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We discuss model-free analysis of multisubject or multisession FMRI

data by extending the single-session probabilistic independent compo-

nent analysis model (PICA; Beckmann and Smith, 2004. IEEE Trans.

on Medical Imaging, 23 (2) 137–152) to higher dimensions. This results

in a three-way decomposition that represents the different signals and

artefacts present in the data in terms of their temporal, spatial, and

subject-dependent variations. The technique is derived from and

compared with parallel factor analysis (PARAFAC; Harshman and

Lundy, 1984. In Research methods for multimode data analysis,

chapter 5, pages 122–215. Praeger, New York). Using simulated data

as well as data from multisession and multisubject FMRI studies we

demonstrate that the tensor PICA approach is able to efficiently and

accurately extract signals of interest in the spatial, temporal, and

subject/session domain. The final decompositions improve upon

PARAFAC results in terms of greater accuracy, reduced interference

between the different estimated sources (reduced cross-talk), robust-

ness (against deviations of the data from modeling assumptions and

against overfitting), and computational speed. On real FMRI

dactivationT data, the tensor PICA approach is able to extract plausible

activation maps, time courses, and session/subject modes as well as

provide a rich description of additional processes of interest such as

image artefacts or secondary activation patterns. The resulting data

decomposition gives simple and useful representations of multisubject/

multisession FMRI data that can aid the interpretation and optimiza-

tion of group FMRI studies beyond what can be achieved using model-

based analysis techniques.
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Introduction

Exploratory data analysis techniques like principal component

analysis (PCA) or independent component analysis (ICA) are
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becoming increasingly popular for the analysis of data from

functional imaging experiments, mainly for their potential to

account for unknown yet structured spatiotemporal processes in

neuroimaging data (Beckmann and Smith, 2004; McKeown et al.,

1998; Strother et al., 1995).

Current PCA/ICA methodology typically represents the original

four-dimensional data from a single FMRI experiment as a two-

dimensional (time � space) data matrix X, which is decomposed

into a sum of R outer products of individual factors:

X ¼
XR
r

ar � br þ E:

In this spatiotemporal decomposition, the entire data set is

represented by different spatial processes, encoded as vectors br,

and associated temporal dynamics, encoded as vectors ar, and

confounded by typically Gaussian noise E. The exact relation-

ship within and between the sets of vectors differs according to

the chosen analysis methodology, for example, a PCA decom-

position enforces orthogonality within the set of time courses

and within the set of spatial maps, while an ICA decomposition

relaxes the requirements on the time courses and instead places

stronger restrictions (statistical independence) on the set of

spatial maps. In either case, however, the underlying algorithmic

concepts are rooted within the matrix algebraic framework and

factorize a single two-dimensional data matrix into time courses

and spatial maps.

Typical neuroimaging studies, however, involve the gener-

ation of data from multiple subjects, potentially over a set of

different sessions. In Beckmann et al. (2003a), we demonstrated

how these data generation scenarios fit into a hierarchical

multilevel general linear modeling (GLM) framework where—

at every level—results from lower-level GLM analysis are

combined into a new set of higher-level estimates. While this

approach would also be applicable to exploratory techniques like

PCA or ICA1, it requires resorting to model-based analysis at the
1 That is, by feeding the results of the decomposition into the model-

based higher-level analysis.



C.F. Beckmann, S.M. Smith / NeuroImage 25 (2005) 294–311 295
higher level. In the case of exploratory data analysis techniques,

there is a potential loss in not modeling and inferring on the entire

set of data at once: when data are analyzed separately, there is little

scope in mutually conditioning analysis results. This is less of an

issue in the model-based (GLM) FMRI analysis, for it is being

used to test very specific, a priori hypotheses about the structure of

the data. In the case of exploratory techniques, however, analyzing

multiple data all at once can improve the ability to extract

spatiotemporal modes of interest and aid subsequent interpretation.

Current approaches to multisubject group FMRI ICA

decompositions involve concatenating the data either in space

(Lukic et al., 2002; Svensén et al., 2002) or time (Calhoun et

al., 2001), and then apply a standard two-dimensional ICA

decomposition approach. This results either in time courses that

are common across subjects together with subject-specific

spatial maps or vice versa. Therefore, either in space or time,

multiple factor estimates represent the way signal is contained

in individual subjects. In these cases, the final representation at

the group level differs from standard group FMRI GLM

analysis, where experimenters are typically interested in finding

single spatial maps that, together with single temporal modes,

jointly describe an individual source process in space and time

across the set of subjects2. This sparse representation of signal is

attractive particularly for its conceptual simplicity. Concatenating

data in space or time across subjects prior to the analysis, however,

effectively ignores the existence of modes of variation beyond time

and space (like within-group variability) and potentially sacrifices

accurate data modeling for algorithmic simplicity. Within the

current group ICA methodologies, this is partly addressed by

performing some heuristic meta-analysis after estimation of the

individual modes, for example, by calculating the mean temporal

response or back-projection in order to obtain individual spatial

maps that can then be averaged (Calhoun et al., 2001). During the

estimation stage itself, however, the multidimensional structure of

the data is not reflected in the analysis.

In this work, we are going to discuss alternative approaches

based on generalizing the standard bilinear (two-way) exploratory

analysis methodology to higher dimensions. To this end, we are

going to introduce an iterated rank-1 tensor ICA approach that

will decompose a three-way data set into a set of independent

spatial maps together with associated time courses and estimated

subject modes. In analogy to the two-dimensional case, where

ICA is often introduced as an extension to PCA, we will derive

the tensor ICA technique as an extension to three-way PCA

generalizations.

One such possible generalization is known as parallel factor

analysis (PARAFAC3; Harshman (1970); Harshman and Lundy

(1994)), where a three-way array is represented by a trilinear

combination of three outer products:

X ¼
XR
r

ar � br � cr þ E:

Techniques like PARAFAC have gained popularity in some

scientific disciplines, for example, in chemometrics they have been
2 Restricting ourselves to a simple single mean-group analysis for the

moment.
3 Also known as dcanonical decompositionT (CANDECOMP; Carroll

and Chang, 1970).
used extensively to decompose fluorescence spectroscopy data and

in neuroimaging have recently been applied to EEG data to give a

space–time–frequency decomposition (Miwakeichi et al., 2004).

For FMRI data, these vectors might represent variation in time,

across space, and between subjects4, and jointly form a data tensor

of order 3.

In order to obtain a practical data analysis technique, the

generative model needs to be augmented with a suitable cost

function. Standard PARAFAC analysis generalizes PCA and

treats the decomposition as a sum-of-squares minimization

problem. Unlike PCA, however, the PARAFAC decomposition

does not require orthogonality between any of the vectors in the

representation (Harshman, 1970). We will review the PARAFAC

approach to the decomposition of three-way arrays and, using

experiments on artificial FMRI data, will demonstrate that final

PARAFAC estimates can exhibit significant amounts of cross-

talk between estimated factors, especially in the spatial domain,

with negative impact on the interpretability of results. In the

bilinear case, previous research (Beckmann and Smith, 2004)

has already demonstrated that the ICA approach has beneficial

properties compared to a purely variance-based representation as

used in PCA. In particular, the observed cross-talk between

estimated sources was much reduced. Here, we extend this

approach to a probabilistic tensor ICA model where the

generative model assumes three-way data in the presence of

noise. Instead of optimizing for minimum residual sum-of-

squares error, we propose to optimize for maximum neg-entropy

(non-Gaussianity) of estimated spatial modes.

