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Abstract

A new methodology is introduced for comparing the structures of several contingency tables.
The latter, built up from di6erent samples or populations, present the same rows and di6erent
columns (or vice versa). This methodology combines some aspects of principal axes methods
(global maximum dispersion axes), canonical correlation techniques (canonical dispersion axes)
and Procrustes analysis (superimposed representations) but takes into account the particularities
of contingency tables in order to extend correspondence analysis to multiple contingency tables.
Two main problems arise: the di6erences between the margins of the common dimension and the
need for balancing the in9uence of the di6erent tables in global processing. A study of the four
structures induced on Spanish regions by mortality causes (by gender) and by age distribution
(by gender), in conjunction, will illustrate the methodology.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The methodology presented here is for comparing the structures of several contin-
gency tables with the same rows and di6erent columns (or vice versa), generally built
up from di6erent samples or populations. By structure of a table, we mean the relation-
ship between the rows and the columns as expressed in correspondence analysis (CA)
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through graphical displays (Benz,ecri, 1973; EscoFer and Pag3es, 1988–1998; Gower and
Hand, 1996; Greenacre, 1984; Lebart et al., 1984; Lebart et al., 1998). The comparison
has to deal with both rows and columns, that is to say, the structure induced by the
rows over the di6erent sets of columns, and also the structure induced over the rows
by the di6erent sets of columns.

If we adopt a CA-like approach, several methods are available for analysing a set
of contingency tables. However, most of them deal with three-way contingency tables
(Carlier and Ewing, 1992; Carlier and Kroonenberg, 1996, 1998; Kiers, 1989) and thus
are not applicable to the case in which the columns are not the same throughout the
tables.

The CA of all the tables juxtaposed row wise (Benz,ecri, 1982; Cazes, 1980;
VanderHeijden, 1987) allows a comparison, in a single framework, of the di6erent
sets of columns but not of the rows, described only by the columns as a whole. Fur-
thermore, when the tables have no proportional column margins, CA does not actually
compare the internal structures of the tables, because of the di6erent centroids.

Benz,ecri (1983) and EscoFer and Drouet (1983) proposed a generalisation of CA,
itself generalised by Cazes and Moreau (1991, 2000) which they called internal corre-
spondence analysis (ICA) and which solves the problem by centring the subtables on
their own margins. However, this method only represents the rows from a global point
of view, that is to say the set of tables as a whole.

The methods based on canonical correlation analysis tackle a similar problem that
should be solved, when dealing with di6erent groups of variables observed in one set
of individuals. A common structure is highlighted through a set of correlated canonical
variables, one per group, which is a linear combination of the variables of its group. The
canonical correlation technique (Hotelling, 1936), concerned with only two groups of
variables, has been generalised to various groups from di6erent points of view: Horst’s
generalised canonical correlation analysis (Horst, 1961), Carroll’s generalised canonical
correlation analysis (Carroll, 1968), STATIS (EscouFer, 1985; Lavit, 1988), multiple
factor analysis (MFA) (EscoFer and Pag3es, 1988–1998, 1994), PLS path modelling
(LohmKoller, 1989) and GPCA (Casin, 2001). Along similar lines, generalised Procrustes
analysis (GPA, Gower (1975, 1984)) deals with the comparison of systems of distances
between individuals as induced by various groups of variables using superimposed
representations of the individuals as described by each group.

We adopt the point of view of MFA (EscoFer and Pag3es, 1988–1998, 1994; Pag3es
and Tenenhaus, 2001; Pag3es and Husson, 2001), which combines the principal com-
ponent analysis approach (global maximum dispersion axes), the canonical correlation
analysis approach (canonical dispersion axes)—in such a way that the canonical vari-
ables take into account the correlation structure of the group that they summarise—and
the Procrustes methods characteristics (superimposed representations) in order to in-
troduce an extension of correspondence analysis combined with MFA characteristics
and thus compare several contingency tables. For a comparison between MFA and
Caroll’s generalised canonical correlation analysis, see EscoFer and Pag3es (1988–1998,
pp. 162–164), EscoFer and Pag3es (1994) and Pag3es and Tenenhaus (2001). After the
notation is introduced (Section 2), we brie9y recall some CA properties (Section 3)
and present the methodology that we call MFA for contingency tables or MFACT
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(Section 4). The properties of MFACT are developed (Section 5) and an application
is presented (Section 6).

2. Notation

2.1. A single contingency table X

Let us consider a two-way contingency table X of order I × J . Its general term fij

is the relative frequency or proportion with which row i (i=1; : : : ; I) is associated with
column j (j = 1; : : : ; J ) such that

∑
ij fij = 1. We denote the ith row margin term as

fi: =
∑

j fij. DI is the diagonal matrix with general term fi:. The column margin is
f:j =

∑
i fij (j = 1; : : : ; J ), and DJ is the diagonal matrix with general term f:j.

When inspecting a contingency table, data are considered through conditional propor-
tions, usually called pro8les. The row-i proFle is {fij=fi:; j=1; : : : ; J} and the column-j
proFle is {fij=f:j; i = 1; : : : ; I}. The mean row proFle, as calculated by weighting the
rows using their margin sum fi:, is {f:j; j=1; : : : ; J}. Symmetrically, the mean column
proFle is {fi:; i = 1; : : : ; I}.

