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Abstract 

A flow injection analysis (FIA) system furnished with a gel-filtration chromatographic column and with photodi- 
ode-array detection was used for the generation of second-order data. The system presented is a model system in 
which the analytes are blue dextran, potassium hexacyanoferrate(III) and heparin. It is shown that the rank of the 
involved sample data matrices corresponds to the number of chemical components present in the sample. The 
PARAFAC (parallel factor analysis) algorithm combined with multiple linear regression and the tri-PLS (tri-linear 
partial least-squares regression), which allows unknown substances to be present in the sample, are implemented for 
FIA systems and it is illustrated how these three-way algorithms can handle spectral interferents. The prediction 
ability of the two methods for pure two-component samples and also the predictions ability in the presence of 
unknown interferents are satisfactory. However, the predictions obtained by tri-PLS are slightly better than those 
obtained using PARAFAC regression algorithm. © 1997 Elsevier Science B.V. 
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I. Introduction 

Data structures produced by analytical chemi- 
cal systems in general and by flow injection analy- 
sis (FIA) systems in particular can be divided into 
classes reflecting the complexity of  the data, rang- 
ing from scalars, vectors and matrices to higher 
order data structures. More than 90% of the 
papers published in analytical chemical journals 
are based on zeroth-order data structures [1]. This 
simple data structure arises when only one mea- 
surement per sample is recorded. A set of  calibra- 

tion samples thus gives a vector. The 
measurement can be a variety of  signals, e.g. 
potential, current, absorbance or, as often used in 
FIA, the height (or area) of  the sample peak. The 
use of  zeroth-order data requires that the mea- 
sured signal is absolutely selective and addition- 
ally that the signal is a known function (e.g. 
linear) of  the concentration of the analyte. I f  the 
selectivity assumption is not fulfilled for all sam- 
ples, an improvement can be achieved by using 
first-order data structures [1], which gives the 
possibility of  detecting outlying samples. First-or- 
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der data, where each sample gives rise to a vector 
and a set of calibration samples hence yields a 
matrix, can be obtained in two ways in FIA: (1) by 
recording the actual measurement (e.g. the ab- 
sorbance at a given wavelength) as a function of 
time; and (2) by recording multiple measurements 
at a given time (e.g. the UV/VIS spectrum at the 
peak maximum). The condition for employing 
first-order data is that the responses are linear and 
additive for all analytes. 

The number of FIA papers published on first-or- 
der data using two-way data analytical methods 
for instance partial least-squares (PLS) regression 
is increasing [2 5]. From a multivariate chemo- 
metric point of view, second-order data structures 
[1], where each sample gives rise to a matrix and 
a set of calibration samples to a cube, are, however, 
much more interesting because these data make it 
possible not only to detect outlying samples but 
also to determine correct analyte concentrations 
even though the analytical signal is not selective. 
This has been called the second-order advantage 
[1]. Second-order data can be achieved, for in- 
stance, by scanning multiple wavelengths at multi- 
ple times. The majority of papers published 
concerning second-order data in FIA rely on spec- 
trophotometric diode-array detection [6,7]. The 
condition for optimal use of second-order data is 
that the data structure is bilinear, which means that 
the responses are linear and additive for all ana- 
lytes and that no co-elution of analytes is allowed. 
This bilinear data structure is found in chemical 
systems obeying the Lambert-Beers law and where 
the analytes are separated in time by a column, e.g. 
in chromatographic systems combined with a 
photodiode-array detector. 

In this work, a flow injection system with an 
incorporated gel-filtration chromatographic 
column and a UV/VIS photodiode-array detector 
was used for the generation of second-order data. 
In an earlier paper [8], the application of a gel- 
filtration chromatographic column in a FIA system 
for enzymatic determination of formaldehyde in 
aqueous fish extracts was reported. In that work, 
the purpose of providing the FIA system with a 
gel-filtration chromatographic column was on-line 
removal of the protein fraction of the extract prior 
to the enzymatic analysis. The purpose of this work 

was partly to improve the possibilities of the 
application of gel-filtration chromatographic 
columns in FIA and partly to illustrate the general 
advantages of using second-order FIA data, espe- 
cially in cases where unknown spectral interferents 
are present. In that context, attention is drawn to 
an early paper [9] where the resemblance of flow 
injection analysis with chromatographic systems in 
general is discussed further. The system presented 
here is a model system where the analytes blue 
dextran, potassium hexacynoferrate(III) and hep- 
arin were chosen to illustrate the benefit of the 
methodology used. The data structure produced by 
the FIA system is a bilinear data structure, where 
each sample produces a 76 (times)x 188 (wave- 
length) matrix. Among the most common methods 
used for second-order calibration are unfolding 
methods, where the calibration cube is unfolded to 
an ordinary matrix which is then treated by stan- 
dard two-way methods (e.g. PLS). In the case of 
response matrices where each chemical component 
gives rise to a matrix of rank one, the rank 
annihilation factor analysis (RAFA) method [10] 
or the general rank annihilation method (GRAM) 
can be used [10,11] for the prediction of correct 
analyte concentration in presence of spectral inter- 
ferents. 