We begin with a technical description of PARAFAC and a

development of the tensor ICA method. The two techniques will

then be compared on a set of artificial data sets and on a real FMRI

group study.
Parallel factor analysis (PARAFAC)

The three-way PARAFAC technique is characterized by the

following generative model:

xijk ¼
XR
r

airbjrckr þ �ijk ð1Þ

(i = 1, . . . , I; j = 1, . . . , J; k = 1, . . . , K) with an associated sum-

of-squares loss:

A;B;C
min X

ijk

������xijk � XR
r

airbjrckr

������2: ð2Þ

Here, A = (a1,. . .,aR), B = (b1,. . .,bR), and C = (c1,. . .,cR)
denote the I � R, J � R, and K � R matrices containing R

different factor loadings in the temporal, spatial and subject

domain as column vectors. Within this model, any solution to

Eq. (1) is a maximum likelihood solution under the assumptions of

Gaussian noise.
4 Note that, similar to the two-dimensional case, we can freely pass

scalar factors between estimates and also introduce permutations. Absolute

amplitude in any of the factors is only meaningful when fixing all other

factors to, for example, unit standard deviation or unit range.
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The trilinear model can alternatively be written in matrix

notation, giving an expression for the individual two-dimensional

subsets of X (Bro, 1998):

Xi:: ¼ Bdiag aið ÞCt þ Ei:: i ¼ 1; N ; I ð3Þ

X:j: ¼ Cdiag bj
� �

At þ E:j: j ¼ 1; N ; J ð4Þ

X::k ¼ Adiag ckð ÞBt þ E::k k ¼ 1; N ;K; ð5Þ

where diag(ai) denotes a R � R diagonal matrix where the diagonal

elements are taken from the elements in row i of A (similarly for

diag(bi) and diag(ci)). This gives rise to a set of coupled sum-of-

square loss functions. Based on these, a simple way of

estimating the factor matrices is to use an iterative alternating

least squares (ALS) approach, iterating between the least-squares

estimates for one of A, B, and C separately while keeping the

other two matrices fixed at their most recent estimate:

ÂA ¼
X
k

X::kBdiag ckð Þ
! 

BtBð Þ � CtCð Þ
!�1

0
@

B̂B ¼
X
i

Xi::Cdiag âaið Þ
! 

CtCð Þ �
�
ÂA

t
ÂAÞ
!�1

0
@

ĈC ¼
X
j

X:j:ÂAdiag b̂bj
� �! 

ÂAtÂA
� �

� B̂BtB̂B
� �!�1

;

0
@ ð6Þ

where o denotes the direct (or element-wise) product. The ALS

algorithm iteratively calculates OLS estimates for the three factor

matrices. Directly fitting these so as to minimize the sum-of-

squares error provides a simple way of jointly estimating the

factor loadings that describe processes in the temporal, spatial,

and subject domain without requiring orthogonality between

factor loadings in any one of the domains: the multiway

PARAFAC model, unlike PCA, does not suffer from rotational

indeterminacy, that is, a rotation of estimated factors has impact

on the overall fit (Harshman and Lundy, 1984, 1994). The ALS

algorithm, however, can suffer from slow convergence, in

particular, when a set of column vectors in one of the factor

matrices is (close to being) collinear. Also, it is sensitive to

specifying the correct number of factors R (i.e., the number of

columns in A, B, and C). In order to address these issues, Cao

et al. (2000) have proposed to extend the standard PARAFAC

loss function to include a diagonalization error, such that

L Að Þ ¼
X
k

������X::k � Adiag ckð ÞBt
������2
F

þ
X
i

������ByXi:: C
yð Þt � diag aið Þ

������2
F
; ð7Þ

(similarly for L(B) and L(C)). Here, ||V||F2 = tr(VtV) denotes the

Frfbenius norm and By denotes the pseudo-inverse of B. The

first term corresponds to the sum-of-square loss function while

the second term penalizes the I different R � R projection

matrices. A modified ALS algorithm can be derived by iterating

solutions for

BL Vð Þ
BV

¼ 0
with V = A, B, C. The ordinary least-squares solution then

becomes (Cao et al., 2000):

ÂA ¼
X
k

X::kBdiag ckð Þ þ I

!
Pþ BtBð Þ � CtCð Þð Þ�1

;

 

where P = [p1,. . .,pI]
t and where pi are column vectors formed

by elements on the main diagonal of the R � R matrix

ByXi ..(C
y)t (similar for B̂ and Ĉ). This modified ALS algorithm

has been used for all later PARAFAC calculation.

It is interesting to note that the ALS approach to three-way

PARAFAC does provide a unique decomposition, provided the

data have appropriate dsystem variationT (Harshman and Lundy,

1984, 1994), that is, when A, B, and C are of full rank and there

are proportional changes in the relative contribution from one

factor to another in all three domains so that no two factors in

any domain are collinear. In FMRI, however, we might expect the

individual vectors in subject space to exhibit a significant amount

of collinearity between some of them, for example, in the case of

two spatially different physiological signals, we might expect the

relative contribution of the individual subjects to be very similar,

so that two columns in C are (close to being) collinear. The

effects of collinearity of some of the factors on the ability to

extract the latent structure of the data will be evaluated in the

experimental methods section.
Tensor PICA

The set of Eqs. (3)–(5) can alternatively be expressed as simple

matrix products, for example, the set of Eq. (5) can be expressed

as:

XIK � J ¼ Cj�jAð ÞBt þ ẼE: ð8Þ

Here, XIK � J denotes the IK� J data matrix formed by concat-

enating all K different data sets in the temporal domain and A, B,

and C are matrices containing the R individual temporal, spatial,

and session/subject factors in their columns. The first factor (C |�|

A) denotes the Khatri–Rao product of A and C, that is, a

IK � R matrix formed by K copies of A stacked and column-wise

scaled by diagonal matrices formed from rows of C such that

(C |�| A) = ((Adiag(c1))
t,. . .,(Adiag(cK))

t)t (Bro, 1998).

From Eq. (8), the matrix of spatial factors B has least-squares

estimates of

B̂B t ¼ Cj�jAð ÞyXIK � J : ð9Þ

Similarly, Â and Ĉ can be estimated from Eqs. (3) and (4).

Thus, ALS estimates for each of the three matrices can be

calculated via a linear projection of the three-way data, reshaped to

three different two-dimensional matrices.

The PARAFAC model and the ALS algorithm for estimation

treat all three domains equally and do not utilize any domain-

specific information. The experimental methods section demon-

strates how this can lead to PARAFAC results that are difficult to

interpret, mainly due to significant cross-talk between estimated

spatial maps.