2.2. Juxtaposed contingency tables

T tables X1; : : : ; Xt ; : : : ; XT , are juxtaposed into a two-way table (Fig. 1). Columns
are not the same throughout the tables. Table XG is this “global” table, of dimen-
sion I × J , and (sub)table Xt , of dimension I × Jt , the tth (sub)table. We denote
fijt the relative frequency or proportion, in table t (t = 1; : : : ; T ), with which row
i (=category i; i = 1; : : : ; I) is associated with column j (=category j; j = 1; : : : ; Jt ;

⋃
t

Jt = J ).
∑

ijt fijt = 1.

column-
margin

1 J1 1 JT
row-
margin 1 Jt

row-
margin

1

i

I

fijt fi.. f ijt fi.t

f .jt f.jt f..t

1 Jt

column-
margin

Fig. 1. Multiple contingency table: notations. T contingency tables, having the same rows, are juxtaposed.
On the left, the global table and margins. On the right, the table t and margins. In the example, Section 6,
T = 4; I = 17; J1 = 14; J2 = 14; J3 = 7; J4 = 7.



484 M. B-ecue-Bertaut, J. Pag
es / Computational Statistics & Data Analysis 45 (2004) 481–503

We denote the row margin of table XG as fi:: =
∑

jt fijt . The column margin of
table XG is f:jt =

∑
i fijt . The row margin of table t, as a subtable of table XG, is

fi:t =
∑

j fijt , and the sum of the terms of table t inside table XG is f::t =
∑

ij fijt .

3. Correspondence analysis concepts

In the following sections, we look at the main concepts and properties of classical
CA and the wide-ranging possibilities opened up by its generalisation to models other
than the independence model.

3.1. Correspondence analysis

Here we summarise classical CA, that is to say the variant of CA that leads to
superimposed displays of approximations to 
2 distance between rows and between
columns. Other variants of CA are presented and compared with the classical one
in IsraKels (1987) and Gower and Hand (1996). For non-symmetric correspondence
analysis (NSCA), in which the variables do not play a symmetric role, see D’Ambra
and Lauro (1989).

3.1.1. Geometric approach and 
2 distance
Correspondence analysis is concerned with two-way contingency tables through a

geometric approach to the set of the rows (and symmetrically, to the set of columns).
For a detailed presentation and proofs, see Benz,ecri (1973), EscoFer and Pag3es
(1988–1998), Greenacre (1984), Gower and Hand (1996), Lebart et al. (1984, 1998),
Nishisato (1980).

Each row i of matrix X , of order I × J , is considered as a point in RJ (without any
loss of generality, we can assume J ¡ I) with coordinates {fij=fi:; j = 1; : : : ; J} and
weight {fi:; i=1; : : : ; I}; the centroid of the rows set is the point {f:j; j=1; : : : ; J}. The
proximities between rows are measured using the 
2 distance. So, the square distance
between rows i and l is

d2(i; l) =
∑
j∈J

1
f:j

(
fij

fi:
− flj

fl:

)2

:

Symmetrically, each column j is considered as a point in RI , the coordinates of the
columns and the distances between columns are obtained by exchanging the role of
the index i and j in the former paragraph.

Consistently with the geometric approach, the dispersion of the set of rows (and sym-
metrically, of the set of columns) around its centroid is measured through the inertia,
also called, in a statistical context, Pearson’s mean square contingency coeScient:

�2 =
∑
i

fi:d2(i; Centroid) =
∑
j

f:jd2(j; Centroid) =

2

n

being n the total e6ective of the counted up units.
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CA inspects the dispersion structures of both rows and columns sets, that is to say
the distances between row proFles as a whole (and symmetrically, between columns
proFles), or equivalently, the distances between each proFle and the mean proFle.
Consequently, CA describes the discrepancy from the independence model, mainly by
displaying approximations to the distances between rows (and symmetrically, between
columns) on the axes of maximum dispersion, also called principal axes.

3.1.2. CA as a particular PCA
The principal axes search can be obtained by performing a principal component

analysis (PCA) on the table Y whose general term is the residual with respect to the
independence model (weighted by the inverse of the cross product of the row and
column marginal sums):

yij =
fij − fi: · f:j

fi: · f:j
:

This PCA uses the diagonal matrix DI as row weights and metric in the column space
and the diagonal matrix DJ as column weights and metric in the row space (EscoFer
and Pag3es, 1988–1998, pp. 95–97).

By applying the usual formulae of PCA, the formulae and properties of CA are
easily deduced. We recall some of them below.

3.1.3. Principal coordinates of rows and columns
In the row space, the inertia axis with rank s corresponds to the eigenvectors

us; (‖us‖DJ = 1) of the matrix Y ′DIYDJ , associated with the eigenvalues �s (in
decreasing order). In the column space, the inertia axis with rank s corresponds to the
eigenvectors vs; (‖vs‖DI = 1) of the matrix YDJY ′DI , associated with the same eigen-
values �s (in decreasing order). The vectors of the row scores are Fs = YDJus =

√
�svs

and the vectors of column scores are GS = Y ′DIvs =
√
�sus. These scores, or principal

coordinates (Greenacre, 1984), lead to both sets of distances (those between rows and
those between columns) corresponding to the 
2 distances deFned above. In the fol-
lowing, we denote the vector of the principal coordinates on axis s either of the rows
(denoted by Fs) or of the columns (denoted by Gs) as the principal component with
rank s, in accordance with our PCA-like approach to correspondence analysis.

The same result is obtained by performing the generalised SVD of matrix Y in the
metrics mentioned above:

Y = V"1=2U ′

with V ′DIV = Id; U ′DJU = Id, where Id is the unity matrix.
The general term of the diagonal matrix "1=2 is

√
�s; the columns of V are the

vectors vs and the columns of U are the vectors us as deFned above.
With this notation, the score matrices for the rows and for the columns are, respec-

tively, F = V"1=2 and G = U"1=2.

3.1.4. Transition formulae and supplementary elements
Eqs. (1) (usually known as transition formulae but also as quasi-barycentric coor-

dinates) allow the transition from the set of row coordinates to the set of column
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coordinates (and vice-versa).

Fs(i) =
1√
�s

∑
j

fij

fi:
· Gs(j); Gs(j) =

1√
�s

∑
i

fij

f:j
· Fs(i): (1)

An important application of the transition formulae is that of projecting new (supple-
mentary) rows or columns on CA displays.

