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A special case of Bloxom's version of Tucker's three-mode model is developed statistically. A 
distinction is made between modes in terms of whether they are fixed or random. Parameter 
matrices are associated with the fixed modes, while no parameters are associated with the mode 
representing random observation vectors. The identification problem is discussed, and unknown 
parameters of the model are estimated by a weighted least squares method based upon a Gauss- 
Newton algorithm. A goodness-of-fit statistic is presented. An example based upon self-report and 
peer-report measures of personality shows that the model is applicable to real data. The model 
represents a generalization of Thurstonian factor analysis; weighted least squares estimators and 
maximum likelihood estimators of the factor model can be obtained using the proposed theory. 
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Two generalizations of  principal components  analysis have been proposed for the 
analysis of  data that can be cross-classified in terms of three modes of measurement.  The 
pioneering and most comprehensive model is the one developed by Tucker [1966]. It  
postulates that an observed three-way data observation can be decomposed into com- 
ponents attributable to each of the three modes as well as an internal core matrix. The 
components  of  each of the modes are of dimensionality equal to or smaller than the 
number  of variables in that mode, and the three dimensions can be unequal. The core 
matrix, like the original data, represents a three-way data observation, but of  order given 
by the dimensionality of  the components  rather than the variables. In contrast, the model 
of  Carroll and Chang [1970] is a restricted version of the Tucker  model: a three-way 
observation is similarly decomposed into components  associated with each of  the modes 
of classification, but  the component  dimensionality of  each mode  is required to be equal, 
and the core matrix is "a  kind of 3-way analogue of an identity matr ix"  [Carroll & Chang, 
1970, p. 310]. These models are most properly called component  models rather than factor 
analytic models because there is no specific provision for the concept of  uniqueness. 
Bloxom [1968], however, has rewritten the Tucker model in a covariance structure form 
that  includes the concept of  uniqueness. We  shall limit ourselves to the factor analytic case 
of  three-mode models, and thus ignore the multidimensional scaling specialization. 

In this paper  we develop a three-mode model that can be considered to be a special case 
of  Bloxom's  [1968] version of  Tucker ' s  [1966] model. As a consequence, the proposed 
model is quite restricted in parametric  structure. This restriction creates a clear drawback 
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to the general applicability of the model to a wide variety of data, but it has the advantage 
that when the model fits three-mode data, it is extremely economical in terms of the 
number of parameters as compared either to Bloxom's model or to more general models 
such as those of  J6reskog [1973] or Bentler [1976]. (In the multidimensional scaling area, 
the Carroll-Chang model is sometimes also preferred to the Tucker model for similar 
reasons of economy of representation.) Nonetheless, the model represents more than a 
mathematical exercise, since it can be shown to be applicable to real data in the three- 
mode context as well as being, conceptually, a generalization of two-mode factor analysis. 
The statistical aspects of fitting the model to the data via the covariance matrix are 
emphasized, particularly, in obtaining consistent, asymptotically efficient parameter and 
standard error estimates, and a goodness of fit test statistic. A computer program is 
developed to implement the basic theory. 

The Model 

Consider the (pm × 1) observed random vector x with structure 

(1) x =/~ + (A @ B) ( a@/3)  + Z~'. 

The vector # is a vector of population means. The notation (A @ B) refers to the right 
Kronecker product of  matrices (A @ B )  = [auB]. The matrices A, B, and Z are parameter 
matrices of  order (p × k), (m × r), and (pm × pm),  respectively; the matrix Z is taken to be 
diagonal. The parameter matrix A corresponds to one variable classification mode, and 
the matrix B to the other mode. The data for the third mode is not represented by 
parameters, only by random vectors. The vectors a,/3, and ~" are random vectors of  order 
(k × 1), (r × I), and (pm × 1), respectively. We assume that the expectations ~(aa') ,  
~(/3/3'), and S(~'~") are given by 4~, 4~a, and I r (the latter is an identity matrix of appropriate 
order), and that the random vectors a,/3, and ~" are statistically independent of each other. 
Consequently, we obtain as g(x-#)(x-#)' the covariance structure 

(2) Z = (Ac~,,A' @ B4~oB') + Z 2 . 

