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PARTITIONING PEARSON’S CHI-SQUARED STATISTIC FOR A
COMPLETELY ORDERED THREE-WAY CONTINGENCY TABLE

ERIC J. BEH1∗ AND PAMELA J. DAVY 1

University of Wollongong

Summary

The paper presents a partition of the Pearson chi-squared statistic for triply ordered
three-way contingency tables. The partition invokes orthogonal polynomials and identifies
three-way association terms as well as each combination of two-way associations. This
partition provides information about the structure of each variable by identifying impor-
tant bivariate and trivariate associations in terms of location (linear), dispersion (quadratic)
and higher order components. The significance of each term in the partition, and each
association within each term can also be determined.

The paper compares the chi-squared partition with the log-linear models of Agresti
(1994) for multi-way contingency tables with ordinal categories, by generalizing the model
proposed by Haberman (1974).

Key words: location; dispersion and higher order components; orthogonal polynomials; three-way
contingency table; ordinal log-linear models.

1. Introduction

A number of authors have successfully partitioned the classical Pearson chi-squared
statistic for two-way contingency tables with ordered categories; see e.g. Lancaster (1953),
Nair (1986) and Hirotsu (1978, 1982, 1983, 1986). Kendall & Stuart (1979, p. 607) and
Lancaster (1951, 1980) discuss the partitioning of the chi-squared statistic for multi-way
contingency tables.

In this paper we present the partition of the Pearson chi-squared statistic using orthogonal
polynomials for a three-way contingency table where all three variables contain completely
ordered categories. The partition isolates the location (or linear), dispersion (quadratic) and
higher order components for each variable and determines the three-way association and each
combination of two-way associations for the three variables. We show that such a partition
can also be easily extended for the analysis of any multi-way contingency table which consists
of ordered variables. The case when only one or two variables are ordered is considered in
Beh & Davy (1999).

Section 2 of the present paper discusses the partition of the chi-squared statistic for
three-way contingency tables with three ordered variables. Section 3 defines some models of
association that can be used for goodness-of-fit, while Section 4 generalizes the partition given
in Section 2 for any multi-way contingency table with all variables ordered. Section 5 com-
pares the analysis using the partition with that of log-linear models of ordered variables. The
log-linear models found in this section are extensions of the models proposed by Haberman
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466 ERIC J. BEH AND PAMELA J. DAVY

(1974) who considered a two-way contingency table consisting of ordered rows and ordered
columns. It is shown that the simplicity of modelling via the chi-squared partition approxi-
mates well the parameters from the more complicated log-linear analysis approach.

2. Chi-squared Partition for Three-way Tables

2.1. The Partition

Consider a three-way contingency table,N, whose grand total isn, with I ordered rows,
J ordered columns, and, using the term of Kroonenberg (1989),K ordered tubes (Kendall
& Stuart (1979) use the term ‘layer’). The(i, j, k)th element ofN is nijk for i = 1, . . . , I,

j = 1, . . . , J and k = 1, . . . , K. Define the(i, j, k)th cell probability aspijk = nijk/n

so that
∑I

i=1
∑J

j=1
∑K

k=1 pijk = 1. Let pi·· be the i th row marginal probability so that∑I
i=1 pi·· = 1. Similarly let p·j · andp··k be thej th column andk th tube marginal proba-

bilities respectively so that
∑J

j=1 p·j · = ∑K
k=1 p··k = 1.

Best & Rayner (1996) consider the chi-squared partition of a doubly-ordered two-way
contingency table into bivariate components. This partition is generalized in this paper for
multi-way contingency tables.