In order to address this, we formulate a tensor probabilistic

independent component analysis (tensor PICA) model that



Fig. 1. Artificial spatial maps and time courses used for the generation of artificial group data.
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incorporates the assumption of maximally non-Gaussian distribu-

tions of estimated spatial maps B: Eq. (8) is identical to a standard

(two-dimensional) factor analysis or noisy ICA model (Beckmann

and Smith, 2004), where the matrix (C |�| A) denotes the dmixingT
matrix and Bt contains the set of spatial maps as row vectors.

Unlike the single-subject (two-dimensional) PICA model, how-

ever, the mixing matrix now has a special block structure that can

be used to identify the factor matrices A and C. Given the first

matrix factor in Eq. (8), it is easy to recover the two underlying

matrices A and C: each of the R columns in (C |�| A) is formed by

K scaled repetitions of a single column from A, that is, when

reshaped into a I � K matrix is of rank 1. Thus, we can transform

each column r into a I � K matrix and calculate its (single)

nonzero left Eigenvector of length I, together with a set of K

factor loadings (projections of the matrix onto the left Eigenvec-

tor), using a singular value decomposition (SVD) and use these to
Fig. 2. Tensor PICA and PARAFAC decomposition results for data set (A) and the

estimated, based on the Laplace approximation to the Bayesian model order. The

courses (blue) are shown together with the dtrueT signal time courses (red), both

accuracy of the estimation in the subject domain for each of the three subjects (blu

spatial map with each of the R estimated maps as an indicator of cross-talk betw
reconstitute a column of the underlying factor matrices A and C.

This needs to be repeated for each of the R columns separately and

the matrices A and C are proportional to the R different

Eigenvectors and factor loadings, respectively, that is, the values

obtained by projecting the matrix of I � K matrix of time courses

onto the Eigenvector of the SVD.

This gives the following algorithm for a rank-1 tensor PICA

decomposition of three-way data X:

(i) perform an iteration step for the decomposition of the full

data

XIK � J ¼ McBt þ ẼE1 ð10Þ

using the two-dimensional PICA approach for the decom-

position into a compound mixing matrix Mc of dimension
first spatial map. Both for tensor PICA and PARAFAC, R = 13 maps were

spatial maps are normalized to unit standard deviation. The estimated time

are scaled to mean 0 and unit standard deviation. The bar plots show the

e: estimated, red: true), while the box plot shows the correlation of the dtrueT
een estimated maps of interest.



Fig. 3. Tensor PICA and PARAFAC decomposition results for data set (B) with R = 13: the first process is contained in all three subjects while the second

process only appears in subject 2.
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IK � R and a R � J matrix containing the associated spatial

maps Bt.

(ii) decompose the estimated mixing matrix Mc such

that

Mc ¼ Cj�jAð Þ þ ẼE2 ð11Þ

via a column-wise rank-1 Eigenvalue decomposition: for

each column r of Mc, form the I � K matrix M̃r =

(Mr
c
,1,. . .,Mr

c
,K). Under the model, this matrix contains K

scaled repetitions of a single temporal factor Ar that can

be found by calculating its least-squares rank-1 approx-

imation using SVD. Along with the temporal factor Ar

(left Eigenvectors), the SVD provides the individual

scalings (right Eigenvectors) that define the corresponding

vector in Cr. This needs to be repeated for each column

of Mc and provides estimates for A and C.

(iii) iterate decomposition of XIK � J and Mc until convergence5.

Note that, like PARAFAC, the rank-1 tensor PICA decom-

position estimates factor matrices for the generative model of Eq.

(1). The estimated matrices, however, provide a different structural

representation of the three-way data X. Note also, that the singular

value decomposition of each matrix M̃r not only provides the left

and right Eigenvectors that form the relevant columns in Ar and Cr

but also gives a set of Eigenvalues. The ratio of the largest

Eigenvalue and the sum of all Eigenvalues can be used to assess

the quality of the rank-1 approximation: if the matrix M̃r is not
5 For example, when ||Anew � Aold||F + ||Bnew � Bold||F + ||Cnew �
Cold||F b � .
well approximated by the outer product of the left and right

Eigenvectors, the corresponding ratio will be low, that is, only

represent a small amount of variability in M̃r.

Relation to mixed-effects GLMs

Within the general linear model, the data from an individual

subject k at time i and voxel location j are expressed as:

xijk ¼
XR
r

A¯
kð Þ
ir b¯

kð Þ
jr þ �̄

kð Þ
ij : ð12Þ

Here, Ā(k) denotes the (potentially subject-specific) lower-level

GLM design matrix containing R regressors, b (̄k) denotes the

subject specific lower-level linear model parameters at voxel

location j, and Ẽij
(k) w?>is the subject-specific (fixed-effects) error.

Typically, the subject-specific linear model parameters are then

related to group parameters in a second linear model6:

b¯
kð Þ
jr ¼ C¯ krB

¯
jr þ ḡjr; ð13Þ

where now C̄kr denotes the kth entry of the group-level design

matrix for lower-level regressor r (which, in the case of mean

group activation studies, is a vector of ones for each r), B̄jr is the

group effect size at voxel location j, and where h̄ is the random-
6 In its general form, the multilevel GLM allows to combine contrasts

of lower-level parameter estimates. Such designs, however, can be

reformulated as higher-level GLMs operating on simple parameter

estimates (for details, see Beckmann et al., 2003a).
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effects variance contribution of the lower-level regressor r at voxel

location j. Within this model, the estimated random-effects

variance contribution is given by the variance of the estimated

parameter estimates around their mean. The mixed-effects two-

level GLM relates the group level parameters of interest to the

original data as

xijk ¼
XR
r

A¯
kð Þ
ir C¯ krB

¯
jr þ �̄ ijk; ð14Þ

where �̄ is the combined error term with associated mixed-effects

variance. Similar to the generative model of Eq. (1), the two-

level mixed-effects GLM expresses the data via a trilinear

decomposition.

In order to compare the variance terms, assume that Ā(k) =

A, B̄ = B, and C̄ = C. Then the mixed-effects error n̄
corresponds to the error term Ẽ in Eq. (8). In contrast to the

PARAFAC/tensor ICA model, however, Eq. (14) uses a priori-
Fig. 4. Tensor PICA and PARAFAC decomposition results for data set (C) with R =

course associated and estimated time courses (blue) are shown together with the
specified design matrices Ā and C̄. When fixing the GLM group-

level design C̄ to a column vector of ones in order to calculate

mean group activation size, the resulting group-level error h̄ has

associated voxel-wise random-effects variance. That is, the

multilevel GLM permits different voxel locations to have

different random-effects variance. Even in the case where two

voxels show similarly significant amplitude modulation to the

same regressor r, their random-effects variance contribution is

allowed to be different. As such, the multilevel GLM random-

effects variance is the variance of the individual subjects’

responses around the expected population mean response at a

given voxel location, that is, the random-effects variance is

averaged over time but not over space. By comparison, Cr in Eq.

