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Estimation of Allocation Rates in a Cluster

K. E. BASFORD and G. J. McLACHLAN*

Analysis Context

A sample of multivariate observations is assumed to be drawn
from a mixture of a given number of underlying populations.
The mixture likelihood approach to clustering is used to allocate
each individual in the sample to its population of origin on the
basis of the estimated posterior probabilities of population mem-
bership. Estimation of the correct allocation rate is considered
for individual populations as well as for the overall mixture by
averaging functions of the maximum of these posterior prob-
abilities. The estimates of the correct allocation rates provide
a means of assessing the performance of the mixture approach
to clustering. The bootstrap technique is investigated for its
effectiveness in reducing the bias of the estimates so obtained.
Results are reported for three real data sets and a simulation
study. It is demonstrated that the proposed estimates generally
provide useful information on the unobservable allocation rates
of the mixture approach. Encouraging results are obtained for
the bootstrap method of bias correction applied to the estimates
of the individual and overall allocation rates.

KEY WORDS: Allocation rate, correct; Mixture maximum
likelihood method; Posterior probability estimate; Bias correc-
tion; Bootstrap method.

1. INTRODUCTION

Consider a sample of p-dimensional observations, xi,

. ., X,, Where each may belong to one of several populations.
Allocation of this sample is considered in a cluster analysis
context in which it is not known from which population an
observation comes. Under the so-called mixture maximum
likelihood (ML) approach to clustering, the sample is assumed
to have been drawn from a mixture of a specified number of
populations in varying proportions. By adopting some para-
metric form for the density function in each underlying popu-
lation, a likelihood can be formed in terms of the mixture
density, and the unknown parameters can be estimated by the
likelihood principle. An allocation rule based on the estimated
posterior probabilities can then be found for assigning the ob-
servations to the various populations. The properties of the
mixture approach have been considered by Day (1969), Wolfe
(1970), Hosmer (1973), O’Neill (1978), Ganesalingam and
McLachlan (1978, 1980a,b, 1981), Aitkin (1980), Mezzich and
Solomon (1980), Aitkin et al. (1981), Symons (1981), Everitt
and Hand (1981), and McLachlan (1982), among others. Hawk-
ins et al. (1982) strongly supported the increasing emphasis on
such an approach to clustering because it is model based. As
they pointed out, most other methods of cluster analysis are
based “on algorithms and criteria in the belief that intuitively
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reasonable criteria should produce good results over a wide
range of possible [and generally unstated] models” (p. 353).

With any approach to clustering, there is the problem of
assessing its performance. For the particular model under study,
the superpopulation is assumed to be a mixture of a specified
number of populations. With respect to a given population in
the mixture, the correct allocation rate is defined to be the
proportion of the observations from that population in the sam-
ple correctly allocated. In a cluster analysis context, the origin
of each observation is unknown, and so the estimation of these
proportions is a difficult task. This contrasts with the situation
in discriminant analysis in which the origin of each observation
is known. There, these proportions are observable and are re-
ferred to as the apparent allocation rates. In the discriminant
analysis context, these rates are used to estimate the perform-
ance of the allocation rule when applied to subsequent obser-
vations of unknown origin.

There are few available results in the literature on the present
objective of allocating an unclassified sample at hand and ob-
taining estimates of the correct allocation rates to assess the
performance of the clustering method. A technique based on
averaging appropriate functions of the maximum of the pos-
terior probabilities was suggested by Ganesalingam and
McLachlan (1980b) to estimate the overall error rate of the
mixture approach. It worked well on a real data set—consisting
of a mixture of two bivariate normal populations—reported in
an unpublished Ph.D. dissertation by Ganesalingam. The pres-
ent investigation examines the performance of such estimators
not only for the overall allocation rate but also for the individual
population allocation rates. In addition to the aforementioned
bivariate example, two real data sets of more than two dimen-
sions are considered, in which the number of underlying groups
is greater than two. For these data sets the origin of each ob-
servation is known, and so the estimates of the allocation rates
for the individual populations and the superpopulation can be
compared with the true allocation rates. A simulation study is
also conducted.

As the bias associated with the proposed method of estimation
can be quite large, attention is focused on the problem of cor-
recting the resulting estimates for bias by using the bootstrap
technique. Some other methods of bias correction for this prob-
lem are briefly discussed.

2. MIXTURE APPROACH

Let IT denote the superpopulation, consisting of g populations
IT,, . . ., II, in some proportions 7, . . . , 7, and let w =
(my, . . ., m,)". The density of an observation x in II, is given
by fi(x; v), where v denotes the vector of all unknown param-
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eters in the population densities. Under the assumption that the
sample x,, . . . , X, has been drawn from II, the likelihood is
given by

Lxy, ..., X5 v, W) = f[ {ﬁ: mfi(x;; v)} (D
j=1 Li=1

Let & be the estimate of ¢ = (v’, &)’ obtained by likelihood
estimation. Then each x; (j = 1, . . . , n) can be allocated on
the basis of the estimated posterior probabilities. The posterior
probability that x; belongs to population II, is given by

0,(x;; &) = n,f.(x;5v) / D, mfix;; v) )
i=1

forr = 1,..., g;andx; is assigned to II, if

0,(x;; b) > 0i(x;; b), 8 3)

For convenience 8,(x;; &) is denoted henceforth by (9,~j. Ifdo
were known, the allocation rule (3) would be the optimal or
Bayes’s rule (Anderson 1958), which maximizes the overall
correct allocation rate.