Consider our three-way contingency table,N. Then the Pearson chi-squared statistic can
be partitioned, under the hypothesis of complete independence, so that

X2 =
I−1∑
u=1

J−1∑
v=1

K−1∑
w=1

Z2
uvw +

I−1∑
u=1

J−1∑
v=1

Z2
uv0 +

I−1∑
u=1

K−1∑
w=1

Z2
u0w +

J−1∑
v=1

K−1∑
w=1

Z2
0vw (2.1)

where

Zuvw = √
n

I∑
i=1

J∑
j=1

K∑
k=1

au(i)bv(j)cw(k)pijk . (2.2)

The sets{au(i): u = 0, . . . , (I−1)}, {bv(j): v = 0, . . . , (J−1)} and{cw(k): w = 0, . . . , (K−
1)} are the orthogonal polynomials associated with the rows, columns and tubes respectively.
These polynomials require the input of a set of scores which reflect the ordered structures of
the categories. Beh (1998) defines these polynomials, and how they are affected by different
scores.

Each of theZ terms defined by (2.2) is asymptotically standard normal and independent.
Refer to the Appendix for the proof of (2.1) and (2.2). For the sake of simplicity, (2.1) is
alternatively expressed as

X2 = X2
IJK + X2

IJ + X2
IK + X2

JK . (2.3)

2.2. Chi-squared Terms and Associated Values

The Pearson chi-squared statistic of (2.1) or (2.3) is partitioned into four terms. The first
term,X2

IJK, describes the trivariate association between rows, columns and tubes. Testing the
significance ofX2

IJK with the chi-squared distribution with(I −1)(J −1)(K −1) degrees of
freedom determines the level of association between the rows, columns and tubes. However,
even if this term is not significant, associations described by its componentZ values may be.
The termZuvw is the deviation of the rows, columns and tubes up to the(u, v, w)th trivariate
moment in the data from what might be expected under complete independence. For example,
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PARTITIONING PEARSON’S CHI-SQUARED STATISTIC 467

Z111 is the linear-by-linear-by-linear association and assesses the trivariate location of the
three variables.Z121 is the linear-by-quadratic-by-linear association of the row–column–
tube interaction.

The remaining terms of (2.3) are the chi-squared statistics for each bivariate combination
of the rows, columns and tubes. The second term,X2

IJ , is the chi-squared statistic for the
two-way doubly ordered contingency table created when the ordered tubes are collapsed. It
is analogous to the statistic discussed in Rayner & Best (1996) and Beh (1997).

To show this, by definition

X2
IJ =

I−1∑
u=1

J−1∑
v=1

Z2
uv0 , (2.4)

where

Zuv0 = √
n

I∑
i=1

J∑
j=1

au(i)bv(j)pij · . (2.5)

As pij · = ∑K
k=1 pijk, X2

IJ is just the chi-squared statistic applied to the contingency table
formed by summing over the tubes.

The interpretation ofX2
IJ of (2.4) is then similar to (3.2.1) of Beh (1997) when sum-

ming over the tubes for eachi and j. When compared with the chi-squared distribution,
with (I − 1)(J − 1) degrees of freedom, it is a measure of the departure from independence
between the rows and columns ofN assuming that the tubes are independent of the rows and
columns. Similarly,X2

IK andX2
JK are the bivariate chi-squared statistics and are measures of

the departure from marginal independence between the rows and tubes or columns and tubes
respectively.

The interpretation of theZ values for the two-way terms is similar to that ofZuvw in
X2

IJK. Consider the second term,X2
IJ . The valueZuv0 defined by (2.5) is the value of the

(u, v)th bivariate moment between the rows and columns when summing over the tubes. For
exampleZ110 is the linear-by-linear association between the rows and columns independent
of the tubes. Similarly for the termX2

IK, Zu0w is the (u, w)th marginal bivariate moment
between the rows and tubes, while for the fourth term,X2

JK, Z0vw is the (v, w)th marginal
bivariate moment between the columns and tubes. Even if it is found that a particular bi-
variate chi-squared statistic is not significant, it is possible to identify significant bivariate
associations. Rayner & Best (1996) give additional interpretations of the bivariateZ values.

2.3. Component Values

The effect of the row location component on the three-way association is
∑J−1

v=1
∑K−1

w=1

Z2
1vw, while, in general, theuth row component for the association is

∑J−1
v=1

∑K−1
w=1 Z2

uvw.