Suppose that A is of dimension (1 × 1), the unit scalar. It follows immediately that 

(3) ~ = B4~B' + Z 2 , 

which is the oblique generalization of Thurstone's [1947] multiple factor model. Principal 
components are a special case with 4~ = I and Z 2 = 0. In this paper we concentrate on the 
simple three-mode case of (2) given by 

(4) Z = (AA'  (~  BB' )  + Z 2 , 

where the factors are considered to be orthogonal. 
The model proposed by Tucker [1966], as modified by Bloxom [1968], on the other 

hand, can be represented in the present context as 

(5) x = (A @ S ) @  + Zg" 

where G is a (kr × t) matrix representation of the core box, and 3' is a (t × 1) random 
vector for the third mode. The cross product structure (possibly, covariance structure) is 
given by 

(6) Z = (A @ B)GcbG'(A @ B)' + Z ~ 

where 4~ is a symmetric nonnegative definite matrix of covariances among the 3'. In the 
current model (2) we take Gq~G' = (4~, @ 4~0), and in (4) GonG' = I. Although these 
assumptions are restrictive, in some contexts they are not unreasonable, and they make the 
statistical estimation of the parameters a tractable problem. 
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Jrreskog [1973] has introduced the second-order factor model 

(7) z = B(A,~A' + ~ ) B '  + 0 ~ . 

If one equates the model matrices of equations (4) and (7) as B = (A @1),  A = ( I ~ B ) ,  
4~ = I, ,/t2 = 0, and 05 = Z ~, it follows that (4) is a restricted version of (7); for example, (A 
~)  I) is a (pro × kin) factor pattern matrix in which a number of  elements are constrained 
to be equal and others are fixed as zero. Consequently, the model (4) can be estimated via 
programs that implement (7), specifically via ACOVS [Jrreskog, Gruvaeus & van ThillQ, 
1970]. In this paper we develop a class of  estimation methods that take into account the 
special nature of the Kronecker product and can accept singular estimated and data 
covariance matrices. 

Parameter Identification 

It is obvious that the parameter matrices A and B in (1) can be replaced by A/1, and 
BT~, where T~ and T2 are orthonormal transformation matrices. The consequent covari- 
ance structure (4) remains identical. In order to fix A and B uniquely, we set the elements 
a~j of A equal to zero if j  > i, and similarly b~j = 0 i f j  > i. This procedure follows Anderson 
and Rubin [1956], and it is appropriate when estimating the parameters in an exploratory 
situation. The resulting matrices can be individually transformed later, if desired, or 
placed into the well-known oblique forms A4~A' and B~oB'. When (2) is treated as a 
confirmatory model, the fixed elements may be nonzero and may appear anywhere, 
provided the parameters remain identified. 

There exists another indeterminacy in (2). Any Kronecker product (X (~) Y) can be 
equivalently written as (kX@ k-~Y), where k is a nonzero constant. Consequently, the 
scale of the parameters for each mode are only defined relative to each other, and the scale 
of one mode can be fixed arbitrarily. This is done in the current work by setting a~a = 1.0. 

Estimation Method 

Let Zo = ~(0o) be the covariance structure defined by (4) where 0o is the q by 1 vector 
of the unknown parameters in A, B, and Z a. In general, we regard 0 as a vector of 
mathematical variables and Z = Z(0) as a function of 0. Let the random vectors x ,  i --- I, 
• " ,  N of (1) be independently and multivariate normally distributed with mean vector 
and covariance matrix Z(0). Let n = N - 1, S be the sample covariance matrix, and ~q be 
the vector formed from the elements on the diagonal and below, taken row by row. Thus, 