The likelihood equation for ¢, d log L/dd = 0, can be
expressed as

i=1,.. iF#r.

n

£ < 0
2 2 0, log filx;; %) = 0
i=1 14

j=1

4
and

0.
ﬁ,:Ef, i=1,...

j=1

, 8- &)
The computation is facilitated to a great extent by identifying
these equations with the application of the EM algorithm of
Dempster et al. (1977; see also Orchard and Woodbury 1972).
For each x; (j = 1, ..., n), let the vector of indicator
variables, ¥ = (yy;, . . . , 7,;) , be defined by

x; € I1,,
x; € I1;

Yij = 1,
= 0,

the expectation of +y;; conditional on X; is equal to 0;;. Then it
can be easily confirmed that (4) and (5) are obtained by dif-
ferentiation of the expectation of the complete-data log-likeli-
hood conditional on X, . . ., X,. This conditional expectation
is effected here by replacing each indicator variable y,; by its
expected value conditional on x;, §;. Given some initial esti-
mate of ¢ in forming the 0 ;> A New estimate & can be computed
from (4) and (5), substituted back into the 9,~,~ to yield a new
estimate of ¢, and so on. The process continues iteratively
with the likelihood increasing at each step, until convergence
for a sequence bounded above. An account of the convergence
properties of the EM algorithm was given by Wu (1983). Gen-
erally, the convergence is slow but may be improved by using
Aitken’s acceleration process; see Louis (1982) for details of
speeding up this algorithm.

For normal densities with unequal covariance matrices the
likelihood is unbounded, since each data point gives rise to a
singularity on the edge of the parameter space. It is known
(Kiefer 1978), however, that there is a Sequence of roots of the
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likelihood equation given by (4) and (5) that is consistent and
asymptotically efficient for d. With probability tending to 1,
these roots correspond to local maxima of the likelihood. With
mixture models the likelihood generally has multiple maxima,
and so there is the problem of which root to choose. It does
not necessarily follow that the estimator constructed by choos-
ing the root that corresponds to the largest of the local maxima
is consistent (Lehmann 1980). Ideally, we would like to have
available a /n-consistent estimator of ¢ with which to start the
EM algorithm. This is possible with the data sets considered
here, since we know the true origin of each observation, so we
can use as our starting point the estimate of ¢ formed using
this knowledge. In practice, this information is unknown; so
the EM algorithm must be repeated for several different sets
of starting values of ¢. (On the choice of suitable starting
values, see Quandt and Ramsey 1978 and the subsequent dis-
cussion—Fowlkes 1979, Everitt and Hand 1981, and Basford
and McLachlan 1984.)

The mixture approach is usually applied with the f;(x; v)
assumed to be multivariate normal densities with different mean
vectors and perhaps different covariance matrices. This as-
sumption can. be checked to some extent by using the test for
multivariate normality and homoscedasticity as described by
Hawkins (1981). Since the true origin of each observation is
unknown, the sample must be clustered first by using the mix-
ture approach for multivariate normal densities with unequal
covariance matrices. The test is then applied to these clusters
as if they were the true groups with no misallocations. This is
a rather crude approach, but according to Fatti et al. (1982), it
appears to work fairly well. In the examples to be discussed,
we were able to apply Hawkins’s method directly, as we knew
the true groups.

3. ESTIMATORS OF ALLOCATION RATES

Although the mixture approach may not give accurate esti-
mates of the posterior probabilities, 9,~j, for the observations in
the sample, it may still provide a satisfactory clustering of the
data (Ganesalingam and McLachlan 1979). The case study of
Hernandez-Avila (1979) suggests that the mixture approach
applied, assuming multivariate normal densities, may well be
reasonably robust from the cluster analysis viewpoint of sep-
arating samples in the presence of multimodality.

We wish to consider here, however, the situation in which
n is sufficiently large, relative to the number of unknown pa-
rameters, for the 0;; to be regarded as reliable estimates of the
posterior probabilities. In this situation, if the maximum of
overi = 1, ..., gis near to 1 for most of the observations
X;, we can be confident that the mixture approach can cluster
the sample at hand with a high degree of certainty. Conversely,
if this maximum is generally well below 1, then the underlying
populations are too close together for the sample to be clustered
with any certainty. It would be informative, therefore, to have
available a quick summary statistic for assessing the overall
performance of the mixture approach in clustering the sample
at hand. To this end, we consider the estimation of the correct
allocation rates associated with an application of the mixture
approach.

Let P; denote the correct allocation rate with respect to pop-
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ulation i (i = 1, . . ., g) when the sample is allocated to II,,

, I, on the basis of rule (3); that is, P, = #{j:x; € II,
and x; allocated to II}/#{j:x; € II;}. The overall correct
allocation rate is

& nP;
=2_—,

i=1 N

(6)

where 7; is the number of observations from II; in the sample.
This can be estimated by

T=§n:m
j=1

Our reasoning for using T as an estimator of P follows from
the ideas developed in a discriminant analysis context by Fu-
kunaga and Kessel (1972, 1973), Lissack and Fu 1976, Glick
(1978), Moore et al. (1976), and Schwemer and Dunn (1980).
In the case of known ¢, T [using 6,; instead of 9,,- in (7)] would
be a consistent and unbiased estimator of the correct allocation
rate for rule (3) applied to a subsequent observation randomly
chosen from the superpopulation, and P tends in probability to
this latter rate as n — o,

It was decided to estimate the individual allocation rates P;

M

@G=1,...,gby
s Lix;)
Ti = er —1 ) 8
FE}mgtx s @®)
where
Ii(xj) = 1’ lj> érp r= 1’ 9g’ r;é i’
=0 otherwise. 9

It can be verified without difficulty that providing ¢ is con-
sistent, T — P and T; — P, converge in probability to O as n
—> 0,

As explained in the introduction, some method of bias cor-
rection should be considered with applications of T and T; (i
=1,..., g), although it may involve considerable compu-
tation. Moreover, as explained by Efron (1982), even if cor-
rection for bias is not undertaken, it can still be of interest to
compute the estimated bias of an estimator, along with an es-
timate of its standard deviation (SD) or root mean square error
(RMSE). If the estimated bias is less than, say, % of the esti-
mated SD or RMSE, then bias is probably not a serious issue.
Note, however, that as the quantities being estimated here are
not parameters but random variables, the MSE does not equate
simply to the variance plus the bias squared. Considering T; as
an estimator of P;, we find that

MSKE(T,) = var(T;) + {bias(T)}?
+ var(P;) — 2 cov(T;, P)).