Testing for such components allows for an examination of the trend of the row categories,
the trend being dictated by theuth order orthogonal polynomial. For example, the row lo-
cation component describes how the row means (seeµI in (3.6) later) affect the trivariate
association. In a similar manner, thev th column component for the three-way association is∑I−1

u=1
∑K−1

w=1 Z2
uvw, while thew th tube component is

∑I−1
u=1

∑J−1
v=1 Z2

uvw.

The component values for each two-way association are easily calculated. For the bi-
variate association between the rows and columns, theuth row component is

∑J−1
v=1 Z2

uv0,

while the v th column component is
∑I−1

u=1 Z2
uv0. For example, the location component for

the row categories is
∑J−1

v=1 Z2
1v0; it describes the effect the row means have on the bivariate
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468 ERIC J. BEH AND PAMELA J. DAVY

association between the rows and columns. Rayner & Best (1996) described the component
values for the row–column bivariate moment.

Row, column and tube components for the remaining bivariate associations can be simi-
larly calculated.

3. Models of Association

Models of association for a two-way contingency table have been extensively reviewed;
see e.g. Goodman (1979, 1981, 1985, 1986, 1996), Gilula, Krieger & Ritov (1988) and Rom
& Sarkar (1992). Multi-way contingency tables with ordinal categories have been analysed by
Clogg (1982), Danaher (1991), Gilula & Haberman (1988) and Goodman (1970). This section
proposes models of association for multi-way tables, based on the partition of (2.1)–(2.2).

We can test for complete independence of the variables by considering the saturated
trivariate model of association for a completely ordered three-way contingency table,

pijk = pi··p·j ·p··k
I−1∑
u=0

J−1∑
v=0

K−1∑
w=0

(
Zuvw√

n

)
au(i)bv(j)cw(k). (3.1)

The model defined by (3.1) enables us to reconstitute the cell probabilitypijk for the(i, j, k)th
cell, for all cells. The unsaturated model which can be used to approximate the(i, j, k)th cell
probability under the hypothesis of complete independence is

pijk = pi··p·j ·p··k
M1∑
u=0

M2∑
v=0

M3∑
w=0

(
Zuvw√

n

)
au(i)bv(j)cw(k), (3.2)

where the firstM1 row components,M2 column components, orM3 tube components, are
selected forM1 < I −1, M2 < J −1 andM3 < K −1. UsuallyM1, M2 andM3 are chosen
to be equal to 2, so thatN is analysed in terms of the location and dispersion components
only. Unlike other modelling procedures, especially those where association values have an
ordering constraint imposed such as for the singular value decomposition for two-way tables,
the most important component values can be chosen so they improve the model. They may
not include the firstM1 row components,M2 column components orM3 tube components.
Instead they may include the most importantM1 row components,M2 column components
andM3 tube components.

Expanding (3.2) gives the alternative unsaturated model,

pijk = pi··p·j ·p··k

[
1 +

M1∑
u=1

M2∑
v=1

(
Zuv0√

n

)
au(i)bv(j) +

M1∑
u=1

M3∑
w=1

(
Zu0w√

n

)
au(i)cw(k)

+
M2∑
v=1

M3∑
w=1

(
Z0vw√

n

)
bv(j)cw(k) +

M1∑
u=1

M2∑
v=1

M3∑
w=1

(
Zuvw√

n

)
au(i)bv(j)cw(k)

]
. (3.3)

In model (3.3) we consider each combination of two-way associations and three-way
association terms and find that when theZ values are zero, the rows, columns and tubes are
completely independent. If there is not complete independence, then model (3.3) can be used
to identify which association(s) is significant. Model (3.3) is an extension of the model of
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Rayner & Best (1996) who analysed two-way contingency tables. Note that when summing
across the tubes, model (3.3) simplifies to

pij · = pi··p·j ·

[
1 +

M2∑
u=1

M1∑
v=1

au(i)

(
Zuv0√

n

)
bv(j)

]
, (3.4)

which is just the model of association in Beh (1997) and Rayner & Best (1996) for a two-way
contingency table, and is also the model of association for the rows and columns ofN when
the tube categories are collapsed.