= (SH, S~, S~, '" ,  S~,p). 
Browne [1974] has shown that the residual quadratic form 

(8) ( e _  ~), cov(S~)-~ ( ~ _  ~ )  

is asymptotically equal to 

(9) n t r [ ( S -  2~)2~o-'1 ~ 
2 

Since Zo -1 is unknown, it is replaced by some weight matrix V and (9) becomes, except for 
a constant, the weighted least squares function 

(10) Q(V, 0) = tr[(S - X ) ~ !  
2 

When V = S -~ exists, (10) is of special interest and becomes 

(1 I) Q(O) = tr[(S - Z)S-I]2 
2 
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By definition, the weighted least squares estimator t) is the vector 0 such that Q(O) is 
minimized, provided such a vector exists. It can be shown that this estimator is scale-free, 
so that the correlation matrix can be analyzed in place of  the covariance matrix. Under 
mild regularity conditions, Browne [1974] and Lee [1977] proved that 0 possesses the 
following asymptotic properties: 

(i) The weighted least squares estimator 0 is consistent. 
(ii) The weighted least squares estimator 0 and the maximum likelihood estimator 

are asymptotically equivalent. 
(iii) The weighted least squares estimator 0 is a "best weighted least squares" estima- 

tor in the sense that for any other weighted least squares estimator 0", cov(0*) - 
cov(0) is positive semidefinite. 

(iv) The asymptotic distribution of  ~) is multivariate normal with mean vector 0o and 
covariance matrix (2n-I)[,9~o(2;o -1 (~) 2;o-1)02~o'] -1 where 0~o = 02;0/ 00 = 
~ 2;o/ ̀ 901O°eo. 

(v) The asymptotic distribution of nQ(O) = 2 -1 ntr [(S - Z)S-~] 2 is x 2, with degrees 
of freedom equal to [pm(pm + 1)/2] - q. 

The loss function Q(O) measures how well the model fits the data. Property (v) enables us 
to test the hypothesis that Zo has the structure (4) against the alternative that Zo is any 
symmetric positive definite matrix. 

Minimization Procedure 

The weighted least squares estimates are determined as the solution of `9Q/`90 = O. 
These equations cannot be solved algebraically, so that some iterative procedure has to be 
used. The most popular nonlinear algorithms are the methods of steepest descent, Flet- 
cher-Powell, Fletcher-Reeves, Gauss-Newton, and Newton-Raphson. The steepest de- 
scent method tends to be very slow. It is shown by Lee [1977] that the Gauss-Newton 
algorithm is at least comparable in speed to the Fletcher-Powell and Fletcher-Reeves 
algorithms and, moreover, the Fletcher-Powell and Fletcher-Reeves algorithms may pro- 
duce questionable estimates of  the standard errors of the estimators. The Newton- 
Raphson algorithm is not robust to bad starting values, and it requires the second order 
partial derivatives of the function. For complicated covariance structures, such as (4), 
these second order partial derivatives are difficult to derive and take a long time to 
compute. Hence, we prefer to use the Gauss-Newton algorithm to obtain the estimates. 
The algorithm is conceptually simple, usually quite robust to bad starting values, and 
requires only the first-order partial derivatives of  the function. 

For the weighted least squares function Q(O), Lee [1977] showed that a step of the 
Gauss-Newton algorithm consists of 

(12) A0t = - U ~  -1 ,90 0~0, 

where U~ = O~(S-1QS-~)02; ' [ o~o, and oQ/O0 = oZ(S- l (~S-1)(S  - ~)'.  (~q denotes a 
row vector which takes all elements of S row by row.) After A0t has been evaluated, a new 
0~+1 is taken to be 

(13) 0~+t = 0~ + A0~. 

The process is repeated until the root mean square of A0~ or the root mean square of the 
gradient vector, oQ/oO, is sufficiently small. 