In this paper, the tri-linear parallel factor analy- 
sis (PARAFAC) algorithm [12-14] and the newly 
developed tri-linear partial least-squares regression 
(tri-PLS) [15] are implemented for FIA systems. 
PARAFAC is a generalization of PCA to higher 
order data arrays, but there are some important 
differences between the two methods. Tri-PLS is a 
generalization of the ordinary two-way PLS meth- 
ods. A short description of the two methods is 
given in Section 3. Compared with the unfolding 
methods, the multi-linear models are much simpler 
because they use fewer parameters. 

2. Experimental 

2.1. Apparatus 

2. I. 1. FIA system 
The FIA system used in the experiments was a 

simple one-line FIA system. All tubing employed 



I.E. Bechrnann / Talanta 44 (1997) 585 591 587 

was PTFE (0.5 mm i.d.) and the carrier stream 
was propelled by an Ismatec MS-4 Reglo 
peristaltic pump. The sample (50 btl) was aspirated 
into the valve by the same pump. The carrier 
stream was pumped through a gel-filtration 
chromatographic column (HiTrap Desalting; 
Pharmacia, Uppsala, Sweden). The detector was a 
TIDAS (Zeiss J and M Analytische Mess- und 
Regeltechnik, Germany) photodiode array 
spectrophotometer furnished with a 8 lal flow cell. 
A 12-port injection valve (made in this 
laboratory) was used for injection of the sample. 
The photodiode array starts scanning 20 s after 
injection and continues for a further 75 s at 1.0 s 
intervals. The wavelength range recorded in each 
scan is 220-594 nm (every 2 nm). Injection of one 
sample thus, generates a data matrix containing 
76 x 188 absorbances. An example of the data 
structure produced by injection of 50 lal sample is 
depicted in Fig. 1. 

2.1.2. Gel-filtration column 
The column used in this work was a HiTrap 

desalting column (Pharmacia) of dimensions 25 x 
16 mm i.d. The column is filled with Sephadex 
G-25 Superfine and has a fractionation range 
between 1000 and 5000 Da. This column shows a 
significantly better separation of low and high 
molecular weight substances than the Sephadex 
G-25 column used in the previous work [8], which 
was packed in this laboratory and consisted of a 
piece of PVC into with was machined a tubular 
cavity of 52 × 3.3 mm i.d. When not in use, the 

0 8 4  

~ o.4 

5OO 
20 

40 400 

60 " 300 

Wavelength {rim) 
Time (seconds) 

Fig. 1. Three-dimensional plot of the data matrix correspond- 
ing to injection of a mixture of blue dextran and K~Fe(CN)6. 

Table 1 
Concentrations of blue dextran and 
bration samples 

K3Fe(CN) 6 for nine call- 

Sample Blue dextran (mg ml ') K~Fe(CN)6 (mg ml --L) 

C1 0.00 0.00 
C2 2.65 0.00 
C3 5.30 0.00 
C4 0.00 0.80 
C5 2.65 0.80 
C6 5.30 0.80 
C7 0.00 1.60 
C8 2.65 1.60 
C9 5.30 1.60 

column reactor was stored filled with a 20% (v/v) 
ethanol solution in a refrigerator at 5°C to pre- 
vent microbiological growth. 

2.2. Reagents 

The samples use in the model system were made 
from stock solutions of a high molecular weight 
substance (Blue dextran, Mw ~ 106 g mol ~; 
Sigma) and a low molecular weight substance 
(potassium hexacyanoferate(III), M w =  329.2 g 
mol-1;  Merck) in degassed, distilled Millipore- 
filtered water containing 0.9% NaCI. The stock 
solutions, which contained 26.5 g 1-~ blue of 
dextran and 1.62 g 1-1 of potassium hexacyano- 
ferrate(III), were diluted with 0.9% NaC1 solution 
for the preparation of samples. A solution of 
heparin (Tinzaparine, MW ~ 4000 g tool - 1) con- 
taining 10 g 1-1 was used in some of the test 
samples as an interfering component. 