Similar models can be obtained for the association between the rows and tubes, and the
columns and tubes.

ConsiderZuv0/
√

n in model (3.3); it is defined by (2.5). Suppose that equally spaced
integer value scores are used for the calculation of the orthogonal polynomials. Then, when
u = v = 1 (that is when only the row and column location components are considered), (2.5)
becomes

Z110√
n

=
I∑

i=1

J∑
j=1

(i − µI )

σI

(j − µJ )

σJ

pij · , (3.5)

where

µI =
I∑

i=1

ipi·· , µJ =
J∑

j=1

jp·j · , σ 2
I =

I∑
i=1

i2pi··−µ2
1 , σ 2

J =
J∑

j=1

j2p·j ·−µ2
J . (3.6)

Equation (3.5) gives the correlation value for theI rows andJ columns (see Danaher,
1991). Rayner & Best (1996) calculated the Pearson product moment correlation for two-
way contingency tables using orthogonal polynomials. For three-way contingency tables,
(3.5) offers a way of calculating the Pearson product moment correlation between the rows
and columns, and can easily be generalized for any multi-way contingency table. Pearson
product moment correlation values can be similarly calculated for the row–tube and column–
tube interactions for our contingency tableN. When midrank scores are used, (3.5) is also an
extension of Spearman’s rank correlation for the rows and columns of a three-way contingency
table. While Best & Rayner (1996) determined Spearman’s rank correlation for two-way
contingency tables, (3.5) can be generalized for any multi-way contingency table.

Equation (3.5) is also the correlation between the rows and columns in Goodman’s RC
model (Goodman, 1985). When the scores used are the first non-trivial row and column sin-
gular vector from a simple correspondence analysis of the rows and columns when summing
over the tubes, then (3.5) is the first singular value of the normalized cell probabilities (see
Beh, 1998).

The association valuesZ101/
√

n andZ011/
√

n have a similar interpretation asZ110/
√

n,

but relate to the rows and tubes, and columns and tubes respectively.
When only the location components are considered for each variable, (3.3) becomes

pijk = pi··p·j ·p··k

[
1 +

(
Z110√

n

)
(i − µI )

σI

(j − µJ )

σJ

+
(

Z101√
n

)
(i − µI )

σI

(k − µK)

σK

+
(

Z011√
n

)
(j − µJ )

σJ

(k − µK)

σK

+
(

Z111√
n

)
(i − µI )

σI

(j − µJ )

σJ

(k − µK)

σK

]
. (3.7)

Model (3.7) is similar to equation (5) in Danaher (1991). However, Danaher’s model did
not include the trivariateZ term that is in (3.7).
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An alternative modelling procedure which can be used as an approximation to (3.7), even
when the model is saturated, involves using the propertyex ≈ 1 + x when theZ values are
small. Using this property, the(i, j, k)th cell probability can be approximated by

pijk ≈ pi··p·j ·p··k exp

[(
Z110√

n

)
(i − µI )

σI

(j − µJ )

σJ

+
(

Z101√
n

)
(i − µI )

σI

(k − µK)

σK

+
(

Z011√
n

)
(j − µJ )

σJ

(k − µK)

σK

+
(

Z111√
n

)
(i − µI )

σI

(j − µJ )

σJ

(k − µK)

σK

]
. (3.8)

Model (3.8) is akin to Goodman’s association model of Goodman (1986) for a three-way
contingency table and can be used because the scores have been standardized. The advantage
of this model is that when approximating a cell probability, negative values cannot arise.
Equation (3.8) can also be generalized to consider quadratic and higher order components, as
(3.1) does. However, the sum of all the reconstituted cell entries is not always unity.

4. Generalization for m-way Contingency Tables

The partition of (2.1) can be generalized for anym-way contingency table withm ordered
variables. Suppose that thet th variable,vt containsct categories (so that 1≤ t ≤ m), then
for a m-way contingency table, the chi-squared statistic can be partitioned so that

X2 =
c1−1∑
u1=0

c2−1∑
u2=0

· · ·
cm−1∑
um=0

Z2
u1u2...um

− n (4.1)

where

Z2
u1u2...um

=
c1∑

v1=1

c2∑
v2=1

· · ·
cm∑

vm=1

au1
(v1)bu2

(v2) . . . cum
(vm)pv1v2...vm

. (4.2)

The Z terms are asymptotically standard normal and independent. (4.1)–(4.2) can be
proved by generalizing the proof of (2.1)–(2.2) in the Appendix.