3.1.5. Data reconstitution
Matrices Y and X can be reconstituted from coordinates and eigenvalues:

fij − fi: · f:j

fi: · f:j
=
∑
s

Fs(i)Gs(j)√
�s

;

Y =
∑
s

1√
�s

FsG′
s =
∑
s

√
�svsu′

s; (2)

xij
n

= fij = fi: · f:j

(
1 +

∑
s

Fs(i)Gs(j)√
�s

)
;

X
n

= DI

(
1IJ +

∑
s

FsG′
s√

�s

)
DJ (3)

being 1IJ the matrix I × J Flled with 1.

3.1.6. CA as a minimisation problem
The restriction of formula (2) to its Frst S terms corresponds to an approximation

of Y by a matrix with rank S, through a weighted least squares criterion, giving the
cell i; j the weight fi:f:j (EscoFer and Pag3es, 1988–1998, pp. 104–106). The squared
norm of the di6erence between Y and its rank S approximation is equal to the sum of
the eigenvalues with rank superior to S.

3.2. CA relative to a general model with imposed metrics

EscoFer (1983, 1984) (see also Van der Heijden et al., 1989) introduces a general-
isation of CA to any model M in any diagonal metrics P (whose general term is pi)
and Q (whose general term is qj). The general term mij of M is the expected value
of fij under the model considered.

Performing the CA of X with respect to the model M in metrics P and Q is
equivalent to performing a PCA, in metrics P and Q, on the matrix whose general
term is

fij − mij

piqj
:

This generalisation leads to a large range of applications allowing residuals with respect
to very varied models to be decomposed, while retaining CA properties. SpeciFcally,
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Van der Heijden et al. (1989) show how generalised CA can be seen as a 9exible tech-
nique to decompose residuals from very diverse log-linear models and allow to analyse
the di6erences between two log-linear models. They propose a combine approach us-
ing both CA and log-linear analysis (LLA), as complementary methods. Firstly, LLA
detects relationship between variables by the way of signiFcant interactions. Secondly,
generalised CA is applied either to explore the residuals of the chosen model, or to
visualise interactions intentionally not included in the model so as to make easier their
interpretation in case of large multiway contingency tables.

4. MFA for contingency tables (MFACT)

We aim to extend CA to a set of contingency tables in such a way that:

• As in MFA, the dispersion structures common to all the tables are highlighted by
means of global and canonical axes; the global axes correspond to directions of
maximum inertia of the global table and the canonical axes correspond, as far as
possible, to directions of subtables both of high variance and highly related to global
axes (Pag3es and Tenenhaus, 2001).

• As in CA, the structure of each subtable corresponds to the discrepancy of the
independence model as given by its own margins.

• As in CA, the metrics and weights are induced by the row and column margins.

These considerations determine the model with which the global table has to be com-
pared, and the metrics/weights for the rows and the columns.

4.1. Intra-tables independence model

When performing extended CA on the global table, the model must juxtapose the
models used in the separate CA, that is to say the intra-tables independence model M
of order I × J whose general term is

mijt =
(
fi:t

f::t

)
·
(
f:jt

f::t

)
:

4.2. Metrics in row and column spaces

4.2.1. Row weights (and metric in column space)
The row weights (and metric DIT in column space) are the row margins as calculated

for the whole table {fi::; i = 1; : : : ; I}, which are also the mean of the row weights in
the separate CA, weighted by the subtable counts. The di6erences between the row
margins of the di6erent tables induces a diSculty since each row has not the same
weight in the separate CA of each table. The choice of fi::, as the weight for row i, is
a compromise which leads to several good properties described in the following. An
other method for the simultaneous analysis of several contingency tables has recently
been proposed (Zarraga and Goitisolo, 2001) which solves this diSculty in another
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way. The data are transformed so as to take into account, in each table t, weights and
metrics of the separate CA of table t (in others words, the row weights are “included”
in the coordinates). Thus, in this approach, the global analysis of the juxtaposed tables
is “closer” from separate analysis than MFACT is. Nevertheless, this good feature
induces the loss of some important properties: e.g. the representation of the set of
rows is not centred. Furthermore, the weight of the rows being di6erent from one
table to another, the introduction of supplementary variables is problematic. Due to
the importance of supplementary variables, the interest of a unique set of row weights
(necessarily a compromise) is obvious.

4.2.2. Column weights (and metric in row space)
The column weights have to be chosen in such a way that the in9uence of each

column group could be comparable in a global analysis, and so enhance the links
between the tables. We must avoid that a single table t could contribute on its own
to the construction of the Frst axis; nothing can be required for further axes because a
multidimensional table will always in9uence more axes than a unidimensional one. In
the case of contingency tables, the predominant role of table t can have two origins:

• a strong structure of table t, that is to say a strong relationship between rows and
columns, which leads to high eigenvalues;

• a high global proportion (f::t), which could be due, for example, to a high sample
size, which would lead to high weights for its columns.

In a general study, these two elements are of major importance, but they must be
removed in a global analysis.

To balance the in9uence of the subtables, we choose, as in MFA, to standardise to
1 the highest axial inertia of each subtable. Therefore, the weight of the jth column
belonging to set t is the margin sum f:jt , divided by �t1, the Frst eigenvalue of CA
performed or subtable t, but in metrics DIT (instead of DI , because of the need for a
common weight for the rows) and DJt , restriction of DJ to Jt .

So, the metric in the row space is the diagonal matrix DJT whose general term is
f:jt=�t1. This over weighting of columns by 1=�t1 has several properties (EscoFer and
Pag3es, 1988–1998, p. 151, pp. 157–158); in particular, the intra-tables structures are
not modiFed and, except for very special cases, the Frst axis of the global analysis
cannot be generated by a single table.

