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Abstract: Clustering or classifying individuals into groups such that 
there is relative homogeneity within the groups and heterogeneity 
between the groups is a problem which has been considered for 
many years. Most available clustering techniques are applicable only 
to a two-way data set, where one of the modes is to be partitioned 
into groups on the basis of the other mode. Suppose, however, that 
the data set is three-way. Then what is needed is a multivariate 
technique which will cluster one of the modes on the basis of both 
of the other modes simultaneously. It is shown that by appropriate 
specification of the underlying model, the mixture maximum likeli- 
hood approach to clustering can be applied in the context of a 
three-way table. It is illustrated using a soybean data set which con- 
sists of multiattribute measurements on a number of genotypes each 
grown in several environments. Although the problem is set in the 
framework of clustering genotypes, the technique is applicable to 
other types of three-way data sets. 

Keywords: Clustering; Mixture maximum likelihood; Three-way 
data. 

1. Introduction 

The technique o f  clustering or classification uses the measurements  on 
a set of  e lements  to identify clusters or groups in which the e lements  are 
relatively homogeneous  while they are heterogeneous between the clusters. 
The data itself may be in many forms and it is useful if a standard jargon for 
describing data sets can be established. In this paper we use the t axonomy 
of  measurement  data given by Carroll and Arabie (1980), where a mode  is 
defined as a particular class of  entities and an N-way array is defined as the 
cartesian product  of  a number  of  modes,  some of  which may be repeated. If  
the data are in the form of  proximities between all the elements  which we 
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wish to cluster, then it would be described as one-mode two-way data. 
However, if the data consisted of the actual measurements of certain charac- 
teristics of the elements, then it would be described as two-mode two-way 
data. The latter is a more informative form of basic data set as it can easily 
be converted, if required, to the former by suitable definition of a similarity 
measure. 

In most approaches to clustering in the biological sciences, the basic 
data is viewed as a two-mode two-way array, where one of the modes is to 
be partitioned into groups on the basis of the other mode. To illustrate this 
consider the data collected in a large plant improvement program, where an 
overall summarization of the patterns of genotype response is often more 
useful than the traditional comparison of individual responses. In such 
experiments two different types of two-mode two-way arrays are usually gen- 
erated. The genotypes can be characterized by attributes producing a geno- 
type by attribute (G × A) matrix. They can also be characterized by the 
performance values for a single attribute measured in a number of environ- 
ments (G × E) matrix. Many methods of clustering have been applied to 
such two-way arrays to provide an appropriate grouping of the genotypes 
(Burt, Edye, Williams, Grof and Nicholson 1971; Mungomery, Shorter and 
Byth 1974; and Byth, Eisemann and De Lacy 1976). Such analyses have 
been very useful to plant breeders, but the restriction of being able to han- 
dle only two-way arrays has been a limitation. 

Ideally, one would like to perform a clustering of the elements on the 
basis of all the information available assuming that differentiation between 
the groups is to be with respect to the total information. Thus in order to 
cluster the genotypes in the experiments defined above, it would be desir- 
able to consider a combination of these two two-way arrays as a single 
three-way array. This produces a genotype by attribute by environment 
(G x A x E) matrix which is a three-mode three-way data set. A cluster- 
ing technique is required to group one of these modes (the genotypes) on 
the basis of both of the other modes (attributes and environments). Such 
an approach is beneficial for two reasons. Firstly, significant genotype by 
environment interaction is almost always present and it must be considered 
in the identification of groups of genotypes for which a general behavioral 
description is required. Secondly, it might be expected that in the underly- 
ing group structure the correlations between attributes would differ across 
groups of genotypes and a single attribute would not provide any informa- 
tion on this. 