Equation (4.1) can easily be expanded so that it has the same form as (2.1), and includes
2m − m − 1 terms. When in this form, there is one term for them-way association,m terms
for the (m − 1)-way association and so on down to1

2m(m − 1) two-way associations.

5. Comparison with Log-Linear Analysis

Haberman (1974) discussed log-linear models of two-way contingency tables in terms of
linear, quadratic and higher order components. This section extends the analysis to deal with
multi-way contingency tables, by considering the model for a three-way contingency table.

Fienberg (1977) and Agresti (1994) discuss the log-linear models for ordered categorical
data. Agresti offers the model (5.1) for our three-way contingency table,N,

lognijk =u + u1(i) + u2(j) + u3(k) + βIJ (ri − r̄)(cj − c̄) + βIK(ri − r̄)(tk − t̄ )

+ βJK(cj − c̄)(tk − t̄ ) + βIJK(ri − r̄)(cj − c̄)(tk − t̄ ),
(5.1)

where
∑I

i=1 u1(i) = ∑J
j=1 u2(j) = ∑K

k=1 u3(k) = 0. The value ofri is the score associated
with the i th row category, whilecj is the value of the score associated with thej th column
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category andtk is the score associated with thek th tube category. These are the scores used
in calculating the orthogonal polynomials. The valuesβIJ , βIK, βJK describe the bivari-
ate association term between the three variables and are calculated via maximum likelihood
estimation (MLE). They correspond to the linear-by-linear associations between each pair of
variables whileβIJK is the trivariate association term and corresponds to the linear-by-linear-
by-linear association. To see this, consider model (3.8). Taking the natural log of both sides
after multiplying byn yields

lognijk = logn + logpi·· + logp·j · + logp··k +
(

Z110√
n

)
(i − µI )

σI

(j − µJ )

σJ

+
(

Z101√
n

)
(i − µI )

σI

(k − µK)

σK

+
(

Z011√
n

)
(j − µJ )

σJ

(k − µK)

σK

+
(

Z111√
n

)
(i − µI )

σI

(j − µJ )

σJ

(k − µK)

σK

. (5.2)

Comparing models (5.1) and (5.2) for integer valued scores, the parameters calculated from
the log-linear model of (5.1) can be approximated by

β̂IJ = Z110

σIσJ

√
n

, (5.3)

β̂IK = Z101

σIσK

√
n

, (5.4)

β̂JK = Z011

σJ σK

√
n

, (5.5)

β̂IJK = Z111

σIσJ σK

√
n

. (5.6)

The models of Agresti (1994) and Fienberg (1977) consider the centring (about the mean)
of the scores; for our analysis we standardize them.

Fienberg (1977, p. 47) points out that, while several authors have proposed techniques for
selecting the optimum log-linear model, ‘unfortunately, there is no all-purpose, best method of
model selection’. However, for a three-way contingency table, the parameter approximations
of (5.3)–(5.6) and the test for important bivariate and trivariate associations from the chi-
squared partition of (2.1) allow the user to select the log-linear model which describes the
various relationships between the variables.

