6  2.3 yes 
lh  2.1 - 1.2 - 0 . 1  2.0 yes 
sicl 1.0 - 1.8 1.7 1.9 yes 
439g - 0 . 6  - 1.2 - 0 . 8  1.3 yes 
dp55 - 0 . 2  0.0 - 1.2 0.7 yes 
dp61i 2.3 - 1.0 - 0 . 1  0.6 
dp41 0.4 - 1.9 - 1.3 0.3 yes 
siclf  - 0.0 - 0.8 2.7 0.1 yes 
3 3 / 8  !.5 - 1 . 9  1.4 0.1 
7146n 4 0.4 - 1.8 0.0 - 0 . 2  
d p l 6  0.8 - 1.4 - 2 . 0  - 0 . 8  yes 
sic3 0.1 - 1.1 - 0 . 6  - 2 . 1  

IA value  o f  zero indicates  average on an  at tr ibute.  
2The clusters,  f rom the four-cluster  M I X C L U S 3  analysis ,  m a y  be character ised  as: 

A)  long, s t rong lint, ra ther  fine micronaire ,  low yield; 
B ) short ,  s t rong lint, ra ther  fine micronaire ,  low yield; 
C)  weak, short  lint, coarse micronaire ,  variable yield; 
D )  average length, weak lint, variable micronai re ,  generally good yield. 

3Yes in co lumn  1981 m e a n s  selected f rom 1981/82  trials. 
4probably 7146n is the  closest to an  'average '  co t ton  plant.  
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T A B L E  8 

Inner products between genotypes ~ and attributes: Second environment component, i.e. Wes t  Na -  

m o i / M y a l l  Vale versus Biloela/Darling Downs (within cluster ordered with respect to yield) 

Cluster Genotype Length Strength Micronaire Yield Selected 
1981 

A )  n a m  - -0 .7  - 0 . 4  -- 1.9 -- 1.0 yes  

m o 6 3 j  - -0 .3  - 0.0 -- 1.1 -- 1.5 yes  

B)  75007  0.3 - 1.0 0 .0  - 1.0 yes  

C )  76023  0.6 0.4 - 0 . 5  - 1.1 

D )  4 3 9 h  - 0.1 - 0.2 1.1 1.6 yes  

s ic2 - 0.1 - 0.1 0 .7  1.0 yes  

l h  - 0 . 2  - 0 . 1  0.9 1.0 yes  

' O n l y  genotypes with at least one value over I 1.0F included. 
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. . . . . .  cluster ITT & 

......... c lus ter  Trl 

...... cluster I ~  

Fig .  4. A s  fo r  F ig .  3 ( t o p ) ,  but with four-cluster I N D C L U S  solution. 

MIXCLUS3 analysis, particularly for lint length and lint strength. Attention 
is also focussed on any genotypes which may have a somewhat different re- 
sponse pattern to the rest of  the group to which it was assigned in the cluster 
analysis. For instance, sicl, siclf, dp61 and 33/8 stand out in cluster D because 
of  coarse micronaire, while 1 h and dp61 i have particularly long lint for that 
group. 

A similar Table (8) has been prepared for the genotype/attribute relations 
corresponding to the environment differences between Darling Downs and 
Biloela in Queensland and the Namoi locations, Myall Vale and West Namoi, 
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in New South Wales. Compared with their overall performance in all environ- 
ments, nam, mo63j, 75007 and 76023 had relatively lower yields in West Na- 
moi/Myall Vale than in Biloela/Darling Downs, while 439h, sic2 and lh had 
relatively higher yields in West Namoi/MyaU Vale than in Biloela/Darling 
Downs. Furthermore, nam and mo63j had relatively finer lint in West Na- 
moi/Myall Vale than in Biloela/Darling Downs, and 75007 was weaker in 
West Namoi/Myall Vale than in Biloela/Darling Downs. 

It is instructive to display Fig. 3 (top) again, but with the four-cluster IND- 
CLUS results portrayed (Fig. 4) instead of the MIXCLUS3 results. As re- 
marked earlier, the many similar clusters in the INDCLUS solution probably 
represent differences in performance across environments, i.e., some geno- 
types performed more alike in some environments compared with others so 
that for certain environments they belong to the main (Deltapine) cluster, 
while in others they do not. 