4. BIAS CORRECTION OF THE
ESTIMATED ALLOCATION RATES

We consider now the proposed bootstrap method of Efron
(1979) to correct the estimates T and T; (i = 1, ., g8) for
bias (for a full account of the application of the bootstrap in a
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general context see also Efron 1982, 1983, and Efron and Gong
1983). It may be applied as follows:

Step 1. A new set of random variables, (¥;, X{)', . . .,
(¥, X,)’, is generated from the distribution of (y’, x')" with
the estimates 4 and ¥ used in place of the unknown m and v.
This can be achieved by generating foreachj (j = 1, . . .,
n) a random variable that takes the values 1, ., & with
probabilities ¥, . . . , fr,. If the generated value is equal to
r, say, then {(,.j = 1 fori = rand = 0 otherwise. The obser-
vation X; is then generated from the density f,(x; #). This implies
that X, . . ., X,is a random sample from the mixture density

= 3 wfix B).

i=1

fx) (10)
Note that unlike the indicator vectors vy, associated with the
original observations x;, the bootstrap indicators ¥, are known.

Step 2. The mixture approach is applied to the bootstrap
sample X, . . . , X, to produce new estimates of 7 and v, say
7 and ¥, knowledge of the 4; is not used in this step.

Step 3. Each estimated allocation rate (7') for the clustering
of the bootstrap sample (X;, . . . , X,) on the basis of (3), now
using 4 and D, is computed along with the true rate (P,) as
determined from the ;.

Step 4. The expectation of the difference d; = T, — P,
with respect to the bootstrap distribution given by (10) is re-
ferred to as the bootstrap bias, say b;. It is approximated by
d;, obtained by averaging d; over K repeated realizations of
samples from f(x) that is, d; = X_\ (du/K), where d;, = T,
— P, denotes the value of T, — P, obtained on the kth bootstrap
replication. The standard error of the Monte Carlo approxi-
mation, d;, to the bootstrap bias, b,, is calculated as the positive
square root of

K (dy — d))?
2 KK —-1) )

k=1

The RMSE of T; is estimated by the positive square root of

(le - lk)
2 K

Similarly, the bootstrap estimates of the bias and RMSE of T
can be formed with respect to its estimation of the overall
allocation rate, P, and we use b to denote the bootstrap bias
and d its Monte Carlo approximation.

Step 5. The bias-corrected estimates of the individual and
overall allocation rates are givenby 7; — d; (i = 1, ..., g)
and T — d, respectively.

This is the parametric version of the bootstrap method. One
could consider a semiparametric version, using a different method
of generating the bootstrap sample in step 1 but with steps 2—
5 the same as previously outlined. In step 1, a sample of size
n would be drawn with replacement from the observations x,

. » X,, with each observation given equal weight 1/n. The
origin of each chosen observation x; would be determined then
in accordance with its *estimated posterior probability, 9,-,-, of



Basford and McLachlan: Allocation Rates in Cluster Analysis

belonging to the ith underlying population (i = 1, ..., g).
That is, a random variable that takes the values 1, . . . , g with
probabilities (91 oo e e 9g,~, respectively, would be generated;
the value of this generated random variable determines the
(bootstrap) population of origin of the observation x;.

The number of bootstrap replications K used in forming the
bootstrap estimates here was limited to 50 for economical con-
siderations. In various other applications of the bootstrap, Efron
(1979, 1981a,b) noted that the choice of replication number
does not seem to be critical past 50 or 100. In addition, for
some simulations performed, a components-of-variance argu-

ment (described in Sec. 7) indicated that K = 50 was adequate.

5. APPLICATION

The estimators proposed in Section 3 for assessing the per-
formance of the mixture ML method of clustering are inves-
tigated at first by using three real data sets. As the true origin
of each observation is known, the estimates of the allocation
rates can be compared with the true allocation rates for each
population and for the superpopulation. In each of these ex-
amples the estimates—and consequently the cluster—associ-
ated with population II; are taken to be those corresponding to
%; and S;, and n;/n (the usual estimates of p;, 3;, and 7; when
the origin of the data is known), as their initial values in the
application of the EM algorithm. The results obtained by the
parametric version of the bootstrap are discussed first. The
corresponding results for the semiparametric version are con-
sidered at the end of this section.

Example 1

The data analyzed were taken from Habbema et al. (1974),
in which in the context of genetic counseling, the question of
discriminating between normal women and hemophilia A car-
riers was considered on the basis of the two variables, x;, =
log;y (AHF activity) and x, = log,o (AHF-like antigen). Ref-
erence data containing n; = 30 observations on known non-
carriers and n, = 45 observations on known obligatory carriers
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were available. Let 7, be the population of noncarriers, or
normals, and 7, be the population of carriers.