(8) represents the amplitude of signal modulation of the entire

spatiotemporal process defined by Ar and Br for different

processes r and subjects k, independent of voxel location j. As

such, the variance of a single vector Cr signifies the variance of

the individual subjects’ responses around the expected population
14. Each of the dtrueT spatial maps no longer has a single dtrueT signal time

dominant Eigenvector of all possible time courses (red).



Fig. 5. Tensor PICA and PARAFAC decomposition results for data set (D) and all three spatial maps.
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mean response for the entire spatiotemporal process described by

Ar and Br. Within the standard multilevel GLM, this quantity is

not readily available but can be approximated by the spatially
Fig. 6. Tensor PICA and PARAFAC decomposition res
averaged random-effects variance weighted by the normalized

voxel-wise parameter estimates within post-thresholded clusters

(Smith et al., in press).
ults for data set (E) and estimated spatial map 3.



C.F. Beckmann, S.M. Smith / NeuroImage 25 (2005) 294–311 301
Data preprocessing for tensor PICA

As in the two-dimensional case, the data will be voxel-wise

detrended (using Gaussian-weighted least squares straight line

fitting; Marchini and Ripley (2000)) and demeaned separately for

each data set k before the tensor PICA decomposition. In order to

compare voxel locations between subjects/sessions, the individual

data sets need to be coregistered into a common space, typically

defined by a high-resolution template image. We do not, however,

necessarily need to resample the higher resolution and can keep the

data at the lower EPI resolution in order to reduce computational

load. After transformation into a common space, the data are

temporally normalized by the estimated voxel-wise noise cova-

riances Vk
�1/2 = diag (r1, k, . . .,rJ , k) using the iterative approx-

imation of the noise covariance matrix from a standard two-PICA

decomposition. This will normalize the voxel-wise variance both

within a set of voxels from a single subject/session and between

subjects/sessions. The voxel-wise noise variances need to be

estimated from the residuals of an initial PPCA decomposition.

This, however, cannot simply be done by calculating the individual

data covariance matrices R..k ~ X..kX
t
..k.

Within the tensor PICA framework, the temporal modes

(contained in A) are assumed to describe the temporal character-

istics of a given process r for all data sets k. We will therefore

estimate the initial temporal Eigenbasis from R = 1/K
P

k R..k, that

is, by the mean data covariance matrix. This corresponds to a PPCA

analysis ofXI � JK, that is, the original data reshaped into a (number

of time point) by (number of voxels) � (number of subjects/

sessions) matrix. We use the Laplace approximation to the model

order (Minka, 2000) to infer on the number of source processes R.

The projection of the data sets onto the matrix UR (formed by the

first R common Eigenvectors of R) reduces the dimensionality of

the data in the temporal domain in order to avoid overfitting. This
Fig. 7. Accuracy of signal estimation for PARAFAC and tensor PICA on the artifi

best rank-1) modes and estimated modes in the spatial, temporal, and subject domai

For each method and data set, the analysis was performed for R = 3, 10, and 40. Di

in Fig. 1.
projection is identical for all K different data sets, given that UR is

estimated from the mean sample covariance matrix R. Therefore,

we can recover the original time courses by projection onto UR:

when the original dataXIK � J are transformed into a new set of data

X̃RK � J by projecting each X..k onto UR, the original data can be

recovered from

XIK � J ¼ IRj�jURð ÞX̃XRK � J ;

where IR denotes the identity matrix of rank R. If the new data X̃

are decomposed such that X̃RK � J = (C |�| Ã)Bt + Ẽ, then

XIK � J = (C |�| A)Bt + Ẽ, where A = URÃ. This approach is

different from, for example, Calhoun et al. (2001), where an

individual data set k is projected onto a set of Eigenvectors of the

data covariance matrix R..k. As a consequence, each data set in

Calhoun et al. (2001) has a different signal + noise subspace

compared to the other data sets. Similar to the two-dimensional

PICA model, the set of preprocessing steps is iterated in order to

obtain estimates for the voxel-wise noise variance V, the PPCA

Eigenbasis U and the model order R before decomposing the

reduced data X̃RK � J into the factor matrices Ã, B, and C (for

details, see Beckmann and Smith, 2004).

Group-level inference

In Eq. (9), the estimated spatial maps are given by projection of

the original data X transformed into its two-dimensional repre-

sentation XIK � J and projected onto the estimated dunmixingT
matrix (C |�| A)y. To generate statistic values, we transform spatial

maps B into voxel-wise Z-scores by dividing the estimated spatial

maps by the residual mixed-effects variance and model the

histogram of Z-statistics values using the Gaussian/Gamma

mixture model approach (Beckmann et al., 2003b; Woolrich et
cial FMRI group data (A)–(E). Plots show the correlation between dtrueT (or
n (top to bottom rows, respectively) for PARAFAC (P) and tensor PICA (T).

fferent colors show the estimation accuracy for the three spatial maps shown
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al., in press). The fitted mixture model can then be used to

threshold spatial maps using the voxel-wise posterior probability of

dactivationT or the expected false-positive rate over the brain or

over the voxels classified as dnonbackground noiseT (FDR).
Experimental methods

We illustrate the approach of rank-1 tensor PICA and compare

it with standard PARAFAC on a set of artificial and on real FMRI

group data.
Fig. 8. Thresholded FLAME GLM map (i) and PARAFAC map (ii) together with

spectra, and estimates of relative effect size over subject space.
Simulated data

We acquired whole brain volumes (64 � 64 � 21 voxels at 4 �
4 � 6 mm spatial resolution) of FMRI data on a Varian 3-T system

(TR = 3 s; TE = 30 ms) under resting condition. The data were

corrected for subject motion using MCFLIRT (Jenkinson et al.,

2002), temporally high-pass filtered (Gaussian-weighted least-

squares straight line fitting, with sigma = 20.0 s) (Marchini and

Ripley, 2000), and masked for nonbrain voxels using BET

(Smith, 2002). The preprocessed data were used to estimate

background noise parameters (voxel-wise means and standard
the mixture model fit used for thresholding, associated time courses, power
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deviations) that were used to generate three artificial data sets

with Gaussian noise characteristics. Artificial signal was linearly

added to the Gaussian background noise data using spatial maps

and time courses depicted in Fig. 1. The time courses correspond

to the stimulus trains from a simple block design, a single-event

(fixed interstimulus interval) design, and a single-event (random

interstimulus interval) convolved with a canonical hemodynamic

response function (Gamma variate with 3 s standard deviation

and 6 s lag).
Fig. 9. Thresholded tensor PICA maps, mixture model fits, time courses, power spe

(i) main activation map (map with highest spatial correlation with GLM map an

separate ddeactivationT map identifying ipsilateral primary motor, anterior cerebel

deactivation in Fig. 8i, the spatial map and associated time course have been inv
Five different data sets (196 time points � 2800 voxels � 3

subjects each) were generated as example FMRI studies with

different signal characteristics:

(A) Each subject’s data X..k contains all three spatial maps shown

in Fig. 1. Each spatial map has a different associated time

course: time course 1 modulates spatial map 1, time course 2

modulates spatial map 2, and time course 3 modulates spatial

map 3. This defines three spatiotemporal processes that are
ctra of time courses, and estimates of relative effect size over subject space:

d with highest temporal correlation with the GLM first level design); (ii)

lum, and posterior SMA. Note that in order to facilitate comparison to the

erted.