One way of developing a clustering technique appropriate to three-way 
data is to adapt the mixture maximum likelihood method of clustering, 
which is a model-based technique; see Hawkins, Muller and ten Krooden 
(1982, p. 353) for a discussion of this technique versus model-free 
approaches. The properties of the mixture method on data sets in the form 
of a two-way array have been studied by many authors, and a 
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comprehensive reference list has been given by McLachlan (1982). The 
applicability of the mixture method of clustering to three-way data is of con- 
siderable advantage as such arrays are produced in many disciplines. 

The soybean data set chosen to illustrate this technique has been dis- 
cussed in the literature before and the adaptation of the genotypes is well 
known (Mungomery et al. 1974; Shorter, Byth and Mungomery 1977; and 
Basford 1982). It permits some judgment on the usefulness of this method 
of clustering. Note that although the problem has been cast in the frame- 
work of multiattribute genotype responses across environments, this tech- 
nique is applicable to other three-way data sets. One example would be an 
investigation aimed at grouping individuals based on the responses to 
different tests, say manual, intellectual and memory tests, taken under 
several blood alcohol levels. 

2. Mixture Approach 

Multivariate observations on a set of n elements forming a two-way 
array can be represented as xx . . . . .  xn. In applying the mixture method of 
clustering, it is assumed in the first instance that there is a specified number, 
say g, of underlying groups. A likelihood is then formed under the addi- 
tional assumption that the sample xl . . . . .  x ,  has been drawn from a mix- 
ture of the underlying groups, designated here as H~ . . . . .  rig, in some unk- 
nown proportions, zr 1 . . . . .  ~'g, giving 

n g 
L = IX{ ]~ ~', fs(xj)} (1) 

j - 1  i - I  

In the case of normality, 

x j ~ N ~ t , V j )  /n H~( i=  1 . . . . .  g) , (2) 

and so f i (x j )  in (1) refers to the normal density with mean vector tLi and 
covariance matrix V i. The unknown parameters zri, /~;, and 
V;(i = 1 . . . . .  g) are estimated using the likelihood principle and, subse- 
quently, each xj can be allocated on the basis of the estimated posterior pro- 
babilities of group membership. The estimated posterior probability that 
element j with observation xj belongs to Hi, 0u, is formed by replacing the 
unknown parameters with their likelihood estimates in the expression for 
the true posterior probability, 0 u- Thus 
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g 

q=l 
(i = 1 . . . . .  g) (3) 

Element j is assigned to IIq if 

i = 1 . . . . .  g ;  i ;  ~ q  (4) 

To apply this technique in the context of a three-way data set, the den- 
sity function f ; (x)  of  an element in population I I ; ( i =  1 . . . . .  g) must 
include information on both of the other modes on which the measurements 
on the element were made. The particular example of clustering genotypes 
using genotype by attribute by environment data is considered here. The 
observation x j ( j  = 1 . . . . .  n) now contains the multiattribute responses of 
the j t h  genotype in all r environments, and is given by 

! 

X.i = ( X . i l  . . . . .  X ' i r ) '  , 

where x.jk is a vector of  length p giving the response of genotype j in 
environment k for each of the p measured attributes. With some applica- 
tions there are replications and so x i may represent an average over these 
replications. The underlying model corresponding to equation (2) is 

xjk~N('yik ,V ,) in I'Ii(i-- 1 . . . . .  g) , (5) 

where Y;k is the mean response vector of group II, in environment k and Vi 
is the variance-covariance matrix of 17,. This model covers the general 
situation where there may be some interaction between genotypes and 
environments; indeed, in the example to be presented there is a highly 
significant genotype by environment interaction. Under (5), the density of  
x i in II, is equal to 

_ ~  r 1 r , 
fe(x/)  ---- (2"n') 2 iv, exp{-Tk l(x;k- ,,D= V F l ( X i k - - 7 , k ) }  . (6) 

The likelihood estimates of  the unknown parameters can be expressed sub- 
sequently as 
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¢~, = ~ . , ~ J n  , ( i  = 1 . . . . .  g )  , (7) 
.i 

; / i k - ~ O ~ i x / J ( n ~ ' , ) ,  ( i = l  . . . . .  g) , (8) 
J 

Vi = ~ 0~:i(X./k--7ik) (X;k--¢/ik)'/ (nr~ ' i )  , ( i  = 1 . . . . .  g )  (9) 
jk 

The estimated posterior probabilities 0,:i have the same form as in equation 
(3), but where now fi(x.i) is given by equation (6). 