4.3. MFACT as a weighted PCA of the global table

MFA for contingency tables consists of PCA in metrics DIT and DJT of table Z whose
general term is the weighted residual with respect to the intra-tables independence
model:

fijt − (fi:t=f::t) · f:jt

fi::f:jt
=

1
fi::

[
fijt

f:jt
− fi:t

f::t

]
: (4)

Note that Z is divided into T subtables, Zt .
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It is easy to verify that the weighted rows are centred, the weighted columns are
centred and the weighted columns of each set t are also centred.

The subtables Zt di6er slightly from the subtables Yt (Section 3.1.2) as they would
have been built up to perform the separate CA on each table. In both cases, the general
term is the residual with respect to the independence model, but weighted di6erently.
In fact, the need for a common weight for the same row through all the subtables
leads us to compare not the tables Yt but the tables Zt . The distortion inherent in the
substitution of Yt by Zt , which is small if the row margins di6er only slightly through
the subtables, results from the necessary compromise in order to compare contingency
tables with di6erent margins. In what follows, we use the term “separate analysis” of
table t to refer to that based on table Zt .

4.3.1. Global principal components
From this PCA, also called global analysis, the global principal components are

obtained in the usual way for columns and rows, Fs and Gs respectively; s = 1; : : : ;
min(I − 1; J − 1).

4.3.2. Canonical components
Fs can be written as

Fs =
1
�s

∑
t

ZtDJt Z
′
t DIT Fs:

In MFACT, the canonical components, associated with the global principal components
Fs in each group t, are deFned in the following way:

Fs =
∑
t

Ft
s ;

Ft
s =

1
�s

ZtDJtZ
′
t DIT Fs: (5)

4.3.3. Data reconstitution
The classical PCA formulae lead to the following decomposition expressions:

Z =
∑
s

1√
�s

FsG′
s =
∑
s

√
�svsu′

s;

fijt =
(
fi:t

f::t

)
· f:jt + fi:: · f:jt

(∑
s

Fs(i)Gs(j; t)√
�s

)
: (6)

4.3.4. MFACT as a minimisation problem
The restriction of formula (6) to its Frst S terms corresponds to an approximation

of Z by a matrix with rank S, through a weighted least-squares criterion, giving to
the cell i; j; t the weight fi::f:jt=�t1. As in CA, this property follows from a general
PCA property (EscoFer and Pag3es, 1988–1998, pp. 104–106). The squared norm of
the di6erence between Z and its rank S approximation is equal to the sum of the
eigenvalues with rank superior to S.
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5. Properties of MFACT

5.1. Distances between rows and between columns

5.1.1. Distances between rows
The squared distance between rows i and l, calculated from coordinates given in (4)

using the weight f:jt=�t1 for the column j of set t, is

d2(i; l) =


∑

t

1
�t1

∑
j∈Jt

(
fijt

fi::
− fljt

fl::

)2

· 1
f:jt




−
[∑

t

1
�t1 · f::t

(
fi:t

fi::
− fl:t

fl::

)2
]
: (7)

In expression (7), disregarding weighting by the reverse of the Frst eigenvalue:

• the Frst term corresponds to the distance (between proFles i and l) in the CA of
the juxtaposed tables;

• the second term corresponds to the distance (between proFles i and l) in the CA of
the table containing the sums by row and by subtable. The general term i:t in this
table is the sum of row i in table t. We see here how this last table is neutralized
by recentring each subtable on its own margins.

5.1.2. Proximities between columns
The squared distance between column j (belonging to table t) and column k (be-

longing to table r), calculated from coordinates given in (4), is

d2(j∈ t; k ∈ r) =
∑
i

1
fi::

[(
fijt

f:jt
− fi:t

f::t

)
−
(
fikr

f:kr
− fi:r

f::r

)]2

; (8)

d2(j∈ t; k ∈ r) =
∑
i

1
fi::

[(
fijt

f:jt
− fikr

f:kr

)
−
(
fi:t

f::t
− fi:r

f::r

)]2

: (9)

The proximities between columns can be interpreted as a similar association with rows.
Case 1: the columns belong to the same table (t = r).
The proximity between two columns is interpreted in terms of the similarity between

proFles, exactly as in the usual CA.
Case 2: the columns belong to di=erent tables (t 
= r).
The column proFles are relativised by the average proFles, as shown in the two

expressions of the squared distance. Expression (8) shows that the proFle of a column
intervenes by its deviation from the mean proFle of the corresponding table. Expression
(9) shows how the di6erences between column proFles are relativised by the di6erences
between mean proFles.
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5.2. Global representation of rows and columns

The PCA performed in Section 4.3 provides a representation of the rows and of
the columns that must be analysed together. Moreover, these representations can be
superimposed in a biplot, as in correspondence analysis. This is the consequence of
the transition formulae which relate coordinates of rows and of columns, as examined
hereafter.

5.2.1. Transition formulae and interpretation rules
Rows among columns: The relation giving (along the s-axis) the coordinate Fs(i) of

row i from the coordinates {Gs(j; t); j = 1; : : : ; Jt ; t = 1; : : : ; T} of columns is

Fs(i) =
1√
�s

∑
t

∑
j∈Jt

f:jt

�t1

[
1
fi::

[
fijt

f:jt
− fi:t

f::t

]]
Gs(j; t):

The centroid of the column proFles belonging to Jt being 0 (see Section 4.3), we have∑
i∈Jt

f:jtGs(j; t) = 0:

Using this property, the transition formula can be written as follows

Fs(i) =
1√
�s

∑
t

1
�t1

fi:t

fi::


∑

j∈Jt

fijt

fi:t
Gs(j; t)


 : (10)

Except for a constant, each row lies in the centroid of the columns associated with
this row.