Fig. 10. Thresholded tensor PICA map showing deactivation in the superior occipital lobule and sensory areas.
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introduced at different strengths into the individual subjects’

data. The dactivationT levels were set to (3,4,5), (2,3,4), and

(2,2,3) times the mean noise standard deviation for subjects

1–3. The complete three-way data conform to the generative

model of Eq. (1) with R = 3 source processes in the data.

(B) Each subject contains spatial map 1 modulated by time course

1. In addition, subject 2 contains spatial map 2 modulated by

time course 2, while subject 3 contains spatial map 3

modulated by time course 3. This data set is a special case

of data set (A) with strength set to (3,0,0), (2,3,0), and (2,0,3).

The data still conforms to the generative model of Eq. (1) and
is used to demonstrate the performance of PARAFAC and

tensor PICA on data where the matrix C is sparse, that is, for

data that contain subject-specific source processes in addition

to a common source process.
Fig. 11. Spatial correlation between GLM map and tensor PICA PARAFAC

maps: box plots of the correlation between the FLAME multilevel GLM

map (Fig. 8i) and tensor PICA maps (left) and PARAFAC maps (right).

Maps with highest correlation are shown in Fig. 9i for tensor PICA and

Fig. 8ii for PARAFAC.
(C) Like data set (A), but with individual convolution parameters

for the generation of the signal time courses differing between

subjects in mean lag and standard deviation used for the

Gamma HRF (r = 3, 3.5, and 4 s, mean lag of 4, 5, and 6 s).

This induces small differences in the temporal signal
characteristics between subjects. This data set is used to test

for robustness against small deviations from the model

assumptions in the temporal domain (e.g., small differences
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between subjects in the BOLD response to the same set of

stimuli). Note that this data set still conforms to the trilinear

model, as these different time courses together with the spatial

maps can be interpreted as separate source processes (i.e.,

with A containing nine time courses with sets of three time

courses being close to collinear and with B containing nine

spatial maps where sets of three are identical). The data do

not, however, conform to the tensor PICA model, as the

spatial maps are not statistically independent.

(D) Subject 1 does not contain any dactivationT signal.

Subjects 2 and 3 contain dactivationT signal in the area

defined by spatial map 2, modulated by the simple block

design (time course 1). Subject 3 also contains extra

dactivationT signal in the area defined by spatial map 3,

modulated again by time course 1. In addition, all three

subjects contain dnuisanceT signals (spatial map 1 modu-

lated by a different time course in each subject). These

data simulate cases where FMRI data are confounded by,

for example, resting-state networks that are spatially

consistent but differ in the temporal characteristics of the

resting-state BOLD signal. The data conform to the

trilinear model when viewed as a set of five spatial maps

with five associated time courses.

(E) Each data set contains all three spatial maps, but modulated

by a different time course, that is, the association between

spatial maps 1–3 and time courses 1–3 changes between

subjects. The data conform to the trilinear model when

viewed as a set of nine spatial maps and nine associated time

courses. However, like data set (C), some of the spatial maps

are identical and thus not statistically independent.

Multisession FMRI data

The data were originally used in McGonigle et al. (2000) to

study session variability in repeated FMRI experiments: a healthy

23-year-old right-handed male was scanned under a visual,

cognitive, and motor paradigm in 33 separate sessions over a

period of 2 months. The data used here consist of the first 10

sessions under the motor paradigm: a block design with 24.6 s on/

off periods and right index finger tapping at 1.5 Hz during the

dactiveT condition. Data (78 volumes) were collected on a Siemens

Vision (2 T) with TR = 4.1 s, 48 � 64 � 64 (3-mm isotropic

voxels). In addition, a single T1-weighted structural image was

taken at 1 � 1 � 1.5 mm resolution.

Data preprocessing

The data were individually corrected for head-motion using

MCFLIRT. Mean-based intensity normalization of all volumes by

the same factor was applied (i.e., grand mean scaling so that each

of the 10 sessions had the same mean intensity value when

averaged over 78 volumes and all brain voxels), followed by high-

pass temporal filtering (see above). The individual data sets were

registered into the space of the high-resolution T1 image using

FLIRT (Jenkinson and Smith, 2001). In order to decrease

computational load, the T1 high resolution image was segmented

into different tissue types using FMRIB’s Automated Segmentation

Tool (FAST) (Zhang et al., 2001). This provided maximum a

posteriori estimates for voxel-wise grey matter probability. Voxels

with P N 0.2 (N = 47,168; 218% of all intracranial voxels) were

included in the tensor analysis so that X is a three-way array of

dimension 78 � 47,168 � 10. Based on the estimated sample
covariance matrix of the 78 � 471,680 matrix XI � JK, the Laplace

approximation to the model estimated a 19-dimensional signal

subspace. The data for each session were projected onto the space

spanned by the first 19 Eigenvectors and spatially normalized by

the voxel-wise variance estimate from the residuals of the

projection.

Multisubject FMRI data

Five healthy right-handed subjects performed 30-s blocks of a

visually cued reaction time task involving left index finger move-

ment, left hand sequential finger movement, and left hand random

finger movement (for details, see Johansen-Berg et al., 2002).

For each subject, 122 axial echo-planar volumes (21 � 6

mm slices, TE = 30 ms, TR = 3 s, 64 � 64 � 21 voxels at

4 � 4 � 6 mm) were acquired on a 3-T Varian/Siemens MRI

system at the Oxford Centre for Functional Magnetic Imaging

of the Brain together with a T1-weighted anatomical image at

1 � 1 � 1.5 mm resolution.

Data preprocessing

The data were individually corrected for head-motion using

MCFLIRT and spatially smoothed using a Gaussian kernel of

FWHM 5 mm. Mean-based intensity normalization of all volumes

by the same factor was applied, followed by high-pass temporal

filtering (see above). The individual data sets were registered into

MNI space using FLIRT (Jenkinson and Smith, 2001) while keeping

the data at the functional resolution in order to decrease computa-

tional load. The final three-way data X was of size 122 � 12,839 �
5. Based on the estimated sample covariance matrix of the matrix

XI � JK, the Laplace approximation to the model estimated a 12-

dimensional signal subspace. The data for each session was

projected onto the space spanned by the first 12 Eigenvectors and

spatially normalized by the voxel-wise variance estimate from the

residuals of the projection.
Results

Simulated data

In this section we compare results from PARAFAC and tensor

PICA on the different artificial data sets (A) to (E). For each

method, we show unthresholded spatial maps, together with both

estimated time courses and the dtrueT (data sets (A) and (B)) or best

rank-1 approximation to the set of true (data sets (C)–(E)) time

courses. The accuracy in the subject domain is shown via bar plots

with both the estimated (left bars) and true (right bars) weights for

the three subjects. In each plot, we show the results of the

estimated source with highest spatial correlation with the true

sources. The box plots signify how strong the correlation is relative

to the correlation between all other processes and the true spatial

maps. Multiple large correlation coefficients signify substantial

cross-talk between estimated spatial maps.