The advantage of model (5.2) is that it can be generalized to consider not only the linear
component, but also the quadratic and higher order component values. The model lognijk

equals

logn + logpi·· + logp·j · + logp··k +
M1∑
u=1

M2∑
v=1

(
Zuv0√

n

)
au(i)bv(j)

+
M1∑
u=1

M3∑
w=1

(
Zu0w√

n

)
au(i)cw(k) +

M2∑
v=1

M3∑
w=1

(
Z0vw√

n

)
bv(j)cw(k)

+
M1∑
u=1

M2∑
v=1

M3∑
w=1

(
Zuvw√

n

)
au(i)bv(j)cw(k),

(5.7)
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TABLE 1

Cross-classification of 1517 people according to happiness,
schooling and number of siblings

Number of siblings
Years of schooling 0–1 2–3 4–5 6–7 8+

Not too happy
< 12 15 34 36 22 61
12 31 60 46 25 26

13–16 35 45 30 13 8
17+ 18 14 3 3 4

Pretty happy
< 12 17 53 70 67 79
12 60 96 45 40 31

13–16 63 74 39 24 7
17+ 15 15 9 2 1

Very happy
< 12 7 20 23 16 36
12 5 12 11 12 7

13–16 5 10 4 4 3
17+ 2 1 2 0 1

where M1, M2 and M3 are chosen in a manner similar to the corresponding parameters
in model (3.2). Alternatively, either theM1 most important row components,M2 column
components and/orM3 tube components can be chosen to improve the model.

The advantage of this type of analysis of a multi-way contingency table is that the dif-
ferences between categories of a variable, and the association and component values, can be
represented graphically using correspondence analysis. Beh & Davy (1997) discuss such a
method. With the link between models (5.1) and (5.2), and the generalization of (5.2) to higher
order components (see model (5.7)), this correspondence analysis approach can also be viewed
as a graphical method of log-linear analysis. Beh & Davy (1997) extends the correspondence
analysis method for two-way contingency tables discussed in Beh (1997). Many authors have
described the relationship between correspondence analysis of non-ordinal contingency tables
and log-linear models; see e.g. van der Heijden, de Falguerolles & de Leeuw (1989), van der
Heijden & de Leeuw (1985), van der Heijden & Worsley (1988) and Goodman (1986). Everitt
(1992) discusses another method of graphically representing log-linear models proposed by
Darroch, Lauritzen & Speed (1980).

6. Example

Consider the three-way contingency table cited by Clogg (1982) from Davis (1977),
which classifies 1517 people according to their reported happiness, number of completed
years of schooling and the number of siblings. The data are reproduced in Table 1.

In this example we consider the ordering of the happiness, schooling and siblings vari-
ables to identify the important bivariate and trivariate moments and identify important location,
dispersion and higher order components. Alternatively, we can regard happiness as a response
variable and schooling and siblings as the explanatory variables. Beh & Davy (1997) consider
such a problem when discussing partitioning the chi-squared statistic for partially ordered
three-way contingency table.
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TABLE 2

Partition of chi-squared statistic into component values

Term Component Value df P value

X2
IJ

Column components
Location 222.2234 3 0
Dispersion 7.7034 3 0.0528
Error 5.3720 6 0.5035

Row components
Location 209.9878 4 0
Dispersion 24.2943 4 0.0001
Error 1.0168 4 0.9156

235.2988 12 0

X2
IK

Tube components
Location 28.6582 3 0
Dispersion 12.4805 3 0.0061

Row component
Location 31.6954 2 0
Dispersion 6.2973 2 0.0466
Error 3.1460 2 0.2127

41.1387 6 0

X2
JK

Tube components
Location 8.7582 4 0.0770
Dispersion 17.0634 4 0.0009

Column component
Location 18.0973 2 0.0001
Dispersion 0.9724 2 0.6172
Error 6.7517 4 0.1492

25.8215 8 0.0008

X2
IJK

Tube components
Location 10.9158 12 0.5507
Dispersion 15.3925 12 0.2250

Column components
Location 4.0458 6 0.6683
Dispersion 12.4921 6 0.0574
Error 9.7705 12 0.6389

Row components
Location 4.2737 8 0.8360
Dispersion 18.9646 8 0.2000
Error 3.0701 8 0.9245

26.3084 24 0.3426

X2 328.5674 50 0

The chi-squared statistic for Table 1 is 328.57 with integer row scores 1 to 4, integer
column scores 1 to 5 and integer tube scores 1, 2 and 3. At 50 degrees of freedom the
chi-squared value is highly significant, suggesting that there is an association between the
happiness, number of years of schooling and number of siblings for a person.