The computation of the likelihood estimates is facilitated by identifying 
these equations with the application of the EM algorithm of Dempster, 
Laird, and Rubin (1977). For given starting values of the parameters the 
expectation and maximization steps of this algorithm are alternated until 
convergence in the case of a sequence of likelihood values bounded above. 
The process should be repeated for various starting values in an attempt to 
locate all local maxima of the likelihood. 

The estimate of the ith group mean over all environments is given by 

12i = ~ ~k/  r (10) 
k 

= Y'. 0,./i~ • / ( n ~ i ) ,  ( i  = 1 . . . . .  g)  
,i 

Thus we can write 

¢/ik = ~ i  + 2 ~,:j(X;j--ij . ) /  ( n ~ i )  , 
J 

(11) 

where the second term on the right-hand side of (11) represents the devia- 
tion from the expected mean response for I-If. This deviation can be con- 
sidered as the sum of the effect of  the kth environment and the interaction 
between the ith group and the kth environment. 

3. Number of Clusters 

Testing for the existence of different clusters is an important but 
difficult problem. Unfortunately, the likelihood ratio criterion for testing the 
hypothesis of gl versus g2 populations (g~<g2) does not have its usual 
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asymptotic distribution (Hartigan 1977 and Binder 1978). We follow here 
the suggestion of Wolfe (1971) that under the null hypothesis 

- 2 C  log ~,~Xa 2 (12) 

approximately, where d, the degrees of freedom of the chi-square distribu- 
tion, is taken to be twice the difference in the number of parameters in the 
two hypotheses not including the proportions. A comprehensive account of 
the accuracy of this approximation may be found in Basford and McLachlan 
(1985). The constant C is introduced to improve the approximation. In the 
present context we take 

C ffi {r ( n - l )  (p + g2)}/nr (13) 

corresponding to Kendall (1965, p. 134) who applied Bartlett's approxima- 
tion to the problem of testing between g2 means in a multivariate analysis of 
variance by first eliminating the block differences from the variation. The r 
blocks in Kendall's design can be considered analogous to the r environ- 
merits here. 

The reliability of the approximation (12) will, of course, depend on the 
size of the sample. Therefore the outcome of the likelihood ratio test 
should not be rigidly interpreted, but rather used as a guide to the possible 
number of underlying groups. Examination of the posterior probabilities of 
group membership for the genotypes for values of g near to the value 
accepted according to the likelihood ratio test can be useful in leading to the 
final decision on the number of groups. 

4. Experimental Details 

Mungomery et al. (1974) first reported the experiment from which this 
data set was collected. Fifty-eight soybean lines, whose origin and maturity 
details are shown in Table 1, were evaluated at four locations in south- 
eastern Queensland in 1970 and 1971. The locations, Redland Bay, Lawes, 
Brookstead and Nambour, were within 150 km of Brisbane, and covered a 
wide range of climatic and edaphic conditions. The experiment was a ran- 
domized complete block design with two replicates in each environment; 
further details of the experimental procedures are given by Mungomery et 
al. (1974). A number of chemical and agronomic attributes was observed, 
including seed yield (kg/ha), plant height (cm), lodging (rating scale 1-5), 
seed size (g/100 seeds), seed protein percentage and seed oil percentage. 
We shall focus attention here on two of these, seed yield and seed protein 
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TABLE I 

Origin and Maturity of Soybean Lines tested across Four Locations in Each of 2 Years 
(after Mungomery et al. 1974) 