Data set (A)

Data set (A) conforms to the assumptions of the model in Eq.

(1) and Fig. 2 shows the estimate of the first spatiotemporal process

(spatial map 1 and time course 1 at different dstrengthsT 3,2,2 for

the three subjects) for tensor PICA and PARAFAC where R = 13

was used based on the Laplace approximation to the model order.
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Within the spatial, temporal, and subject domain, both techniques

identify the artificial signals well. For both techniques, the box

plots clearly show only a single process having high spatial

correlation with the dtrueT spatial map 1. In the case of PARAFAC,

however, the maximum correlation is reduced, possibly an effect of

suboptimal convergence. The estimation of the PARAFAC solution

has used almost 15 times the number of floating point operations

compared to tensor PICA. Estimates for the two other source

processes are qualitatively similar to what is shown in Fig. 2.

Data set (B)

Data set (B) differs from data set (A) only by having some

processes that are subject specific, that is, they have zero amplitude

modulation in some of the subjects’ data. Fig. 3 shows the results

for the dcommonT source process (top) and one of the secondary

source process (bottom) that only exists in subject 2. The model

order was estimated to be R = 13. Both techniques still estimate the

source processes, with the PARAFAC estimate of the common

source process showing some cross-talk with spatial map 2. The

PARAFAC estimation in this case involved a 23-fold increase in

number of floating point operations.

Data set (C)

In data set (C), different parameters for the HRF convolutions

resulted in small differences in the time courses. As a consequence,

each of the three spatial maps has a slightly different associated

time course in each subject. As such, there is no longer a single

dtrueT associated time course across subjects. The induced variation

in the temporal domain, however, is small (time courses have r N

0.75 temporal correlation) and the different time courses are well

approximated by their dominant Eigenvector, that is, by the best

rank-1 approximation. The data permit two different representa-

tions: firstly, the signal content can either be approximated as a

linear combination of three processes (where in the temporal

domain the rank-1 approximation to the three slightly different

time courses is used), or can fully be expressed as a linear

combination of nine processes with large collinearity in A and

three multiple versions for each of the true spatial sources in B.

Fig. 4 shows the estimated set of source processes for tensor

PICA and PARAFAC. The tensor PICA decomposition, due to

independence assumption in the spatial domain, represents the data

via a set of three source processes. Compared to the tensor PICA

results, the PARAFAC spatial estimates exhibit some cross-talk, for

example, the first spatial map is visibly confounded by maps 2 and

3. Also, in the temporal and subject domains, PARAFAC finds less

accurate estimates of the true source processes. The two

approaches differ most significantly in the way in which true

spatial maps correlate with each of the R = 14 estimated maps:

while the spatial tensor PICA decomposition always results in only

one source that correlates strongly with the true spatial map, the

PARAFAC decomposition shows that, especially for sources 2 and

3, multiple PARAFAC estimates correlate with the true maps. As
Fig. 12. Additional tensor PICA maps: image artefact (i), particularly strong in thr

stimulus and therefore confounds the individual (single-session) and group GLM

standard GLM analysis (left) and the group-level GLM map (right, identical to F

Fig. 13. Thresholded tensor PICA map and associated time course for the multisu

motor areas and SMA. The associated time course is shown together with the best

the GLM design with three exploratory variables (modeling index finger movem

separately).
such, PARAFAC does not represent the signal of interest via three

different source processes but equally does not find the represen-

tation by nine sources: almost all of the estimated correlated maps

show significant amount of cross-talk. Convergence in this case is

particularly slow, with 47 times the number of floating point

operations compared to tensor PICA.

Data set (D)

This data set simulates a scenario where subjects differ in spatial

extent of signal: subject 1 does not contain any dactivationT signal,
while subject 2 contains dactivationT signal in spatial map 2 and

subject 3 contains dactivationT signal in spatial maps 2 and 3. For

both subjects 2 and 3, the signal is temporally modulated by time

course 1. All three subjects contain dnuisanceT signal in spatial area

1, but modulated each time by a different time course (time course 2,

3, and 2 + 3). This simulates spatially consistent but temporally

inconsistent effects like resting state networks (Biswal et al., 1996).

Estimated sources are shown in Fig. 5. The PARAFAC

decomposition no longer reflects the spatial or temporal extent of

signal well. Similar to data sets (A) to (C), the tensor PICA

decomposition identifies three source processes that are strongly

correlated with the true spatial maps 1–3. The estimated

spatiotemporal decomposition closely matches the way that data

were generated. In the case of the main nuisance effect (contained

inside spatial map 1), the tensor PICA decomposition approximates

the best rank-1 decomposition of the different time courses

involved as the time course that best summarizes the three different

temporal signals associated with this single map.

Note that each estimated time course in a tensor PICA

decomposition is calculated from an SVD of a single column of

Mc, reshaped into a I � K matrix. This will not only provide the

single time course that best represents the K individual time

courses for each column in Mc, but also provides information

about the amount of variance that this individual time course

explains. For these data, the time courses for estimated source

processes 2 and 3 represent 99.27% and 99.57% of the total

variance contained in the relevant columns of Mc. By compar-

ison, the time course for source process 1 only represents 54.07%

of the variance in the temporal domain. This indicates that the

rank-1 approximation of the time courses associated with spatial

map 1 is not very descriptive of the temporal characteristics in

each of the subjects.

Data set (E)

In data set (E), all signals are temporally and spatially

inconsistent between subjects. While each subject contains each

of the spatial maps and time courses in Fig. 1, the association

between true spatial maps and true time courses differs in each

subject. Fig. 6 shows the results for one of the source signals.

Despite the fact that the signal content in this data set does conform

to the trilinear model, the high degree of collinearity in this

representation prevents PARAFAC from clearly identifying the
ee sessions and residual motion artefact (ii). The motion correlates with the

maps. Panel iii shows the Z-statistics map for session 6, obtained from a

ig. 8i).

bject FMRI data set. Post-thresholded areas include primary and secondary

model fit based on linear regression of the estimated temporal mode against

ent (I), sequential finger movement (S), and random finger movement (R)
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8 Identified as the map with highest spatial correlation with the GLM

ap out of 19 estimated sources; see Fig. 11. Also, the associated time

course has highest correlation with the GLM regressor.
9 Estimated response size between sessions is normalized to uni
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source process in the spatial or temporal domain. The tensor PICA

results contain exactly one source with high spatial correlation for

each of the three dtrueT spatial maps (only one of the maps is

shown, the results for spatial map 1 and 2 are qualitatively similar).