Globally, a row is attracted by the columns with which it is associated.
Columns among rows: The expression (along the s-axis) for the coordinate Gs(j; t)

of column j; t from the coordinates {Fs(i); i = 1; : : : ; I} of rows is

Gs(j; t) =
1√
�s

[∑
i

(
fijt

f:jt
− fi:t

f::t

)
Fs(i)

]
: (11)

As the coeScient of Fs(i) can be negative, the columns are not in the centroid of the
rows, except when the row weights are the same in all the tables.

This coeScient measures the discrepancy between the proFle of columns j; t and the
column margin of table t. A column is attracted (or repelled) by the rows that are
more (or less) associated with it than if there were independence between rows and
columns in table t.

5.3. Superimposed representations of rows through canonical components

In order to compare the structures of the rows induced by the di6erent tables, it is
possible to use the canonical components Ft

s , as given by (5), to obtain a superimposed
representation of these structures, called partial structures.

In practice, the canonical components of the rows, also called partial components, can
be calculated very easily. Therefore, the rows of the separate tables t are completed by
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zeroes, in such a way that they have the same number of columns as the global table,
and projected, as supplementary rows, on the global axes. In this way, we superimpose
the representations of the rows associated with each table t (called partial rows) and
the representation associated with the global table XG (called global or mean rows).

The superimposed representation beneFts from CA properties. In particular, these par-
tial representations can be related to column representation by means of a “restricted”
transition formula:

Ft
s(i) =

1√
�s

· fi:t

fi::


∑

j∈Jt

fijt

fi:t
· Gs(j; t)

�t1


 : (12)

This expression is derived from (10) restricted to the columns of table t.
In the graph superimposing partial representations, these partial representations are

dilated by the coeScient T (number of tables). Thus, a (mean) row point is located
in the centroid of the corresponding partial row points.

5.4. Representation of the separate principal axis on the global axis

The separate principal components, that is to say the principal components calculated
in separate CA but in metrics DIT and DJ , can be represented on the global axis by
way of their correlations with the Frst two global principal components.

6. Application

Within the framework of a study requested by an insurance company, a Frst objective
is to summarise and visualise the geographical distribution of the mortality causes
among the autonomous regions of Spain in reference to the age structure variability,
distinguishing by gender. It is also wished to link the mortality causes variability with
social, economic and health indicators.

Spain is divided into 19 autonomous regions showing a great diversity in climatic,
geographic and socioeconomic conditions, as well as dietetic habits.

The inequality of the regions faced with mortality is nowadays discussed from recent
epidemiologic studies (Benach and Yasui, 1999; Benach et al., 2001b; Borrell and
Pasarin, 1999), incipient domain in Spain. In particular, Benach et al. (2001a) build
up an “Atlas of mortality in small areas in Spain (1987–1995)” from the standardised
mortality ratios, speciFcally the global ratio concerning all the causes of mortality,
and also the ratios concerning the ten principal mortality causes, di6erent for men and
women. These studies tackle the mortality causes one by one, looking for the associated
risk factors very precisely.

Although the work is done at small area level, the authors notice that it makes
sense to aggregate the results and summarise them at the region level and assess that
the mortality risk is signiFcantly great in South of Spain, as compared with North.
Isolated northern areas of high mortality, as Galicia or Asturias are pointed out. To try
to explain the di6erences between regions, these researchers emit the hypothesis of a
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Table 1
Mortality causes as classiFed in the ICD

Cause Description ICD codes

1 Infectious and parasitic diseases (001–139)
2 Neoplasms (140–239)
3 Endocrine, nutritional and metabolic diseases, immunity disorders (240–279)
4 Diseases of the blood and blood-forming organs (280–289)
5 Mental disorders (290–319)
6 Diseases of the nervous system and sense organs (320–389)
7 Diseases of the circulatory system (390–459)
8 Diseases of the respiratory system (460–519)
9 Diseases of the digestive system (520–579)

10 Diseases of the genitourinary system (580–629)
11 Complications of pregnancy, childbirth, and the puerperium (630–676)
12 Diseases of the skin and subcutaneous tissue (680–709)
13 Diseases of the musculoskeletal system and connective tissue (710–739)
14 Congenital anomalies (740–759)
15 Certain conditions originating in the perinatal period (760–779)
16 Symptoms, signs, and ill-deFned conditions (780–799)
17 Injury and poisoning (800–999)

combination of social, work conditions and environment factors. SpeciFcally, they note
that increasing deprivation is associated with mortality risk, di6erently by both cause
and gender.

Our approach is very di6erent as it does not tackle the over mortality at all, but
only the mortality distribution among the regions in order to highlight, for each region,
the predominant causes and, for each cause, regions having high proportions among
its own deaths. Our aim is an exploratory one, mainly to obtain a good description of
the mortality causes proFles by region in reference to age structure.

6.1. Data

The most recent complete data, as compiled by Statistical OSce of Spain (INE:
Instituto Nacional de Estad,istica), correspond to year 1995. Only individuals over
20 are taken into account. Ceuta and Melilla, very small Spanish regions situated
in North-Africa coast, are not considered.
Mortality data: the death counts are classiFed by cause, gender and main region

of residence. The mortality causes are classiFed using the international classiFcation
of diseases (ICD). Here we use the more general level including 17 causes (Table
1). We neglect causes 14 (congenital anomalies) and 15 (certain conditions origi-
nating in the perinatal period) almost including children (given that we are study-
ing only adult mortality), and also cause 11 (complications of pregnancy, childbirth,
and the puerperum), which is very seldom (fewer than three cases per region are
observed).
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Table 2

2 and eigenvalues of the four separate correspondence analyses

Male mortality Female mortality male age structure Fem. age structure


2 1484.6 1858.9 99473.2 106990.0
�1 0.0038 (31%) 0.0058 (39%) 0.0058 (81%) 0.0059 (82%)
�2 0.0026 (21%) 0.0026 (18%) 0.0010 (14%) 0.0010 (14%)

Table 3
Correlations between principal components derived from the four separate correspondence analyses

Fem. mortality Axis 1 −0:26 −0:57
Axis 2 −0:82 0.46

Male age struct. Axis 1 −0:87 0.18 −0:09 0:80
Axis 2 0.29 0.28 −0:83 −0:10

Fem. age struct. Axis 1 −0:85 0.21 −0:13 0:81 0:99 0.10
Axis 2 −0:38 −0:36 0:86 0.14 0.09 −0:97

Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2
Male mortality Fem. mortality Male age struct.