Line No. Name Origin Relative maturity 

1-40 LS A Mid-very late (8-ii) B 

41 CPI 15939 Avoyelles Tanzania Late-mid (9) 

42 CPI 15948 Hernon 49 Tanzania Late-mid (9) 

43 CPI 17192 Mamloxi Nigeria Very late (ii) 

44 Dorman U.S.A. Early (5) 

45 Hampton U.S.A. Mid (8) 

46 Hill U.S.A. Early (5) 

47 Jackson U.S.A. Early-mid (7) 

48 Leslie U.S.A. Mid (8) 

49 Semstar Local cultivar Mid-late (8) 

50 wills U.S.A. Mid (8) 

51 CPI 26673 Morocco Very early (3) 

52 CPI 26671 Morocco Very early (3) 

53 Bragg U.S.A. Mid (7) 

54 Delmar U.S.A. Early (4) 

55 Lee U.S.A. Early-mid (6) 

56 Hood U.S.A. Early-mid (6) 

57 Ogden U.S.A. Early-mid (6) 

58 Wayne U.S.A. Very early (3) 

A 
LS, local selections from Mamloxi (CPI 17192) x Avoyelles (CPI 15939). 

BNumber in parentheses is US. maturity group classification or estimated equivalent. 
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percentage. A clustering of the soybean lines using each of these two attri- 
butes separately has been reported by Mungomery et al. (1974). The mix- 
ture approach can be applied for p > 2  attributes, but as p increases, the 
number of parameters in the model (5) increases sharply, greatly com- 
pounding the problems with multiple maxima. A clustering of the geno- 
types using the responses of all six attributes at each location in each year 
was undertaken according to the mixture method. The same number of 
underlying groups was suggested with only slightly different group composi- 
tion to that obtained using just seed yield and seed protein percentage, as 
detailed below. Because the pattern of group response is perhaps best inter- 
preted by graphs of expected response for each attribute it was decided to 
illustrate this method of clustering for p -  2 attributes. As each attribute 
was observed in four sites in two successive years, there were eight effective 
environments. There were two replications in each environment and, as 
with the analyses of Mungomery et al. (1974), the basic data set Xjk is taken 
to be the mean response over the replicates in each environment. 

5. Application of Mixture Approach 

The mixture maximum likelihood method of clustering was applied to 
the soybean data set to obtain groups of genotypes within which there were 
similar behavioral response patterns. As recommended earlier, several start- 
ing values were used for each value of g, the specified number of underly- 
ing groups. An initial grouping of the genotypes can be obtained by focus- 
ing attention on a single attribute and using the corresponding analysis of 
variance table and subsequent multiple comparisons of genotype means. 
Alternatively, initial groupings can be obtained by using the results of other 
clustering techniques applied to the genotype by environment data for a sin- 
gle attribute. Both these methods were tried here. 

The likelihood increased substantially with increasing g but flattened 
out after g = 7. For testing g = 6 against g -- 7 the P value according to 
the approximation (12) was less than 0.05 while for testing g ffi 7 against 
g = 8 the P value was 0.32. Investigation of posterior probabilities for 
values of g close to seven provided further support for g - -  7. In accor- 
dance with (4), each genotype was allocated to the group to which it had the 
highest estimated posterior probability of belonging. As the smallest max- 
imum value was 0.916, it would appear that the genotypes can be clustered 
with a high degree of certainty. The identification of the soybean lines 
forming the groups is given in Table 2. The estimated means, calculated 
from equation (10), for seed yield and protein percentage, in addition to the 
correlation coefficient between these attributes, as determined from the 
estimated covariance matrices, are reported in Table 3. 