The estimated subject factor differs significantly from the dtrueT
relative activation strengths. Also, the associated time course only

explains 46.26% of the final amount of variance among the set of

three time courses, indicating that a rank-1 approximation might

not be sufficient to capture the temporal dynamics.

Accuracy and dimensionality

The accuracy of estimation, both for PARAFAC and tensor

PICA, depends on the number of processes R estimated with each

method. All results presented above have used a value of R as

estimated via the Laplace approximation to the model order for the

Eigenspectrum of the data covariance matrix RI � JK. Fig. 7

compares the accuracy of estimation for both PARAFAC (P) and

tensor PICA (T) on all five data sets (A)–(E) for different values of

R = 3, 10, and 40 in the spatial, temporal, and subject domain.

Circles denote the source process with highest absolute

correlation with one of the three true spatial maps while dots

show correlation of the remaining sources. In almost all cases, the

source process with the highest spatial correlation also has the

largest temporal correlation with the associated true time course (or

to the best rank-1 approximation)7. For data sets (A) to (C), that is,

when signals conform to the generative model of Eq. (1), the

correlations in the spatial and temporal domain between true

sources and estimates from tensor PICA are very high and always

clearly identify a single process (i.e., for each dtrueT spatial map,

one of the estimated spatial maps has high spatial correlations

while at the same time all other estimated spatial modes have low

spatial correlation). Furthermore, the estimation is relatively robust

when estimating a different number of sources. This is of prime

importance, since the exact number of source processes is not

known a priori and the Laplace approximation is not expected to

always give very accurate results (for a detailed discussion, see

Beckmann and Smith, 2004). The PARAFAC estimates, by

comparison, exhibit a stronger dependence on the number of

estimated sources R. As the number of estimated sources increases,

a larger number of source processes show dspuriousT correlations
with the true spatial maps. In the case of data sets (D) and (E), the

PARAFAC results are significantly worse compared to the tensor

PICA results and do not identify the source processes in any

domain. These simulations suggests that tensor PICA is less

sensitive to the model order as well as deviations of the signal

content in the data from the generative three-way model.

Multisession FMRI data

For the multisession FMRI data, we compare PARAFAC and

tensor ICA results to GLM mixed-effects group analysis maps as

generated by FMRIB’s local analysis of mixed effect (FLAME;

Woolrich et al. (2003)). For comparison, spatial maps generated

by any of the three techniques were thresholded using the

Gaussian/Gamma mixture-modeling approach described in Beck-

mann and Smith (2004) at a posterior probability level of P N

0.5, that is, at the intensity level where the probability of

dactivationT as modeled by the Gamma densities exceeds the
7 In the subject domain, the correlations with all other processes are not

shown, as there are only three subjects in this study.
probability under the background noise Gaussian density.

Individual mixture model fits are given below each of the

thresholded maps together with the relevant time course and (in

the case of PARAFAC and tensor PICA) the estimate of the

relative dactivationT strength per session.

The results for GLM are shown in Fig. 8i (all maps are shown

in neurological convention, i.e., left hemisphere is displayed on the

left). Similar to the thresholded Z-statistic maps presented in the

original paper by McGonigle et al. (2000), the superthresholded

clusters coincide with areas typically involved in motor processing:

bilateral premotor, contralateral primary motor and sensory areas,

SMA, bilateral secondary somatosensory, and the ipsilateral

anterior lobe of the cerebellum. Based on the Gaussian/Gamma

mixture model fit, significantly negative group-level Z-scores are

found in ipsilateral primary motor areas, bilateral intraparietal

sulcus, and occipital parietal cortex (blue). Below the GLM map

is the first-level GLM regressor together with its power

spectrum. Also shown is the normalized (to unit standard

deviation) set of first-level parameter estimates, weighted by

group-level Z-scores and averaged within post-threshold group-

level activation clusters. At the group level, the averaged and

weighted set of first-level estimates expresses the change in

effect dstrengthT between different sessions similar to what is

estimated explicitly as part of the PARAFAC and tensor PICA

decomposition as the third mode C (see Smith et al., in press for

examples of the usefulness of this quantity in the context of

model-based FMRI group analysis).

The main PARAFAC map8 in Fig. 8ii similarly shows super-

thresholded clusters in premotor and motor areas, but shows fewer

voxels in secondary somatosensory areas and does not identify an

ipsilateral cluster in the cerebellar cortex. The power spectrum of

the associated time course has not only the highest power at the

fundamental frequency of the design (6.5 cycles) but also large

power at the first harmonic and some higher frequencies.

By comparison, the primary tensor PICA map (Fig. 9i) shows

much larger correlation with the GLM map than the main

PARAFAC map. The spatial map from tensor PICA shows areas

similar to the GLM mixed-effects map, with the tensor PICA map

more prominently showing clusters in bilateral secondary somato-

sensory (S2) areas. Additionally, cingulate motor and ipsilateral

primary motor areas have survived thresholding. Among the 19

estimated sources, this process has not only the highest spatial

correlation with the GLM map, but also the highest temporal

correlation with the GLM design and highest mean effect size. The

rank-1 approximation explains 78.3% of the variation between the

temporal responses for each of the sessions. Similar to the

PARAFAC results, there is some correspondence between the

normalized9 estimated session response (bottom) and the weighted

averaged GLM first-level parameter estimates (Fig. 8i, bottom).

The bnegativeb activation in the GLM map (e.g., ipsilateral

motor areas) no longer shows up in this map but is contained

within a separate tensor PICA map10 shown in Fig. 9ii. The most

strongly deactivated areas include the ipsilateral primary motor
m

standard deviation, thus showing relative response size only.
10 The model is ambiguous with respect to scalar factors and signs. The

maps presented here have been scaled manually for comparison.
t
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areas and somatosensory areas, possibly deactivating dnonhandT
motor areas as shown previously for the somatosensory system

(Drevets et al., 1995). The plot of the normalized response size

over sessions does show that this deactivation is consistent over

sessions. The amount of explained variance in the rank-1

approximation, however, is reduced to 2 46%, suggesting that,

unlike primary activation, the deactivation is less consistent in the

temporal characteristics between sessions.

Some parts of the deactivation as identified in the GLM analysis

(blue in Fig. 8i), however, do not appear in the primary deactivation

map shown in Fig. 9ii. Instead, a third tensor PICA map (with

temporal correlation of q = 0.27 to the GLM design) shows

deactivation in the superior occipital lobule, an area commonly

involved in stereo vision (see Fig. 10). Unlike the deactivation

depicted in Fig. 9ii, only a few of the 10 sessions show a

significantly nonzero effect size: the box plot shows sessions 8 and

10 as doutliersT, possibly due to visual fixation. Similar to the case

of the artificial data, Fig. 11 demonstrates that the tensor PICA

results show a much clearer identification of a single bactivationb
map as well as reduced cross-talk between estimated maps.