The mortality data lead to two contingency tables, one for each gender. The row-
classiFcation variable is the region and the column-classiFcation is the mortality cause.
Age structure data: we also know the distribution of the residents by age (seven

categories: in 10 years intervals from 20 to 79, and 80 and over), gender and region.
The counts are oScial estimates, calculated by projection since the previous census
performed in 1991. The age data lead to two contingency tables, one for men and
another for women. In each table, the row-classiFcation variable is the region and the
column-classiFcation variable is the age interval.
Supplementary information: we also have information measuring economic and so-

cial development for the regions.
Finally, the overall table has 17 rows (regions) and (14 + 14 + 7 + 7) columns

(mortality causes and age intervals, by gender).

6.2. Results

6.2.1. Results from separate analysis
The structure of regions as induced by the age distribution, for men and women

separately, is two dimensional (Table 2), with a very dominant Frst dispersion axis.
Male and female structures are almost identical as highlighted by the high correlations
(0:99; −0:97) between their Frst two axes (having the same rank) (Table 3).

The structure of regions as induced by the mortality causes is more complex (Fve
and four dispersion axes for men and women, respectively) although in both cases
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Table 4
Decomposition by group of the inertia of the Fve Frst principal components

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5

Eigenvalue 3.23 1.82 0.94 0.68 0.47
Groups

Male mortality 0.90 0.56 0.57 0.31 0.33
(27.8%) (30.8%) (60.4%) (45.9%) (71.4%)

Female mortality 0.40 0.98 0.34 0.32 0.11
(12.4%) (54.1%) (36.3%) (47.9%) (22.7%)

Male ages 0.97 0.13 0.02 0.03 0.02
(30.0%) (7.1%) (2%) (3.5%) (3.8%)

Female ages 0.96 0.15 0.01 0.02 0.01
(29.9%) (7.9%) (1.3%) (2.7%) (2.2%)

the Frst two axes clearly retain the largest part of the dispersion (52% and 56:7%)
(Table 2). According to the di6erence between these sequences of eigenvalues, the
whole mortality causes variability cannot be explained by age distribution variability.
Furthermore, male and female structures present common elements but their comparison
is diScult because the same rank axes do not coincide (see Table 3).

6.2.2. Results from global analysis
The sequence of eigenvalues suggests Fve interpretable axes, with two main direc-

tions (see Table 4).
For a given global axis, the amount of inertia due to the set of columns in a group

(Table 4) is a measurement of the importance of this direction in this group. In this
case, the Frst two principal axes are common to all mortality causes and age groups,
although the second one is a dispersion direction of major importance only in mortality
causes groups. Axes with rank 3 or higher are speciFc to mortality groups.

This result is essential as it already shows that a part of the variability of mortality
causes follows a regional pattern similar to the age structure; the other part is clearly
not linked to age (mainly with reference to the principal axes with rank higher than
two).

The columns of the two mortality causes groups have an explained variance equal to
45:2% and 54:1% for men and women, respectively, on the Frst principal plane. The
comparison with those obtained in the separate analysis (respectively, 52% and 57%,
see Table 2) shows that the visualisation of all the groups in a same reference space
is obtained with only a low loss in explained variance.

6.2.3. Structures displayed on the 8rst principal plane
As in classical CA, the displays of the rows and of the columns (Figs. 3 and 4) can

be superposed and must be interpreted in conjunction.
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First axis: The Frst axis sorts the age intervals into their natural order. It opposes
regions where young adults are in excess (“young regions”: Canary Islands, Andalusia,
Madrid) with regions where there are more elderly people than in the whole Spain
(“old regions”: Asturias, Aragon, Castile-Leon). For a given age, men and women
have a similar distribution among the regions. The most important di6erence is relative
to the two older categories: the oldest age intervals for men better characterise the old
regions than the older age intervals for women.

On the other hand, this Frst axis opposes the most frequent mortality causes in the
“young regions” (causes 3 “endocrine disorders” and 9 “digestive system” for men
and women, causes 10 “genitourinary system” and 12 “skin diseases” for women
only) with the most frequent mortality causes in the “old regions” (causes 5 “mental
disorders”, 13 “musculoskeletal system” and 16 “ill-de8ned conditions” for men and
women, and cause 4 “blood diseases” for men only).

We would like to underline that the Frst principal component does not sort mortality
causes depending on their association with age. For example, causes 10 and 12 concern
elderly women but living in “young regions”. Cause 17 “Injury and poisoning”, most
linked to young people, lies in a central position on the graphic because this cause is
associated with regions which are very di6erent as to their age distribution.

The Frst principal axis re9ects features di6erent of the age structure. “Young regions”
retain (or attract) the young adults, that probably indicates a certain recent economic
dynamism.

As shown in the following, these regions can be more or less developed, depending
on their position on the second axis.
Second axis: The second axis opposes the regions with an excess of middle-aged

(40–59 years old) people (mainly: the Basque country, Catalonia, Madrid, Navarre
and Asturias) to the regions having a deFcit of these categories (mainly: Extremadura,
Andalusia and Castile-La Mancha).