Application of Hawkins’s test for multivariate normality and
homoscedasticity (Hawkins 1981) suggests that the populations
are normal but somewhat heteroscedastic. Hence the mixture
method of clustering was applied to the data, assuming it to be
a sample of observations of unknown origin taken from a mix-
ture of two bivariate normal populations with unequal covari-
ance matrices. The mixture approach misallocated 3 and 12
observations from 7, and 7,, respectively, when used to cluster
the sample of 75 observations into two populations, so P,
.9, P, = .733, and P = .8. The estimates of the allocation
rates as given by T,, T,, and T, respectively, are shown in
Table 1, along with the bootstrap estimates of their RMSE’s
and biases. The standard errors given are of the latter Monte
Carlo approximations, d; (i = 1, . . ., g) and d, to the bootstrap
biases, b; (i = 1, ..., g) and b. The bias-corrected estimates
of the allocation rates obtained as a consequence are also dis-
played in Table 1. It can be seen from this table that the boot-
strap method is effective in reducing the bias of not only the
overall allocation rate but also each individual population rate.

Note that for this example, the mixing proportions m; and
7, have been introduced solely for the purpose of forming the
mixture ML to produce a clustering of the sample. They do
not represent the prior probabilities of being a noncarrier and
carrier, respéktively, since each woman has her own prior prob-
ability of being a noncarrier given by her genetic chance of
being normal, which can be assessed from her pedigree.

Example 2

We consider here the well-known set of Iris data published
by Fisher (1936). It consists of four measurements on 50 plants
from each of three species of Iris: Iris setosa, Iris versicolor,
and Iris virginica, denoted here by populations II,, II,, and
I1,, respectively. Many clustering techniques have been applied
to this data set (e.g., see Kendall 1966, Friedman and Rubin
1967, and Scott and Symons 1971). The setosa plants have

Table 1. Estimation of Correct Allocation Rates for Real Data Sets by Using Bootstrap Method of Bias Correction

Parametric Version

Semiparametric Version

Popu- True Estimated Estimate Estimate Corrected Estimate Estimate Corrected
lation Rate Rate of RMSE of Bias SE Estimate of RMSE of Bias SE Estimate
Example 1: Habbema’s Hemophilia A Data
1L .900 .938 113 .052 017 .886 .052 .009 .007 .929
II, .733 .902 .193 .090 .024 812 133 .060 .017 .842
I .800 .921 120 .076 013 .845 .071 .035 .009 .883
Example 2: Fisher’s Iris Data
II, 1.000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000
I1, .900 .985 .035 .013 .005 971 .053 .021 .007 .964
I, 1.000 .986 .031 .012 .004 .974 .024 .004 .003 .981
IT .967 .990 .013 .008 .002 .982 .017 .008 .002 .982
Example 3: Pigeon Pea Data
1L 1.000 .998 .019 .007 .002 .991 .025 .009 .003 .989
IL, .800 .979 .023 .009 .003 .970 .055 .028 .007 .951
I, 967 .981 .037 .015 .005 .966 .033 .009 .005 972
In .922 .986 .018 .011 .002 975 .024 .014 .003 973
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been easily isolated, but there is generally overlap between the
other two species. The mixture approach was applied as though
the data were a sample of 150 observations of unknown origin.
The population densities were taken to be multivariate normal
with unequal covariance matrices, as Hawkins’s test indicated
normality with heteroscedasticity (see Fatti et al. 1982, p. 64).
It is worth noting, however, that some other analyses (Small
1980 and Royston 1983) have cast doubt on the normality of
this data set. The mixture approach misallocated five plants
from II, to II;, thus giving P, = 1.0, P, = .9,and P, = 1.0
with an overall allocation rate of P = .967. The results for
this example are displayed in Table 1.

Concerning the individual population rates, every bootstrap
sample gave an estimate of the allocation rate for I1, equal to
the true rate of 1.0, so the estimates of the RMSE and bias
were all 0. As noted earlier, this population is quite distinct
from the other two. The individual rate for IT, and the overall
rate are closer to the true rates as a consequence of bias cor-
rection, although the corrected estimates have only partially
removed the overoptimism. For II; the corrected estimate is
further than the estimate, T, from the true rate, P;.

Example 3

The data considered here are from a pigeon pea variety trial
conducted at Redland Bay in Southeast Queensland in 1977.
Two of the lines were from International Crops Research In-
stitute for the Semi Arid Tropics (ICRISAT), Hyderabad, India;
these were compared with a line developed in the Agriculture
Department of the University of Queensland. Observations were
made on plant height, seed weight, and pod number for each
of 30 plants for each line. The three lines—Royes, ICP28, and
ICP26—were denoted by II,, II,, and II;, respectively. The
populations were taken to be multivariate normal with unequal
covariance matrices because of significant heteroscedasticity
shown in Hawkins’s test for multivariate normality and homo-
scedasticity. According to this test, there is some doubt about
normality. The mixture approach misallocated six plants from
ICP28 as ICP26 and one plant from ICP26 as Royes. This gave
allocation rates of P, = 1.0, P, = .8, and P; = .967 with P
= .922.

It can be seen from Table 1 that with one exception, bias
correction moved the inital estimates closer to the true rates.
The corrected estimate of the rate for 115 is almost equal to the
true rate. Otherwise, the improvement in the estimated rates is
limited. The one instance in which bias correction moved the
estimate away from the true rate (albeit by a small amount) is
similar to the exception in Example 2. In each case the true
rate is equal to unity, and so contrary to the general trend, the
estimated rate is not optimistic.