Parallel factor analysis - PARAFAC (G × E × A data) 
Unlike Three-mode PCA, PARAFAC has only one set of (genotype) com- 

ponents (or 'factors', as they are called by the originator (Harshman, 1970 ) ), 
and the elements (i.e. attributes and environments) weight these axes accord- 
ing to the importance of that factor to the element in question. As in ordinary 
factor or component analyses, the interpretation of the axes is primarily de- 
rived from the attributes (variables) and the factors are interpreted by them- 
selves rather than by investigating the space they span (as for Three-mode 
PCA), even though that remains a distinct possibility; moreover they are gen- 
erally (but not here) oblique. (The full rationale for the interpretation is 
clearly explained in Harshman and Lundy, 1984. ) The model is conceptually 
simpler (only one kind of factor, rather than three) than Three-mode PCA, 
and therefore often more easily interpreted. 

To gain an impression of the interpretation, we will look at the PARAFAC 
results (Tables 4, 5 and 6 ) but, for simplicity, only consider those genotypes 
which have values equal to or greater than 1.0 in absolute value. This pro- 
vides an oversimplified picture, but is unavoidable in a paper of this kind. 

Factor 1: Nam (3.2), 10/4 (2.3) and 75007 (1.2) stand out in all environ- 
ments (but less so in Biloela (0.6), Darling Downs (0.5) and St. George 
(0.8)) in that they have particularly strong lint (0.9) and fine micronaire 
( -0.5 ), yet low yield ( -0 .3  ) and average length ( -0 .0  ). The reverse is true 
for 37/10 ( -1 .0 ) .  

Factor 2:c310, c315, nam and mo63j have particularly long lint of above- 
average strength in all environments, whereas 37/10, 42/8, 75007, 10/4 and 
76023 have particularly short lint of below-average strength in all 
environments. 

Factor 3: 439h, sic2, dp61 and lh have particularly high yields in Myall 
Vale, West Namoi, Moree and St. George, and low yields in Biloela, Theodore 
and, especially, Darling Downs. The situation is reversed for 76023, mo63j, 
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c310, sic3 and 75007 having low yields in Myall Vale, etc., and high yields in 
Biloela, etc. 

Factor 4: dp41, 10/4, dpl6  and 439h have particularly fine micronaire 
(negative values) in Warren, Moree and St. George, while 286f, siclf, dp61 
and 37/10 have coarse micronaire in those environments. The reverse is true 
for West Namoi. 

Without going into a full comparison of the Three-mode PCA and PARA- 
FAC results, there are several points that should be noted. The sum of the R 2 
values of the PARAFAC and the Three-mode PCA solutions are almost equal 
(0.72 and 0.71 ), and Table 9 (to be discussed below) shows that the PARA- 
FAC genotype factors can be predicted quite well from the Three-mode PCA 
genotype components. Thus, the two models predict the same variability, but 
organise their information in different ways. Moreover, the first two PARA- 
FAC factors essentially span the same space as the first two Three-mode PCA 
components, i.e., the former are a rotation of the latter. The same can be said 
of the third and fourth factors (components) of the two models. Both the 
PARAFAC factor descriptions and the inner-product descriptions come to 
essentially the same conclusions. 

The environment factors in Table 4 show that the models present the dif- 
ferences between environments in another way. Three-mode PCA has two 
components, one to show what the environments have in common and one 
to show what their major differences are. In PARAFAC, such differences are 
represented in the different weights the environments attach to the factors. 
Because the values are all positive (except one), the trend is the same for all 

TABLE9 

Regression of PARAFAC AND INDSCAL/ALSCAL genotype coordinates ~ on Three-mode PCA 
genotype components 

Predictors 2 Criteria 

PARAFAC INDSCAL/ALSCAL 

1 2 3 4 1 2 3 4 

T3/I  -0 .75  - 0 . 6 0  0.17 0.16 0.92 -0 .63  0.02 -0 .30  
T3/2 - 0 . 5 4  0.76 0.34 -0 .12  0.22 0.50 0.80 0.04 
T3/3 0.21 0.25 - 0 . 6 4  0.67 0.17 0.48 -0 .45  -0 .32  
T3/4 -0 .28  -0 .01 -0 .65  -0 .69  0.00 -0 .02  -0 .25  0.49 

R 2 0.99 1.00 0.98 0.96 0.93 0.88 0.90 0.43 

Due to centering of the data, all axes have zero means, and thus all regression constant terms are 
zero. 
2b is the unstandardized regression weight. 
R 2 is the squared multiple correlation between criterion and predictors. 
T3/i is the/ th  genotype component of the Three-mode PCA. 
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environments; only the extent of the trend is different (the inner products of 
the factors, which indicate the cosines between them, range from 0.84 to 0.97 ). 
In this way, the similarities and differences between the environments are 
represented in all factors. 