This opposition goes hand in hand with the increase of certain causes in the Frst
group of regions (causes 2 “neoplasms”, 5 “mental disorders” and 6 “nervous system”
for men and women, causes 4 “blood diseases” and 17 “injury and poisoning” for
women, cause 3 “endocrine disorders” for men) and of other causes in the second
group of regions (cause 7 “circulatory system” for men and women, cause 12 “skin
diseases” for men, cause 3 “endocrine disorders” for women).

The second axis is linked to development and industrialisation variables, as shown by
the high correlation between this axis and various socioeconomic indicators
(Figs. 2–4). Female mortality variability is very linked this axis: thus, for women,
causes 3 (which includes diabetes) and 7 (circulatory systems) decrease with develop-
ment, and causes 17 (injury and poisoning), 2 (neoplasms) and other causes frequent
in elderly women increase.

In fact, the Frst bisector approximately re9ects the opposition “North-East/South-
West” commented by Benach and Yasui (1999) as a result concerning global mortality.

Third, fourth and 8fth axes: The following axes highlight more speciFc associations
between causes and regions such as, the high incidence of cause 8 (“respiratory system
diseases”) for men and women in Galicia, and the high incidence of the same cause
but only for men in Aragon and Asturias.
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UNEMPLOYMENT: percentage of
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Fig. 2. Representation of supplementary variables through their correlations with the Frst two global principal
components.

6.2.4. Superimposition of partial structures
In order to compare the structure of regions induced by mortality causes on one

hand and by age distribution on the other hand, MFACT provides a superimposed
representation of rows (see Section 5.3). Each region is represented by Fve points:
two points per gender (one for mortality causes and the other for age distribution)
and the global point, which is the centroid of the previous points (named partial
points) (Fig. 5).

For each region, along the Frst axis, the points representing male and female age
categories are very close to one another. This goes hand in hand with the fact that
the Frst axis opposes regions both from mortality causes and age structure points of
view. Some discrepancies can be observed from this global proximity between the four
points referring to one region being highlighted. For example, Murcia and Andalusia
are geographically close and also as regards to their age structure (partial points corre-
sponding to groups 3 and 4). However, these two regions di6er notably regarding the
structure of men’s mortality: only Andalusia is well characterised by male mortality
causes associated with “young regions”. Causes 3 “endocrine and immunity disorders”
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Fig. 3. Principal plan provided by MFACT: global representation of the regions.

and 9 “digestive system” sum up 11; 75% of deaths in Andalusia, only 10:07% in
Murcia (9:29% in all Spain).

At the opposite, Asturias is characterised by an excess of old men and women and by
mortality causes linked to “old regions”. This agreement exists between age structure
and mortality causes structure.

An other interest of this representation is that the proximities and/or oppositions
among the points representing the regions for only one given group can also be in-
terpreted. For example, Extremadura, as described by female mortality, lies in a very
extreme position on axis 2. In fact, causes 3 “endocrine and immunity disorders”,
7 “circulatory system” and 16 “ill-de8ned conditions” for women, strongly associated
with the less-developed regions, present a high frequency in this region: altogether they
represent 59% of female mortality, whereas only 52% in Spain. The extreme position
of this region is reinforced by the great deFcit in female mortality causes associated
with developed regions as causes 17 “injury and poisoning”, 5 “mental disorders” and
6 “nervous system”.

The high speciFcity of female mortality in Extremadura is highlighted because the
whole of the causes intervene in the analysis, which allows to detect their cumulate
e6ect, although each cause, taken one by one, can seem to have little importance. This
speciFcity, which can be found at a lower level in Andalusia, was not underlined in
the other mentioned studies.
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Fig. 4. Principal plan provided by MFACT: representation of the columns. Mortality causes in bold, age
intervals in capital letters, M for males and F for females. Segments join the male and female age intervals
in natural order.

6.3. Conclusions about the data analysis

The MFACT approach and the classical epidemiologic studies like the one by Benach
et al. (2001a) are not competitive: they can be used as complementary methods as they
bring very di6erent information and ways to synthesise it.

The epidemiologic studies o6er a synthesis using a geographic support. Mapping
from MFACT is another kind of support which can more easily re9ect the resemblance
(both from mortality causes and age structure points of view) between regions not
geographically close to one another. In this way, the information contained in the
map is not used in the construction of the regions representation but only during its
interpretation.

MFACT approach presents the classical advantages of multidimensional exploratory
methods. So, it constitutes a 9exible tool in order to obtain a very complete description
of the variability of the causes mortality distribution among the regions in reference
to age structure. It is possible to use other region characteristics (economic indicators,
etc.) instead of age structure. Therefore, MFACT helps to detect both mortality causes
linked to region characteristics and causes proFles not expected on the basis of the
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Fig. 5. Excerpt of the superimposed representation of global and partial structures on the Frst plan of
MFACT. Here Fig. 3 is completed by the representation of global and partial points corresponding to
Asturias, Andalusia, Murcia and Extremadura.

regions features. These descriptions are useful in the scope of planiFcation insurance
and sanitary policy.

7. Conclusion

The methodology described provides an original and operational point of view for
the simultaneous analysis of several contingency tables having a common dimension
(which includes, of course, those tables having two common dimensions).

Centering each table with respect to its row margin solves the problem of the distinct
margins (corresponding to the common dimension) by way of a compromise between
two contradictory requirements: to respect the intra-table structures in the sense it
is given in correspondence analysis, and to give the same weight to each row in a
simultaneous analysis of all the tables.
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The “MFA” aspect of MFACT solves the problem of balancing the in9uence of the
various subtables in a global analysis by way of a solution that is already well tested in
the case of T tables individuals variables (quantitative and/or qualitative). This solution
is now extended to the case of contingency tables having di6erent row margins.

The MFA framework opens up the way for various extensions. A particularly inter-
esting one is the possibility of comparing the structure of subtables of di6erent natures
in the same analysis. Thus, it is possible to add various groups of quantitative and/or
qualitative variables describing the same rows to a set of contingency tables. The ex-
ample presented here was not selected to emphasise this possibility, given that the
development level indicators are only used a posteriori, as supplementary variables.
However, since regions could also be described by di6erent sets of economic or social
quantitative indicators, this information can also be used.