Additional dinterestingT maps from the tensor PICA decom-

position are shown in Fig. 12: the first map (i) depicts the spatial

extent of an image artefact showing signal fluctuations possibly

due to RF signal aliased into the field-of-view. While the exact

origin of these signal components is unknown, they negatively

impact on a group GLM analysis as these patterns induce

additional error variance. Fig. 12ii shows stimulus-correlated

residual head motion, most clearly appearing at the frontal lobe

intensity boundaries. The presence of this artefact strongly

impacts on standard GLM analysis: both the single-level (for

session 6) and the group-level GLM estimates for motor

activation show false positives around the area where the tensor

PICA map shows the residual motion. Though only a few

sessions are estimated to contain this spatiotemporal process, the

amplitude modulation induced by the artefacts within these

sessions is large enough to be significant even at the group level.

Multisubject FMRI data

The primary activation map for the multisubject motor

activation study is shown in Fig. 13. The estimated spatial map

shows somatosensory cortex and bilateral primary and secondary

motor cortex. Though both left and right motor cortex are shown

to activate, the contralateral side shows larger amplitude

modulation. The associated time course is shown together with

the best fit with a three-level general linear model, where

dactivationsT during index finger movement (I), sequential finger

movement (S), and random finger movement (R) are separate

explanatory variables. The corresponding regression parameters

are 0.72 (I), 2.03 (S), and 2.37 (R), suggesting an increase in

activation levels I b S b R consistent with results obtained from a

GLM analysis of the data (for details, see Johansen-Berg et al.,

2002). The final model fit correlates with the estimated data time

course at r N 0.75.
Discussion

We have presented an iterative rank-1 tensor PICA decom-

position for the analysis of single-group FMRI data. The method

was derived from the three-way PARAFAC model by adding
additional maximum non-Gaussianity constraints to the estimated

spatial maps. The result of this constraint for estimates in the

spatial domain is that the tensor PICA approach no longer treats all

modes of variation as equal. This is an important aspect of the

tensor PICA model, since in FMRI there are substantially different

numbers of observations available in different domains, that is, a

typical FMRI group study involves 10–30 subjects, with 50–300

volumes and 25,000–45,000 intracranial voxels (after coregistra-

tion into a common space). The tensor PICA approach, unlike

PARAFAC, places stronger statistical constraints on the spatial

domain where plentiful data are available.

The approach differs from existing group ICA methodology

(Calhoun et al., 2001; Leibovici and Beckmann, 2001; Lukic et al.,

2002; Svensén et al., 2002) in that it does not simply concatenate

the data in space or time in order to perform a single two-

dimensional ICA decomposition followed by some meta-analysis

to estimate the variation between subjects. Instead, the tensor PICA

approach directly estimates separate modes in the three domains by

iterating between estimating a two-dimensional PICA model on the

data concatenated in time and a rank-1 decomposition of the

resulting estimate of the unmixing matrix Mc. Due to the iterative

nature, the three-dimensional nature of the data is represented

within the estimation stage. This eliminates the need for heuristic

postprocessing of a set of time courses (or a set of spatial maps) in

order to express variation across subjects. The technique is fully

automated, including the estimation of the model order R.

In this paper, we have concentrated on the case of a single

group. The methodology can, however, be extended to higher

dimensions: under the model of Eq. (1) where we assume the

existence of a single group, there is only one single nonzero

Eigenvalue for each matrix Mr
c and a rank-1 approximation is

appropriate. In practical applications with finite observations and in

the presence of noise, the matrices Mr
c will be of full rank. If a

sufficient number of observations in the session/subject domain is

available, we can apply model order selection techniques and

estimate the number of time courses that combine to represent the

temporal characteristics of the sources. In the case of two groups

with similar spatial signal but sufficiently different temporal

characteristics, a rank-2 approximation to each matrix Mr
c will

then result in a four-way decomposition of the data. The typically

small number of observations in the session/subject domain,

however, makes estimation of the model order from the data very

difficult. It is possible, however, to impose the number of different

time courses that are used to represent the temporal characteristics

of all sessions/subjects/groups, for example, one can use a rank-2

approximation to Mr
c in order to estimate different temporal

responses from two different subgroups in the population.

For the generative model of Eq. (1) we have demonstrated, on a

set of artificial group data sets, that tensor PICA can successfully

estimate multiple processes in the spatial, temporal, and subject/

session domain. Compared to a PARAFAC decomposition, the

tensor PICA estimation shows significant improvements in the

form of: (i) an increased accuracy for primary dactivationT maps,

(ii) reduced cross-talk between the different estimated spatial maps,

and (iii) an increased robustness against deviation from the model

assumptions and against estimating the model order R incorrectly.

All of these improvements are a direct consequence of the

optimization for maximally non-Gaussian spatial source distribu-

tions. Typical FMRI dactivationT is sparse in the spatial domain and

the estimated linear regression coefficients (spatial maps) will

contain only a few dsignificantly largeT values embedded in random
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Gaussian distributed dbackground noiseT. An optimization for non-

Gaussianity of estimated spatial maps optimizes for the largest

possible separation of the first set of regression coefficients

(dactivationT) from all other remaining coefficients (dbackgroundT).
Unlike the sum-of-squares error function associated with

the PARAFAC model, the error function associated with an

optimization for maximum non-Gaussianity does not improve

from dsplittingT components or having multiple components that

dexplainT the same signals. In particular, an optimization for jointly

maximal non-Gaussian spatial maps implies a minimization of

statistical dependence and cross-talk in the spatial domain (see

Hyvärinen and Oja, 1997 for a clear account of the relation between

statistical independence and non-Gaussianity).

As an additional benefit over PARAFAC, the tensor PICA

decompositions each required significantly less computation

(between 1/10 and 1/100 times the number of floating point

operations) compared to PARAFAC in order to converge to a

solution11. Again, this is a consequence of the fact that the cost

function in a tensor PICA decomposition is more sensitive to the

particular signal characteristics in the spatial domain. As a result,

the number of iterations until convergence is much reduced (the

number of floating-point operations per iteration is actually greater

when using tensor PICA as opposed to PARAFAC).

Using real FMRI data we have demonstrated that tensor PICA

can extract plausible spatial maps and time courses. The main

activation pattern of the multisession decomposition identified

cortical regions that correspond to what has been reported in

McGonigle et al. (2000). Furthermore, the tensor PICA decom-

position gives a rich description of additional processes in the data.

For example, the tensor PICA decomposition separated negative

(de)activation into different plausible spatial maps with associated

time courses and variation across sessions. The final decomposi-

tion does suggest that there are at least two distinct processes that

contribute to the negative Z-scores: plausible ipsilateral deactiva-

tion in the primary motor cortex consistent across sessions and

deactivation in the superior occipital lobule that only appears in a

few sessions, possibly due to visual fixation. In addition, the tensor

PICA decomposition identified nuisance effects like artefactual RF

signal components or stimulus-correlated motion at the group

level.

We believe that the tensor PICA approach can provide simple and

useful representations of multisubject/multisession FMRI data that

can aid the interpretation and optimization of group FMRI studies.
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