Table 2 lists the values of each of the terms of the partition, their component values,
degrees of freedom and permutation test Monte CarloP values based on 10,000 simulations.
If we take into consideration the ordered structure of the rows, columns and tubes, then by
using the partition of (2.1),X2

IJ = 235.3 and X2
IK = 41.14 and both have zero Monte

Carlo P values, while theP value ofX2
JK = 25.82 is 0.0008. Therefore all three bivariate
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TABLE 3
Log-linear MLE and approximated parameter values of Table 1

βIJ βIK βJK

LLM Estimates −0.3468 −0.2188 0.0726
Approximation −0.3298 −0.2140 0.0725

terms are highly significant. The Monte CarloP value of X2
IJK is 0.3426 which is not

significant. Thus the three-way association does not contribute all the variation present in
the table. The interaction between the rows (number of years of completed schooling) and
columns (number of siblings),X2

IJ , is the most significant accounting for 72% of the total
variation in Table 1. Clogg (1982) also concluded this association was the most significant,
although for his analysis it contributed up to 77% of the total variation. Clogg’s three factor
interaction term was 24.30.

Table 2 shows the important row, column and tube components for each term of (2.1).
When the tubes are summed across the rows and columns, the column location component
value of 222.2234 has a Monte CarloP value of zero. Therefore, the difference in Number
of siblings is due to the difference at each level across Years of completed schooling when the
happiness of the people is not of interest. In fact this column component accounts for 94.44%
of the total row variation inX2

IJ . The most important row component for the termX2
IJ ,

location, with a value of 209.9878, also has a Monte CarloP value of zero. Therefore, the
difference in the levels of Years of completed schooling is due to the difference in the levels’
mean values and accounts for 89.24% of the total variation in the rows for the termX2

IJ .

When the columns are summed across, the location component is dominant for the tubes,
and contributes to 69.99% of the total tube variation in the termX2

IK . Similarly, for this term,
the variation in Years of completed schooling levels can be explained by the difference in the
mean schooling levels, as the row location component of 31.6954 is more dominant than other
components with a zero Monte CarloP value.

When the rows are summed across, the variation in the levels of Happiness can be best
explained by the dispersion of the levels across the Number of siblings levels, as the tube
dispersion component of 17.0634 has the only significant Monte CarloP value of 0.0009 and
accounts for 71.11% of the total tube variation. When the rows are of no interest, the variation
in the Number of siblings levels seems to be caused by the difference in their mean values, as
the tube location component has Monte CarloP value of 0.0001 — highly significant.

Using all three variables, we can determine the cause of bivariate associations. Table 2
shows that while the three-way termX2

IJK is not significant, the relationship between the
Years of Schooling and Happiness levels is affected by the dispersion in the Number of Sib-
lings levels, as the Monte CarloP value is 0.0574 — almost significant. No other component
values significantly affect any other bivariate relationships.

The MLE parameter estimations of the log-linear model (5.1) compare very well with
the approximations of (5.3)–(5.6). As the three-way chi-squared term is not significant, it is
safe to say that the three-way term of (5.5) need not be calculated. Table 3 gives the bivariate
MLE parameter values from the model (5.1) after 500 iterations, and their approximations of
(5.3), (5.4) and (5.5).

Therefore, instead of selecting a log-linear model by trial and error as is the situation
when fitting, testing and refitting a model, the approximations offered by equations (5.3)–(5.6)
give a far quicker and relatively accurate method of parameter estimation. Also a far more

c© Australian Statistical Publishing Association Inc. 1998



PARTITIONING PEARSON’S CHI-SQUARED STATISTIC 475

informative model than that of Agresti (1994) or Fienberg (1977) can be obtained by selecting
significant parameters which involve moments above the location, as model (5.7) does.