Individual Differences Scaling - INDSCAL (G X G × E) 
Unlike the previous two techniques, INDSCAL starts from (dis)similarity 

matrices, so the G × E X A data were transformed to G × G × E data using Eu- 
clidean distances. This rather hampers the interpretation, as the present data 
have a fairly large G × A interaction. The genotype coordinates on the dimen- 
sions are given in Table 6 and the weights of the environments in Table 4. As 
the overall (ALSCAL) fit of the INDSCAL model to the G X G X E data has 
an R 2 value of 0.62, the four dimensions fit less of the transformed data than 
the other models do the original data. However, such a comparison is really 
not justified, as the data being fitted are different. An explicit interpretation 
of the dimensions will not be given, because the information they carry is 
largely the same as the genotype components of the previous analyses - as 
will become clear below. The environment weights provided by the INDS- 
CAL model indicate to what extent the configuration defined by the geno- 
types is enlarged or reduced by each of the environments, with the direction 
of extension being along the coordinate axes. 

To evaluate the differences between the three ordination techniques, we 
have regressed the PARAFAC factors and the INDSCAL/ALSCAL dimen- 
sions on the Three-mode PCA components (Table 9). As mentioned before, 
all PARAFAC factors are very well predicted by the components. The agree- 
ment is somewhat less for the INDSCAL/ALSCAL dimensions, but even here 
only the last deviates in a really noticeable manner. The orientation of the 
dimensions is generally different, and there is not such a direct split into the 
first two and the last two. 

D I S C U S S I O N  

The information obtained from the various analyses of the 1981/82 data 
from the Australian Cotton Cultivar Trials can be summarized as follows: 

( 1 ) Both the clustering and ordination procedures gave a sensible and use- 
ful integration of the data from this regional variety trial. Considerably more 
detail and interpretation were available through the complementary use of 
the ordinations, especially in examining the relationship among, and the vari- 
ation within clusters. This addresses the practical problem for plant-breeders 
that, although such clusters are easier to look at than many individual lines, 
selection has to be made for individual lines. 

(2) The methods have successfully integrated the yield and quality data. 
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The analyses point to a decision in favour of either high yields of moderate to 
good quality lint or moderate yield but superior lint quality. 

Before lines are entered in the ACCT, they have been previously tested in 
trials at two to three locations for approximately two years. These data, to- 
gether with the ACCT data, are used to select entries for the next year's trials. 
From the above analyses, the 'best' members from cluster D would be selected 
on high yield and adequate quality, and the best from cluster A (and maybe 
B ) on the basis of good quality and reasonable yield. This is consistent with 
what happened in practice (see Table 7 ). 

As in 1980/81, nam (Namcala) has very strong lint and is among the best 
lines for long lint and fine micronaire. Although it is included in the trials as 
a benchmark for high-quality lint, it does not yield enough to be acceptable. 
The dp61 and sic2 quality is 'good enough' for most 'good' quality cotton. 
Dp 16 is also retained in the trials for genetic reasons. 

As mentioned earlier, we cannot give details of the individual problems one 
might encounter while executing these analyses. The prospective user should 
look at the original publications for comprehensive information. The relevant 
programs and documentation are generally in the public domain or available 
on request. 

Although the overlapping clusters gave some additional insight by pointing 
to differences in cluster composition in the different environments, it is not 
straightforward to obtain this extra information. The response plots from 
MIXCLUS3 (Fig. 2) are particularly useful in displaying the differing re- 
sponse patterns of the clusters in the individual environments. When taken 
in conjunction with the Three-mode PCA, relationships between the lines 
within the clusters can be explored. The other ordination techniques did not 
add any further significant information. 

The major advantage of these methods is that they allow the data set to be 
treated in the form of a three-way array. An overall picture of response is 
obtained and, in the case of the clustering approaches, used to allocate the 
cotton lines to either overlapping or non-overlapping groups. The important 
G × E interaction present in such trials is incorporated directly into the un- 
derlying models. Similarly, the representation of the cotton lines in a reduced 
space allows a quicker appreciation of the major differences inherent in the 
data. The ordination techniques allow possible structure in the environments 
and attributes to be extracted. The techniques provide complementary infor- 
mation which can be readily displayed in common figures. They are useful 
techniques which could be commonly employed in the statistical analysis of 
such three-way data. 
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