We have also listed in Table 1, for Examples 1-3, the results
corresponding to the semiparametric version of the bootstrap
method. Contrasting these results with those of the parametric
version, it can be seen that for Example 1 the latter is clearly
preferable, but for Example 2 it does not give better estimates
than the semiparametric version, and for Example 3 there is
little to choose between the two versions. It has been noted for
Examples 2 and 3 that there is some doubt about the normality
of the data, and this might explain the lack of superiority of
the parametric over the semiparametric version.
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6. SIMULATION RESULTS

To examine the estimation of the allocation rates in more
detail, a simulation study was undertaken in which samples
were drawn from a mixture of equal proportions of two bivariate
normal populations with equal covariance matrices (2, = 3,
= 3,). Without loss of generality it was assumed that p, =
(A, 0)', p, = 0, and 3, is the identity matrix, where A = {(p,
— 1)’ Y7y — py)}? is the Mahalanobis distance between
I1, and II,. Four different combinations of A and n were con-
sidered (cases A, B, C, and D), and 40 simulation trials were
generated in each case except case C, where the number of
trials was limited to 20 (see Table 2). An IMSL subroutine
based on the inverse method was used to generate normal ran-
dom variables from uniformly distributed deviates, which were
produced by a multiplicative congruential generator of the form
X;,1 = rX; (modulo s), where r = 7° and s = 23 — 1. For
the simulation study, attention was confined to the parametric
version of the bootstrap method of bias correction.

Before discussing the summarized results of the simulation
study (in Table 5), we shall go through the first trial of case
A, reporting relevant values for the overall allocation rate, then
through several trials to illustrate how the summary table was
obtained. In Table 3, we list the values of T and P obtained
on the first five replications using the bootstrap method to
correct T for bias as an estimate of P; for this first trial, T =

.854 and P = .767. As explained in Section 4, the bootstrap
estimate of the bias of T is given by the Monte Carlo approx-
imation d, obtained by averaging the values of d = T — P
from the K = 50 bootstrap replications performed. For this
first trial, d = .115, leading toT — d = .739 as the corrected
estimate of P. The RMSE of T was estimated by the positive
square root of the average over the K = 50 bootstrap repli-
cations of d?, yielding (.0226)"2 = .150 as the estimate of the
RMSE.

The preceding exercise was repeated for each of 40 simu-
lation trials. To illustrate this process, we list in Table 4 the
first five individual trial values for the overall allocation rate
in case A. The averages and their standard errors in the columns
headed P, T, T — d, and Estimate of RMSE in Table 4 cor-
respond to the entries for True Rate, Estimated Rate, Corrected
Estimate, and Estimate of RMSE, respectively, for case A in
Table 5. In this table RMSE and RMSE* refer to the RMSE’s
of the estimated rate and its bias-corrected version, respectively,
assessed by the positive square root of the averages over the
simulated values of (T — P)?, respectively. In the context of
estimating the error rate of a prediction rule, Efron (1983)
discussed the ‘‘ideal constant’’ estimate, which, for the esti-
mation of P, is given by T — 6, where 6 is the expectation of
T — P. In our simulations we used 7 — P—the value of T
— P averaged over the number of trials performed—in place

Table 2. Design Aspects of Simulation Study

Case A n Number of Trials
A J2 60 40
B 2 60 40
C 2 120 20
D 3 60 40
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Table 3. The First Five Bootstrap Replications
and Summary Statistics for K = 50 Bootstrap
Replications for the Overall Allocation
Rate on Trial 1 in Case A, for Which
T = .854and P = .767

Bootstrap . B o
Replication T P d=T-P d?
1 77 .700 .07 .005
2 .962 .817 145 .021
3 .888 .800 .088 .008
4 .907 .833 074 .005
5 922 .733 .189 .036
50 (average) 115 .023

NOTE: The entries for the averages of d and d2 over K = 50 replications give the bootstrap
estimates of the bias of 7 and its MSE on this trial.

of the unknown 6. For example, for the overall allocation rate
in case A, we see from Table 4 that T—-P= 84— 74 =
.10. The RMSE of the ideal-constant estimated rate is denoted
by RMSE® in Table 5, where correlation refers to the corre-
lation between the uncorrected estimated rate minus the true
rate and the bootstrap estimator of the expectation of this dif-
ference.

Note that since the estimated overall allocation rate, T, can
be expressed as T = #,T, + - -+ + #,T,, it lies within the
range of the estimates of the individual rates, 7;. This does not
necessarily apply, however, to the rates after they have been
averaged over the number of simulation trials performed in
each case. For example, in case A, it can be seen that T =
.84 lies outside the range of the means of the estimates of the
individual rates, given by T, = 839 and T, = .802.

The results reported in Table 5 for the estimation of the
allocation rates are very encouraging not only for the overall
but also for the individual rates. In each of the four cases, the
bootstrap method of bias correction appreciably reduced the
optimistic assessment provided in the first place by the uncor-
rected estimates. Moreover, bias correction of the estimated
rates reduced the RMSE of each estimated rate in every case.
Indeed, if we compared the RMSE of the corrected estimated
rate, RMSE*, with that of the ideal constant estimated rate,
RMSE©, it can be seen that progress was generally made in
reducing the MSE to this level. In all but one instance, the
mean corrected estimated rate is greater than the corresponding

Table 4. The First Five Trials and Summary Statistics
for 40 Trials for the Overall Allocation
Rate in Case A

_ _ Estimate
Trial T P d T—-d of RMSE
1 .854 767 115 .739 150
2 .889 .700 .058 .831 .089
3 .786 .700 131 .655 173
4 .890 .733 .067 .823 115
5 .953 .850 .041 912 .065
40
Average .840 .740 .078 .762 117
SE .014 .010 .006 .019 .007

NOTE: T — d is the bias corrected estimate of P formed from the K = 50 bootstrap replications
performed on each trial.