The mixture approach has been implemented here with an arbitrary 
covariance matrix Yi within each group i. However, Aitkin, Anderson and 



TABLE 2 

Identification of the Soybean Lines forming the Groups obtained 
by the Mixture Method of Clustering 

Group 

I 

II 

III 

IV 

V 

VI 

VII 

Line numbers 

51, 52, 58 

44, 46, 54 

45, 47, 48, 49, 50, 53, 55, 56, 57 

3, 4, 5, 6, 7, 8, 9, i0, 25 

I, 2, 14, 15, 16, 28, 31, 34, 35 

24, 26, 27, 32, 33, 38, 39, 41, 42 

Ii, 12, 13, 17, 18, 19, 20, 21, 22, 23, 29, 30, 36, 

37, 40, 43 

TABLE 3 

Estimated Mean Effect for each Attribute and 

Correlation Coefficient within the Groups 

Yield Protein Correlation 

Group (kg/ha) Percentage Coefficient 

I 1451.4 39.5 -0.47 

II 2227.0 38.1 0.07 

III 2879.2 38.9 -0.24 

IV 2206.2 38.1 0.05 

V 1899.1 40.1 -0.13 

VI 219!.7 41.0 -0.04 

VII 1566.3 42.7 -0.08 

Hinde (1981) suggested that in many instances it may be reasonable to 
assume conditional independence; that is, the observed correlations between 
the attributes result from the clustered nature of  the sample, and that within 
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Figure la. Plot of  estimated expected seed yield in each of groups I, II and III 
against each environment mean over all genotypes. 

the underlying groups there is zero correlation between the attributes. The 
present example appears to show some support for this proposition for the 
estimated correlation coefficient between yield and protein percentage within 
a group (see Table 3) is generally quite small. Only in one case, group I, is 
it larger, in absolute terms, than the overall sample value o f - 0 . 3 4 .  An 
analysis of  the data under the restricted model of a diagonal covariance 
matrix within each group (that is, under the assumption of independence of 
the attributes within a group), was undertaken and resulted in a somewhat 
different clustering of the genotypes. A five group rather than a seven 
group description of the data set was concluded to be adequate, although 
group composition showed considerable resemblance to part of that 
displayed in Table 2. 
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Figure lb. Plot of estimated seed yield in each of groups IV, V, VI and VII against 
each environment mean over all genotypes. 

6. Interpretation of Results 

In Table 3, we display the values of/2 i, the estimated mean vector of 
the attributes over all environments in the ith group. However, to explain 
the differences between the groups, we need to consider the pattern of 
group responses across environments as exhibited in Figures 1 and 2. In 
these figures, the estimated expected response, ?tk, for the ith genotype 
group in the kth environment is plotted against the kth environment mean 
over all genotypes for seed yield and protein percentage respectively. In 
each case, the horizontal axis is an index of increasing environmental 
response for that attribute. The environments are denoted by the site ini- 
tials and year subscript; for example, RB70 refers to Redland Bay in 1970. 
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Figure 2a. Plot o f  estimated expected protein percentage in each of  groups t, I I  and 
I I I  against env i ronment  mean over all genotypes. 

From inspection of  Figures 1 and 2, it is apparent that on the basis of  
response pattern these groups can be viewed as two subsets: (a) containing 
groups labeled I to III and (b) containing groups labeled IV to VII. The pat- 
terns are particularly alike within subset (a) for yield and within subset (b) 
for protein percentage. Subset (a) contains those lines with early to mid 
maturity group classification or estimated equivalent while subset (b) con- 
tains lines 41, 43, all progeny from their cross and only one other line, 42, 
which is also late maturing (Table 1). 

It can be seen from Figure 1 that at any given environment seed yield 
increases through groups I, II and III. For each group in this subset, the 
highest yield was recorded at either B71 or RB7o where group II had a simi- 
tar yield to group III. In subset (b), group VII had the lowest seed yield at 



Mixture Method of Clustering Applied to Three-Way Data 121 

1'8.00 

1,3-00 

Z 
u.l 
t~  
e,, 
u l  
n 

Z 

0 

I1. 