These possibilities together constitute a complete methodology for exploratory anal-
ysis of a set of individuals, or clusters of individuals, described by data of di6erent
types.

8. Software

Note MFACT as described in this work was programmed by the second author in
Fortran within ADDAD software and can be obtained from the authors as an indepen-
dent (DOS) program upon request. It can also be performed using SPAD-V software
(CISIA, Paris), provided that matrix and weights are suitably adapted.
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(analysis of the di6erence between two measures on the two same sets product). Les Cahiers de l’Analyse
des Donn,ees 8 (3), 325–329.

EscoFer, B., 1984. Analyse factorielle en r,ef,erence 3a un mod3ele: application 3a l’analyse d’un tableau
d’,echanges (principal axes method in reference to a model: application to the analysis of an exchanges
table). Rev. Statist. Appl. 32 (4), 25–36.

EscoFer, B., Drouet, D., 1983. Analyse des di6,erences entre plusieurs tableaux de fr,equence (analysis of the
di6erences among several frequency tables). Les Cahiers de l’Analyse des Donn,ees 8 (4), 491–499.

EscoFer, B., Pag3es, J., 1988–1998. Analyses factorielles simples et multiples; objectifs, m,ethodes et
interpr,etation (Multiple and simple principal axes methods; objectives, methods and interpretation). Dunod,
Paris.

EscoFer, B., Pag3es, J., 1994. Multiple factor analysis: afmult package. Comput. Stat. Data Anal. 18,
121–140.

EscouFer, Y., 1985. Objectifs et proc,edures de l’analyse conjointe de plusieurs tableaux (objectives and
procedures of several tables joint analysis). Statist. et Anal. des Donn,ees 10 (1), 1–8.

Gower, J., 1975. Generalized procrustes analysis. Psychometrica 40, 33–51.
Gower, J., 1984. Procrustes analysis. In: Lloyd, E.H. (Ed.), Handbook of Applicable Mathematics, Vol. 6.

Wiley, Chichester, pp. 397–405.
Gower, J., Hand, D., 1996. Biplots. Chapman & Hall, London.
Greenacre, M., 1984. Theory and Applications of Correspondence Analysis. Academic Press, New York.
Horst, P., 1961. Relation among m sets of measures. Psychometrika 26, 129–149.
Hotelling, H., 1936. Relation between two sets of variables. Biometrika 28, 129–149.
IsraKels, A., 1987. Eigenvalue Techniques for Qualitative Data. DSWO Press, Leiden.
Kiers, H., 1989. Three-way Methods for the Analysis of Quantitative and Qualitative Two-way Data. DSWO

Press, Leiden.
Lavit, C., 1988. Analyse conjointe de tableaux quantitatifs (Joint analysis of quantitative tables). Masson,

Paris.
Lebart, L., Morineau, A., Warwick, K., 1984. Multivariate Descriptive Statistical Analysis. Wiley, New York.
Lebart, L., Morineau, A., Piron, M., 1998. Statistique exploratoire multidimensionnelle (Multidimensional

exploratory statistics). Dunod, Paris.
LohmKoller, J., 1989. Latent Variables Path Modelling with Partial Least Squares. Physica Verlag, Heidelberg.
Nishisato, S., 1980. Analysis of Categorical Data: Dual Scaling and Its Applications. University of Toronto

Press, Toronto.
Pag3es, J., Husson, F., 2001. Inter-laboratory comparison of sensory proFles: methodology and results. Food

Qual. Preference 12, 297–309.



M. B-ecue-Bertaut, J. Pag
es / Computational Statistics & Data Analysis 45 (2004) 481–503 503

Pag3es, J., Tenenhaus, M., 2001. Multiple factor analysis combined with pls path modelling. Application to
the analysis of relationships between physicochemical variables, sensory proFles and hedonic judgements.
Chemometric Intell. Lab. Syst. 58, 261–273.

Van der Heijden, P., 1987. Correspondence Analysis of Longitudinal Categorical Data. DSWO Press, Leiden.
Van der Heijden, P., de Falguerolles, A., de Leeuw, J., 1989. A combined approach to contingency table

analysis and log-linear analysis (with discussion). Appl. Statist. 38, 249–292.
Zarraga, A., Goitisolo, B., 2001. M,ethode factorielle pour l’analyse simultan,ee de tableaux de contingence

(principal axes method for simultaneous analysis of contingency tables). Rev. Stat. Appl. 50 (2), 47–70.


	A principal axes method for comparing contingency tables: MFACT
	Introduction
	Notation
	A single contingency table X
	Juxtaposed contingency tables

	Correspondence analysis concepts
	Correspondence analysis
	Geometric approach and chi2 distance
	CA as a particular PCA
	Principal coordinates of rows and columns
	Transition formulae and supplementary elements
	Data reconstitution
	CA as a minimisation problem

	CA relative to a general model with imposed metrics

	MFA for contingency tables (MFACT)
	Intra-tables independence model
	Metrics in row and column spaces
	Row weights (and metric in column space)
	Column weights (and metric in row space)

	MFACT as a weighted PCA of the global table
	Global principal components
	Canonical components
	Data reconstitution
	MFACT as a minimisation problem


	Properties of MFACT
	Distances between rows and between columns
	Distances between rows
	Proximities between columns

	Global representation of rows and columns
	Transition formulae and interpretation rules

	Superimposed representations of rows through canonical components
	Representation of the separate principal axis on the global axis

	Application
	Data
	Results
	Results from separate analysis
	Results from global analysis
	Structures displayed on the first principal plane
	Superimposition of partial structures

	Conclusions about the data analysis

	Conclusion
	Software
	References