29

Table 5. Summary Results for the Simulation Trials
in Cases A, B, C, and D

Case 11, 1, n
A
True Rate .764 .697 .740
SE .024 .031 .010
Estimated Rate .839 .802 .840
SE .021 .026 .014
Corrected Estimate .767 731 762
SE .024 .028 .019
Estimate of RMSE 137 146 A17
SE .008 .007 .007
RMSE 146 194 154
RMSE* 134 193 147
RMSE®" 124 .163 118
Correlation —.163 —.590 —.625
B
True Rate .760 .814 792
SE .029 .027 .012
Estimated Rate .874 .904 .906
SE .020 .011 .010
Corrected Estimate .828 .857 .860
SE .022 .014 .013
Estimate of RMSE A1 .106 .079
SE .008 .007 .005
RMSE 170 .168 144
RMSE* A41 .149 117
RMSE®" 125 143 .089
Correlation 177 .087 -.210
C
True Rate .809 .817 .815
SE .025 .017 .009
Estimated Rate .867 .870 .874
SE .015 .009 .009
Corrected Estimate .829 .834 .833
SE .017 .011 .012
Estimate of RMSE .083 .081 .066
SE .006 .005 .005
RMSE 100 .092 .082
RMSE* .086 .083 .068
RMSE®@ .081 .075 .057
Correlation —-.134 —.282 —.466
D
True Rate .925 .900 916
SE .009 .015 .007
Estimated Rate .944 .940 .945
.005 .005 .004
Corrected Estimate .920 914 .920
SE .008 .008 .007
Estimate of RMSE .061 .07 .046
SE .005 .005 .004
RMSE .044 .093 .049
RMSE* .043 .083 .043
RMSE" .039 .084 .040
Correlation .077 .239 .061

NOTE: Entries for the true rate, estimated rate, corrected estimate, and estimate of RMSE are
averages over the simulation trials. SE = standard error. The root mean square errors of the
estimated rate, the bootstrap corrected rate, and the ideal constant estimated rate are denoted
by RMSE, RMSE*, and RMSE(C) respectively. The correlation is between the (uncorrected)
estimated rate minus the true rate and the estimated bias.

true rate, suggesting that the optimism of the uncorrected es-
timate was not completely eliminated.

With the bootstrap method of bias correction of the apparent
error rate in a discriminant analysis context, Efron (1982, 1983)
noted a marked negative correlation between the apparent error
rate minus the true rate and the bootstrap estimator of the bias,
which appreciably increases the MSE of the corrected rate. The
results in Table 5 for cases A and C indicate that in particular,
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for the overall allocation rate in the present problem, the es-
timated rate minus the true rate is negatively correlated with
the bootstrap estimator of the bias.

7. DISCUSSION OF BOOTSTRAP ESTIMATES

The estimation of the allocation rates associated with the
application of a cluster analysis method is a rather ambitious
undertaking in the absence of data of known origin. Since the
mixture ML approach to clustering is model based, however,
it has been demonstrated that estimates of the allocation rates
can be formulated under this model in terms of the relative
sizes of the estimated posterior probabilities. In the three real
examples presented, these estimates without correction for bias
provided generally useful information on the allocation rates
of the mixture approach to clustering. Correction of these es-
timates for bias should, however, be considered, since it was
noted in each of the examples reported that the estimator T
gave too optimistic an estimate of the overall true allocation
rate. In addition, the estimates of the rates for the individual
populations were optimistic in situations in which this was
possible (i.e., in which the true rates were less than unity). A
comparison of the estimated bias with the estimated RMSE for
each estimator in these examples clearly shows that bias is a
serious issue here; the ratio of the estimated bias to the estimated
RMSE generally well exceeded the suggested threshold of §.

With respect to the fully parametric version of the bootstrap
method applied to the three real data sets, bias correction nearly
always improved the estimates of the various allocation rates.
The two exceptions occurred in situations in which the true rate
was unity. The computation required to implement the proce-
dure would appear to be justified. The results for the last two
examples were not as promising as for Example 1. This is not
surprising, since Examples 2 and 3 were chosen not because
they are favorable to accurate estimation of the allocation rates,
but rather because they represent situations in which estimation
of the allocation rates is just a realistic exercise in view of the
size of the sample relative to the number of unknown param-
eters.

Favorable results were obtained in each of the four cases of
the simulation study performed with the parametric version of
the bootstrap method. They suggest that in such situations,
estimation of the allocation rates and subsequent bias correction
according to the bootstrap method is a very worthwhile exercise.

The bootstrap method can be used to estimate the RMSE’s
of the estimators of the individual and overall allocation rates
(reported in Table 1 for the three examples considered and in
Table 5 for the simulation study). Concerning the parametric
version, in Example 1 the individual allocation rates were within
one (estimated) RMSE of the uncorrected estimates; the overall
rate was just over one RMSE below the estimated rate. For
Examples 2 and 3, however, the true rates were within two
RMSE’s of the uncorrected estimates for only four of the eight
rates. For the simulations there was fairly good agreement be-
tween the estimated and true RMSE’s, except for case B, in
which, for instance, the estimated RMSE was only 55% of the
simulated RMSE of the estimator of the overall allocation rate.
Note that Efron (1982) made various suggestions about how
the bootstrap method can be used formally to give nonpara-
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metric confidence intervals. However, the usefulness of these
ideas in the present context has yet to be investigated.

Concerning the number of bootstrap replications K for com-
puting the Monte Carlo approximations to the proposed boot-
strap estimates here, it can be seen from the results for Examples
1-3 in Table 1 that it would be preferable to choose K > 50.
This is because the standard error of the Monte Carlo approx-
imation (Zii) to the bootstrap estimate of the bias of 7; (b,) is
not always very small relative to d;. Of course as K — «, the
standard error of Ezi —> 0, but there is no point in taking K to
be any larger than is necessary to ensure that the standard error
of d; is small relative to the SD of b,. Some indication about
how large K should be to achieve this, at least in situations
similar to the four cases in the simulation study, can be obtained
by a components-of-variance analysis of the simulated data on
which Table 5 is based. It shows that as K — « from K = 50,
the trial-to-trial SD of b, would decrease from .034, .024, .014,
and .020 to .029, .018, .009, and .018 in cases A, B, C, and
D, respectively; similarly, for b, and . Hence in these four
cases, K = 50 would appear to be adequate because there would
be only a moderate reduction in the SD of b; or b for a larger
value of K.