38.00 

VII 

~ o l d  

t t t  ~' t t I' 
N70 L70 L7~70 RB7o NTI B?l RB71 

, I I . . . .  I I ,I, I I ,I 

38'58 1'0,92 
ENVIRONMENTAL INDEX 

Figure 2b. Plot of estimated expected protein percentage in each of groups IV, V, 
VI and VII against environment mean over all genotypes. 

VI 

IV 

32.00 
b 36,25 1'3-25 

all except one environment, while group IV had the highest seed yield at 
most of the environments. Seed yield for subset (b) was higher at LT1 and 
N71 than at the other environments. The environment which best dis- 
tinguished between subsets (a) and (b) in terms of seed yield was RBTo at 
which the former subset had much greater yields. At RB71, however, the 
responses were much more similar. By contrast, seed yields for the other 
three sites increased from 1970 to 1971. It can be seen from Figure 2 that 
within subset (a) the more favorable environments for protein percentage 
were LT0 and N71; within subset (b) the most favorable environment was 
RBTb This environment, RBTI, also provided the widest range in protein 
percentage over the groups while there was far less spread at NTo or NT1. 
Generally, protein percentage increased through groups IV, V, VI and VII at 
all environments, starting with the lowest values at NTo. Protein percentage 
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was greater in 1971 than in 1970 in all groups at all sites except at Brook- 
stead and Lawes where groups I and I and II, respectively, had lower protein 
percentage. 

7. Discussion 

The brief summarization of ttie response patterns as modeled under the 
mixture approach illustrates how useful this method of clustering can be. 
By incorporating both attributes and environments, an overall picture of 
response is used to group the genotypes. To understand and explain the 
group response it was beneficial here to draw a graph of expected response 
of  each group in each environment for each attribute. Mungomery et al. 
(1974) produced such graphs of mean group response in each environment 
but as independent clusterings were obtained, different groupings were plot- 
ted for each attribute. By simultaneously using both attributes in the clus- 
tering technique, the problem does not arise of trying to reconcile the 
different groupings which may be obtained using each attribute separately. 
In the present analysis, for instance, not only did a clearly interpretable 
separation based on mean effect of the early maturing lines, predominantly 
of  United States origin, in groups I to III for yield occur, but also such a 
separation of the locally selected later maturing lines for protein percentage 
was observed in groups IV to VII. 

It has been noted in the Introduction that plant breeders are interested 
in homogeneous groups of genotypes, particularly for a convenient summary 
of response patterns. There has been some discussion in the literature on 
combining attributes to produce a biologically meaningful measure. For 
instance, seed yield and seed protein percentage could be combined to form 
a new attribute called seed protein yield. Selection indices are another way 
of combining attributes into a single measure. In many cases, however, no 
obvious or appropriate measure is available. Thus if the clustering is to be 
based on the information inherent in all the attributes measured in each 
environment then the proposed technique must be able to handle three- 
mode three-way data. It was decided not to consider any of the variable 
reduction techniques such as principal component analysis or generalized 
canonical correlation to convert the data set to a two-way array and thereby 
permit analysis with a conventional clustering technique. These appeared to 
be circumventing the problem of determining a method of clustering to 
analyze data directly in the form of a three-mode three-way array. Also, 
Chang (1983) showed that the practice of applying principal components to 
reduce the dimension of the data before clustering is not justified in general. 
By considering a mixture of two multivariate normal distributions with a 
common covariance matrix, he showed ~that the components with the larger 
eigenvalues do not necessarily contain more information on the distance 
between groups. 