The linear-by-linear association for the row-by-column interaction(Z110) is highly sig-
nificant with a value of−14.42. Hence, those with many siblings tend to finish school earlier
than those with few siblings. Clogg (1982) reached the same conclusion, showing that this
particular association is ‘negative overall’. The row-by-tube interaction is also dominated by
the linear-by-linear association(Z101) with a significant value of−4.93. Thus, those who are
very happy tend to be those with fewer years of completed schooling. The linear-by-quadratic
association for the column-by-tube interaction(Z012) is also significant with a value of 3.47.
Therefore, as the number of siblings increases, happiness tends to decrease, then increase.
Thus those with a few siblings and those with a lot of siblings tend to be happier than those
with a moderate number (4 to 5) of siblings.

Appendix

Proof of (2.1)–(2.2).To prove the partition ofX2 described by (2.1)–(2.2) above, con-
sider the classical Pearson chi-squared statistic:

X2 = n

I∑
i=1

J∑
j=1

K∑
k=1

(pijk − pi··p·j ·p··k)
2

pi··p·j ·p··k
= n

{
I∑

i=1

J∑
j=1

K∑
k=1

(
p2

ijk

pi··p·j ·p··k

)
− 1

}
. (A.1)

The row, column and tube orthogonal polynomials have the following property:
I−1∑
u=0

au(i)au(i
′) =

{
1/pi·· for i = i′,
0 otherwise;

(A.2a)

J−1∑
v=0

bv(j)bv(j
′) =

{
1/p·j · for j = j ′,
0 otherwise;

(A.2b)

K−1∑
w=0

cw(k)cw(k′) =
{

1/p··k for k = k′,
0 otherwise.

(A.2c)

Therefore,

p2
ijk

pi··p·j ·p··k
=

I−1∑
u=0

J−1∑
v=0

K−1∑
w=0

au(i)bv(j)cw(k)p2
ijk

=
I∑

i′=1

J∑
j ′=1

K∑
k′=1

I−1∑
u=0

J−1∑
v=0

K−1∑
w=0

au(i)au(i
′)bv(j)bv(j

′)cw(k)cw(k′)pijkpi′j ′k′ .

Hence,
I∑

i=1

J∑
j=1

K∑
k=1

(
p2

ijk

pi··p·j ·p··k

)
equals

I∑
i=1

I∑
i′=1

J∑
j=1

J∑
j ′=1

K∑
k=1

K∑
k′=1

I−1∑
u=0

J−1∑
v=0

K−1∑
w=0

au(i)au(i
′)×

bv(j)bv(j
′)cw(k)cw(k′)pijkpi′j ′k′ = 1

n

I−1∑
u=0

J−1∑
v=0

K−1∑
w=0

Z2
uvw , where

Zuvw = √
n

I∑
i=1

J∑
j=1

K∑
k=1

au(i)bv(j)cw(k)pijk ,

which is (2.2) above.
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Therefore, Pearson’s chi-squared statistic becomes:

X2 =
I−1∑
u=0

J−1∑
v=0

K−1∑
w=0

Z2
uvw − n . (A.3)

But

Z000 = √
n

I∑
i=1

J∑
j=1

K∑
k=1

pijk = √
n

and

Zu00 = √
n

I∑
i=1

au(i)pi·· = 0 .

Similarly, Z0v0 = Z00w = 0.

So by expanding (A.3), the classical Pearson chi-squared statistic simplifies:

X2 =
I−1∑
u=1

J−1∑
v=1

K−1∑
w=1

Z2
uvw +

I−1∑
u=1

J−1∑
v=1

Z2
uv0 +

I−1∑
u=1

K−1∑
w=1

Z2
u0w +

J−1∑
v=1

K−1∑
w=1

Z2
0vw + (

√
n)2 − n

=
I−1∑
u=1

J−1∑
v=1

K−1∑
w=1

Z2
uvw +

I−1∑
u=1

J−1∑
v=1

Z2
uv0 +

I−1∑
u=1

K−1∑
w=1

Z2
u0w +

J−1∑
v=1

K−1∑
w=1

Z2
0vw ,

thereby providing the partition of (2.1).
The chi-squared partitions of Rayner & Best (1996) and Best & Rayner (1996), which

consider singly and doubly ordered two-way contingency tables respectively, can be proved
in a manner similar to the partition of (2.1)–(2.2).
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