Unless n is very large, the bias of the estimate of ¢ = (7',
v’)’—xi)—will not be small; and this bias will manifest itself
in the estimates of the posterior probabilities. We are currently
investigating the use of bias-corrected versions of the parameter
estimates in forming the estimated posterior probabilities, with
a view to improving the allocation of the sample. Bias correc-
tion of ¢ by using the bootstrap method would involve term-
by-term additive correction of a covariance matrix, which is
fraught with danger. This can be avoided, however, by an
appropriate reparameterization of the terms that occur in the
expressions for the posterior probabilities.

8. OTHER METHODS OF BIAS CORRECTION

Other methods, besides the bootstrap, for estimating bias and
in some instances variance include the jackknife, the delta method,
and cross-validation. Efron (1982) gave an excellent account
of the available methods. In particular he examined the rela-
tionships between the methods and identified those situations
in which estimates produced according to some of the methods
are similar or indeed the same. In the regression context Efron
(1982) showed that the jackknife, cross-validation, and the
bootstrap are closely connected in theory if not necessarily in
their practical consequences.

These competitors of the bootstrap, however, appear not to
be applicable in a straightforward manner to our clustering
problem in which we wish to reduce the biases of the 7; and
T as estimators of the unobservable allocation rates P; and P.
For instance, consider the application of the nonparametric jack-
knife procedure to this problem: It obviously cannot be applied
to the estimates themselves. In considering the estimation of
T, the jackknife produces an estimate by extrapolating T to its
value at n = «, T,,. We require, however, an unbiased estimator
not of T, but of E(P), which may not be close to T, for small
n, although it does equal 7, in the limit. Moreover, there does
not appear to be a useful role for the jackknife in providing
approximations to the bootstrap expectations of the statistics 7'
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— P;and T — P. The complication with the nonparametric

jackknife in our problem is that the unknown quantities, ;, on
which P and the P; depend are random variables and not pa-
rameters. We have seen that the bootstrap method overcomes
this obstacle by adopting a parametric approach. For example,
with the semiparametric version of the bootstrap, in which the
bootstrap sample X;, . . . , X, is obtained nonparametrically,
the corresponding bootstrap labels ¥, . . . , 9, are subsequently
generated by using the parametric forms for the posterior prob-
abilities of the ;. In any event, there appears little to be gained
here by seeking a jackknife-type approximation. There would
be no saving in computation, as we have seen that the parametric
bootstrap expectations can be fairly well estimated by the Monte
Carlo method, using, say, 50 bootstrap replications. Moreover,
Efron (1982) demonstrated for various other problems, includ-
ing estimation of the excess error rate in discriminant analysis,
that the jackknife gives a more variable estimate than the Monte
Carlo approximation.

Overall, it can be seen that the estimation problem considered
here is far from straightforward. Nevertheless, it can be handled
directly by either a parametric or semiparametric application
of the bootstrap method.

[Received June 1983. Revised November 1984.]

REFERENCES

Aitkin, M. (1980), “Mixture Applications of the EM Algorithm in GLIM,”
Proceedings in Computational Statistics, Compstat 1980, Vienna, Austria:
Physica Verlag, pp. 537-541.

Aitkin, M., Anderson, D., and Hinde, J. (1981), “Statistical Modelling of
Data on Teaching Styles,” Journal of the Royal Statistical Society, Ser. A,
144, 419-461.

Anderson, T. W. (1958), An Introduction to Multivariate Statistical Analysis,
New York: John Wiley.

Basford, K. E., and McLachlan, G. J. (1984), “Efficient Likelihood Estimation
With Mixture Models,” unpublished manuscript, University of Queensland,
Australia.

Day, N. E. (1969), “Estimating the Components of a Mixture of Two Normal
Distributions,” Biometrika, 56, 463—-474.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Like-
lihood From Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society, Ser. B, 39, 1-38.

Efron, B. (1979), ‘‘Bootstrap Methods: Another Look at the Jackknife,’’ Annals
of Statistics, 7, 1-26.

(1981a), “Nonparametric Estimates of Standard Error: The Jackknife,

the Bootstrap and Other Methods,” Biometrika, 68, 589—599.

(1981b), “Nonparametric Standard Errors and Confidence Intervals,”

Canadian Journal of Statistics, 9, 139-172.

(1982), The Jackknife, the Bootstrap and Other Resampling Plans,

Philadelphia: Society for Industrial and Applied Methematics.

(1983), “Estimating the Error Rate of a Prediction Rule: Improvement
on Cross-Validation,” Journal of the American Statistical Association, 78,
316-331.

Efron, B., and Gong, G. (1983), “A Leisurely Look at the Bootstrap, the
Jackknife, and Cross-Validation,” The American Statistician, 37, 36-48.
Everitt, B. S., and Hand, D. J. (1981), Finite Mixture Distributions, London:

Chapman and Hall.

Fatti, L. P., Hawkins, D. M., and Raath, E. L. (1982), “Discriminant Analysis,”’
in Topics in Applied Multivariate Analysis. ed. D. M. Hawkins, Cambridge,
UK: Cambridge University Press, pp. 1-71.

Fisher, R. A. (1936), “Multiple Measurements in Taxonomic Problems,” An-
nals of Eugenics, 7, 179-188.

Fowlkes, E. B. (1979), “Some Methods for Studying the Mixtures of Two
Normal (Lognormal) Distributions,” Journal of the American Statistical
Association, 74, 561-575.