2.3. Programs 

Data collection and control of  the pump and 
valve were performed by a software package from 
J&M Analytische Mess- und Regeltechnik (Ger- 
many). All calculations were preformed in Matlab 
ver. 4.0 for Windows (Math Works), partly by use 
of PARAFAC and multi-linear PLS algorithms 
available from the lnternet at http://new- 
ton.foodsci.kvl.dk/foodtech.html (R. Bro and 
C.A. Andersson). 
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3. Theory 

3.1. Data structure 

The data structure produced by the FIA system 
is a bilinear data structure, where each sample 
produces a J (times) x K (wavelength) matrix. If 
all responses are linear and no noise is present, 
the rank of  the measured response matrix will be 
equal to the number of  chemical substances 
present in the sample. However, the true rank of  
the sample matrix is often not determinable be- 
cause of real data contain non-linearities and 
noise. For  this reason, it is necessary to determine 
a pseudo-rank instead. In the present work, prin- 
cipal component analysis (PCA) [10] is used for 
this purpose. In this context the rank equals the 
number of  principal components which is neces- 
sary to explain 99% of the variance in the re- 
sponse matrix. The dimension of the three-way 
calibration data array, X, is I x J x K, where I is 
the number of  samples in the calibration set. The 
pre-processing of  this kind of  raw data is more 
complicated than in the two-way case. In this 
work no centering and no scaling were used in the 
PARAFAC models. The data arrays used for 
tri-PLS are centered by unfolding the data array 
to a I x JK matrix and then mean center the 
unfolded matrix. No scaling was used. 

3.2. PARAFAC 

PARAFAC performs a tri-linear decomposition 
of the data array, X, and can be regarded as a 
generalization of the bilinear PCA. In PARAFAC 
the tri-linear model of X is found to minimize the 
sum of squares 

in the model 

F 

x~ik = ~ acbjjc~r+ e,jk 
f -  1 

where x~k is an element in X ( i=  1 ..... I, j =  
1 ..... J, and k = 1 ..... K), a are the scores, b and c 
are loadings in the model and F is the number of 

factors. In contrast to PCA, the number of  factors 
to be included in the PARAFAC model must be 
determined before the modelling. 

A very obvious advantage of  PARAFAC over 
PCA is the uniqueness of the solution. The load- 
ings in a spectral bilinear PCA model reflect the 
pure spectra of  the analytes measured, but it is 
not possible without external information actually 
to find the pure spectra. In the data used for the 
PARAFAC model represent a second-order data 
structure, the true analyte spectra can often be 
found directly, if only the concentrations vary 
independently pairwise and no spectra are linearly 
dependent on any of the others. In this work, 
PARAFAC is used for prediction purposes by 
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Fig. 2. (a) Normalized pure spectra of the three components. 
Dash line, blue dextan; solid line, K3Fe(CN)6; Dotted line, 
heparin. (b) Normalized concentration profiles calculated by 
alternating regression on each of the pure sample matrices. 
Lines as in (a). 
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following the strategy of principal component re- 
gression (PCR) [10]. The scores from the 
PARAFAC model are used for the predictions 
using multiple linear regression. 

3.3. T r i - P L S  

The tri-linear PLS is a natural extension of the 
ordinary bi-linear PLS method. By the tri-linear 
decomposition in tri-PLS the calibration cube X is 
decomposed into a set of rank-one cubes describ- 
ing X in some optimal sense. This does not mean, 
however, that the part of X relevant for describing 
the dependent variables (the analyte concentra- 
tions) has to be of rank one. One advantage of 
tri-PLS over PARAFAC is the incorporation of 
the dependent variables (the analyte concentra- 
tions) in the decomposition of the measured cali- 
bration cube, which might stabilize the predictive 
model. The theory of multi-linear PLS can be 
found elsewhere [15]. 

4. Results and discussion 

The samples used for calibration consisted of  
mixtures of  the two analytes, blue dextran and 
potassium hexacyanoferrate(III). The samples 
were prepared as a two-factor, three-level factorial 
design, i.e. the calibration set consisted of nine 
samples. The compositions of the calibration sam- 
ples are given in Table 1. 

An independent test set of 12 different test 
samples was prepared. To illustrate how the 
PARAFAC and the tri-PLS algorithms handle 
spectral interferents, some of the test samples in 
addition contained heparin. 

The pure spectra and the concentration profiles 
of blue dextran, potassium hexacyanoferrate(llI) 
and heparin are shown in Fig. 2(a) and (b), 
respectively. 