Mixture Method of Clustering Applied to Three-Way Data 123 

Carroll and Arabic (1983) devised a method for non-hierarchical over- 
lapping clustering called INDCLUS for the case of three-way proximity data. 
Data in the form of a three-mode three-way array are first converted, using 
a similarity measure, to two-mode three-way data. This produces a matrix 
of element by element proximity measures for each of a number of indivi- 
dual subjects or data sources. Carroll, Clark and De Sarbo (1984) developed 
a new methodology called INDTREES for fitting a hierarchical tree structure 
to obtain a discrete network representation of such proximity data. The 
individual differences generalization is one in which individuals, for exam- 
ple, are assumed to base their judgments on the same family of trees, but 
are allowed to have different node heights and/or branch lengths. Their 
method minimizes the sum of the squared differences between fitted and 
observed dissimilarity between elements within a data source, while satisfy- 
ing the ultrametric inequality. That is, given two disjoint clusters, all dis- 
tances between elements in the same cluster are smaller than distances 
between elements in two different clusters, and that these between-cluster 
distances are equal (Carroll et al. 1984). It would be possible to apply such 
methods to the present problem by calculating a dissimilarity measure 
between genotypes within each environment and considering each environ- 
ment as an individual data source. Squared Euclidean distance could be 
used as the proximity measure, but other choices are available. 

Recently, De Sarbo, Carroll, Clark and Green (1984) proposed a new 
clustering method, called SYNCLUS, for clustering elements on which a 
battery of variables has been measured. It is an algorithm for K-means clus- 
tering (MacQueen 1967) using a weighted mean-square, stress-like measure, 
and can be generalized to handle three-way data. SYNCLUS can be applied 
in those situations where it is appropriate to put prior weighting on particular 
batteries of variables and then allow the clustering procedure to weight the 
variables within these batteries according to their relative importance to the 
clustering (De Sarbo et al. 1984). With respect to the present problem, the 
elements would be the genotypes and the attributes measured in each 
environment would be the variables in each battery. It is possible that the 
genotype by environment interaction might be expressed in the SYNCLUS 
model by different weightings on the attributes in each environment, but it 
might not be straightforward to interpret these weightings in terms of the 
interaction. Thus it was felt more appropriate to use a method of clustering 
which incorporated this genotype by environment interaction directly into 
the underlying model. 

In analyzing such three-way data, Basford (1982) considered a multidi- 
mensional scaling (MDS) approach to obtain a spatial representation in a low 
dimensional space (Shepard 1962a, I962b; Kruskal 1964a, 1964b). The 
relative proximity of the points (genotypes in this instance) in this space was 
then used as an indication of similarity of response pattern. Kruskal (1977), 
Whitmore and Harrier (1980), and Morgan (1981) have all noted that, in 
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general, a good overall picture is obtained using MDS but that it is not as 
sensitive to local features of the arrangement. Ramsey (1982) reviewed the 
statistical problems associated with MDS and in the subsequent discussion 
the exploratory nature of this graphical technique was stressed. It should be 
clear therefore that MDS is not a competing technique but rather a comple- 
mentary one to clustering (Kruskal 1977). 

In addition to the empirical example analyzed, a Monte Carlo experi- 
ment was conducted to assess the performance of the mixture method in 
identifying a known group structure. A simulated data set was obtained by 
generating observations xjk (j  = 1 . . . . .  50;k - 1 . . . . .  8) from a mixture in 
equal proportions of  g = 4 bivariate normal distributions in accordance with 
model (5). The parameter values 7ik and Vi were set equal to the estimates 
of the corresponding parameters obtained for the four groups labeled IV to 
VII in the seven group solution of  the real example discussed above. An 
IMSL subroutine based on the inverse method was used to generate normal 
random variables from uniformly distributed densities which were produced 
by a multiplicative congruential generator of the form X,.+l=--r Xt(modulos), 
where r -- 7 s and s = 231-1. In all, 25 such sets were generated in this 
manner and for each set the mixture method of  clustering was applied and 
its correct allocation rates noted. The overall correct allocation rate aver- 
aged over the 25 simulations was equal to 0.76. This is an encouraging 
result, considering that there was a considerable degree of  overlap between 
the underlying simulated groups as evidenced from the generated data. 
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