Friedman, H. P., and Rubin, J. (1967), “On Some Invariant Criterion for
Grouping Data,” Journal of the American Statistical Association, 62, 1159—
1178.

Fukunaga, K., and Kessel, D. L. (1972), “Application of Optimum Error-
Reject Functions,” IEEE Transactions on Information Theory, 18, 814—
817.

293

(1973), “Non-parametric Bayes Error Estimation Using Unclassified
Samples,” IEEE Transactions on Information Theory, 19, 434—440.

Ganesalingam, S., and McLachlan, G. J. (1978), “The Efficiency of a Linear
Discriminant Function Based on Unclassified Initial Samples,” Biometrika,
65, 658—-662.

(1979), “Small Sample Results for a Linear Discriminant Function

Estimated From a Mixture of Normal Populations,” Journal of Statistical

Computation and Simulation, 9, 151-158.

(1980a), “A Comparison of the Mixture and Classification Approaches

to Cluster Analysis,” Communications in Statistics—Theory & Methods,

Ser. A, 9, 923-933.

(1980b), “Error Rate Estimation on the Bias of Posterior

Probabilities,” Pattern Recognition, 12, 405-413.

(1981), “Some Efficiency Results for the Estimation of the Mixing
Proportion in a Mixture of Two Normal Distributions,” Biometrics, 37, 23—
34.

Glick, N. (1978), “Additive Estimators for Probabilities of Correct
Classification,” Pattern Recognition, 10, 211-222.

Habbema, J. D. F., Hermans, J., and Van den Broek, K. (1974). “A Stepwise
Discriminant Analysis Program Using Density Estimation,” Proceedings in
Computational Statistics, Compstat 1974, Vienna, Austria: Physica Verlag,
pp. 101-110.

Hawkins, D. M. (1981), “A New Test for Multivariate Normality and
Homoscedasticity,” Technometrics, 23, 105-110.

Hawkins, D. M., Muller, M. W., and ten Krooden, J. A. (1982), “Cluster
Analysis,” in Topics in Applied Multivariate Analysis, ed. D. M. Hawkins,
Cambridge, UK: Cambridge University Press, pp. 303-356.

Hernandez-Avila, A. (1979), Problems in Cluster Analysis, unpublished Ph.D.
dissertation, University of Oxford.

Hosmer, D. W. (1973), “On MLE of the Parameters of a Mixture of Two
Normal Distributions When the Sample Size Is Small,” Communications in
Statistics, 1, 217-227.

Kendall, M. G. (1966), “Discrimination and Classification,” in Multivariate
Analysis, ed. P. R. Krishnaiah, New York: Academic Press, pp. 165-185.

Kiefer, N. M. (1978), “Discrete Parameter Variation: Efficient Estimation of
a Switching Regression Model,” Econometrika, 46, 427-434.

Lehmann, E. L. (1980), “Efficient Likelihood Estimators,” The American
Statistician, 34, 233-235.

Lissack, T., and Fu, K. S. (1976), “Error Estimation in Pattern Recognition
via L*-Distance Between Posterior Density Functions,” IEEE Transactions
on Information Theory, 22, 34-45.

Louis, T. A. (1982), “Finding the Observed Information Matrix When Using
the EM Algorithm,” Journal of the Royal Statistical Society, Ser. B, 44,
226-233.

McLachlan, G. J. (1982). “The Classification and Mixture Maximum Like-
lihood Approaches to Cluster Analysis,” in Handbook of Statistics (Vol. 2),
eds. P. R. Krishnaiah and L. N. Kanal, Amsterdam: North-Holland, pp.
199-208.

Mezzich, J. E., and Solomon, H. (1980), Taxonomy and Behavioral Science—
Comparative Performance of Grouping Methods, New York: Academic
Press.

Moore, D. S., Whitsitt, S. J., and Landgrebe, D. S. (1976), “Variance Com-
parisons for Unbiased Estimators of Probability of Correct Classification,”
IEEE Transactions on Information Theory, 22, 102-105.

O’Neill, T. J. (1978), “Normal Discriminant With Unclassified
Observations,” Journal of the American Statistical Association, 73, 821—
826.

Orchard, T., and Woodbury, M. A. (1972), “A Missing Information Principle:
Theory and Applications,” Proceedings of the 6th Berkeley Symposium (Vol.
1), Berkeley: University of California Press, pp. 697-715.

Quandt, R. E., and Ramsey, J. B. (1978), “Estimating Mixtures of Normal
Distributions and Switching Regressions,” Journal of the American Statis-
tical Association, 73, 730-744.

Royston, J. P. (1983), “Some Techniques for Assessing Multivariate Normality
Based on the Shapiro-Wilk W,” Applied Statistics, 32, 121-133.

Schwemer, G. T., and Dunn, O. J. (1980), “Posterior Probability Estimators
in Classification Simulations,” Communications in Statistics—Simulation
and Computation, Ser. B, 9, 133-140.

Scott, A. J., and Symons, M. J. (1971), “Clustering Methods Based on
Likelihood Ratio Criteria,” Biometrics, 27, 387-397.

Small, N. J. H. (1980), “Marginal Skewness and Kurtosis in Testing Multi-
variate Normality,” Applied Statistics, 29, 85-87.

Symons, M. J. (1981), “Clustering Criteria and Multivariate Normal
Mixtures,” Biometrics, 37, 35-43.

Wolfe, J. H. (1970), “Comparative Cluster Analysis of Patterns of Vocational
Interest,” Multivariate Behavioral Research, 13, 33—44.

Wu, C. E J. (1983), “On the Convergence Properties of the EM
Algorithm,” Annals of Statistics, 11, 95-103,