The spectra and time profiles are found by 
resolution of each of the three data matrices 
measured on pure standards using the alternating 
least squares (ALS) algorithm [10]. From Fig. 
2(b), it is seen that the time profiles of the dextran 
and the K3Fe(CN)6 differ owing to different reso- 
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Fig. 3. (a) Spectra found by the PARAFAC algorithm (nor- 
malized loading vectors of second mode) for the analytes used 
for calibration. Dashed line blue dextran; Solid line 
K3Fe(CN)6. (b) Time profiles found by the PARAFAC al- 
gorithm (normalized loading vectors of third mode) for the 
analytes used fbr calibration. Lines as in (a). 

lution times on the gel-filtration column. The 
resolution times of heparin and dextran are al- 
most the same owing to their molecular weights of 
close to 4000 Da and higher than 5000 Da, re- 
spectively. In the current application, the exclu- 
sion limit of the column is apparently about 4000 
Da and not 5000 Da as specified by Pharmacia. 
The spectral characteristics of the three compo- 
nents, however, are different. The data structure 
obtained by injection of a pure mixture of blue 
dextran and K3Fe(CN)6 is thus, expected to be a 
bilinear second-order data structure. 

A PARAFAC model with two components 
should give the right solution since there are two 
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Table 2 
True and predicted concentrations (in mg ml 1) obtained by the PARAFAC algorithm and tri-PLS algorithm for the 12 test 
samples 

Sample True Predicted by PARAFAC Predicted by tri-PLS Rank a 

Dextran K3Fe(CN)6 Heparin Dextran K3Fe(CN) 6 Dextran K3Fe(CN)6 

T1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -  
T2 2.25 0.00 0.00 2.26 0.00 2.25 0.00 1 
T3 4.50 0.00 0.00 4.51 0.00 4.50 0.00 1 
T4 0.00 0.68 0.00 0,01 0.68 0.00 0.68 I 
T5 2.25 0.68 0.00 2,26 0.68 2.25 0.68 2 
T6 4.50 0.68 0.00 4.51 0.68 4.50 0.68 2 
T7 0.00 1.36 0.00 0.00 1.36 0.00 1.36 1 
T8 2.25 1.36 0.00 2.26 1.36 2.25 1,36 2 
T9 4.50 1.36 0.00 4.51 1.36 4.50 1,36 2 
T 10 3.15 0.00 2.00 3.20 0.00 3.18 0,00 2 
T11 0.00 0.80 2.00 0.00 0.80 0.00 0.80 2 
TI2 3.15 0.80 2.00 3.26 0.82 3.24 0.81 3 

The 'Rank' column indicate the pseudo-rank of the sample matrix determined by PCA. 

analytes in the calibration set. The spectral load- 
ings of a two-component PARAFAC model are 
shown in Fig. 3(a) and the corresponding time 
loadings are shown in Fig. 3(b). From comparison 
with Fig. 2(a) and (b), it is seen that the model 
estimates precisely both the pure spectra and the 
time profiles of the two analytes. 

The PARAFAC model was validated by test set 
validation with the nine samples in a calibration 
set and 12 other samples in a test set. For the 
predictions of analyte concentrations in the test 
samples, a regression model was made from the 
scores of the two-component PARAFAC model. 
For comparison, the results of using a tri-PLS 
model with two PLS components were also calcu- 
lated. The true concentrations and the concentra- 
tions predicted by PARAFAC for the 12 test 
samples are given in Table 2 together with the 
concentrations predicted by tri-PLS. The pseudo- 
rank determined by PCA of the measured data 
matrices for the 12 test samples is also given in 
Table 2. 

The rank of a sample matrix containing only 
one substance equals one and the rank of a sam- 
ple matrix containing two substances equals two, 
and analogously with three substances. This indi- 
cates that an FIA system furnished with a gel- 

filtration column acts as expected of a 
chromatographic system. 

It appears that the prediction of K3Fe(CN)6 
concentrations in the presence of heparin in gen- 
eral is better than the predictions for dextran in 
the presence of heparin. This can be explained by 
the almost identical resolution profiles of the two 
high molecular weight substances used. Compar- 
ing the predicted and actual concentrations ob- 
tained by applying the two methods on the 12 test 
samples, the root mean square error of prediction 
(RMSEP) can be calculated. The RMSEP for the 
prediction of dextran is 0.03 mg ml-J and that 
for K3Fe(CN)6 is below 0.01 mg ml ~. The pre- 
dictions obtained by tri-PLS are slightly better 
than those obtained by PARAFAC, but both the 
PARAFAC and the tri-PLS algorithms give satis- 
factory predictions in the presence of unknown 
chemical interferents. However, tri-PLS does not 
possess the uniqueness properties of PARAFAC 
and it is therefore not possible without external 
information actually to find the pure spectra of 
the analytes. If the investigated samples contain 
specific chemical components of interest, the 
PARAFAC algorithm might therefore be prefer- 
able. 
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