Although in most cases Ut is at least positive semidefinite, the algorithm frequently 
fails when it is not modified. A useful modification consists of "step-halving", in which A0, 
A0/2, . • • , are chosen until a step is found which reduces Q(0). If U~ is singular or nearly 
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singular, the techniques of Marquardt [1963] or Greenstadt [1967] can be used to replace 
U~ by a positive definite matrix. Alternatively, the stepwise regression method of Jennrich 
and Sampson [1968] can be used. 

Under mild regularity conditions, Lee [1977] showed that in the Gauss-Newton 
algorithm, as ~ converges to 0, Us(O) converges to U(0) and 2U(O)-l/n is asymptotically 
equivalent to the inverse of the information matrix based on the distribution of S. Hence, 
the standard error estimates are naturally taken to be the square roots of the diagonal 
elements of 2U(O)-l/n. As a result, the standard error estimates can be obtained easily. 

The derivatives required to implement this algorithm in the current context are 
obtained in the Appendix. 

Example 
To illustrate the model and the methods of analysis that have been developed, we 

obtained the intercorrelations among four variables measured by each of two methods. 
The four variables are: ambition, attractiveness, leadership, and extraversion. The two 
methods of measurement are: self-report and peer-report. Seventy-two subjects were asked 
to describe themselves using bipolar adjectives and short phrases; each variable represents 
a composite score computed across twenty items. Subjects were asked to bring friends, and 
the friend was asked to describe the subject using the same adjectives and phrases. The 
intercorrelation matrix among these variables is presented in Table 1, which has been 
organized so that the first four variables represent the self-report data, and the second four 
variables represent the peer-report data. 

TABLE 1 

Correlations Among Four Variables Assessed by Two Methods of Measurement 

I 2 3 4 5 6 7 8 

1 000 

223 

337 

223 

402 

035 

160 

093 

1.000 

.418 1.000 

.290 .693 1.000 

.070 .226 .210 

.442 .251 .219 

.196 .603 .639 

.180 .451 .645 

1.000 

.233 1.000 

.379 .314 

.269 .283 

1.000 

.582 1. 000 
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TABLE 2 

and Standard Errors  (In Parentheses) 

A B 

1 

i 1.00" 

2 .85 (.I0) 

I II 

i .74 (.ii) 0* 

2 .30 ( . t 3 )  .36 ( .12)  

3 .41 ( .13)  .71 ( .10) 

4 .27 ( .13)  .80 ( .09)  

Z 

1 .63 ( .11) 2 .71 ( .08) 3 .52 ( .07) 4 .47 ( .07)  

5 .69 ( .09) 6 .74 ( .08) 7 .58 ( .06)  8 .63 ( .07) 

*Fixed value 

The analysis was designed to uncover a common factor structure within the self- 
report and peer-report data, as well as a possibly quantitative cross-method relation. The 
matrix B was taken to represent the content structure of the variables, which was assumed 
to be of dimensionality two. An initial factor loading matrix for B was obtained by a 
principal factor analysis of the self-report data. The matrix A was assumed to be single- 
dimensional, with the two methods of measurement initialized as having an equal weight. 
An initial estimate of Z ~ was obtained from the uniquenesses of the principal factor 
analysis, with uniquenesses for the two methods taken as equal. The program took 23 
iterations to converge upon the parameter and standard error estimates reported in Table 
2. The criterion for convergence was RMS(A0) _< .0001 or RMS(gQ/90 )  < .0001. The 
solution yielded X 2 = 29.86. With the sixteen unknown parameters of Table 2, there are 20 
degrees of freedom. From the chi-square table, it is evident that the model (4) cannot be 
rejected at c¢ = .05 level. 

The interpretive meaning of these results appears to be as follows. A common two- 
dimensional factor structure (B) accounts for the correlations among the variables, when 
taking into account the relative weights that must be applied to the factor structure for 
each of the methods of measurement (I.0 for self-report, .85 for peer-report). According to 
(1), (A @ B) provides the Thurstonian factor loadings for all eight variables. Thus, the 
complete 8 × 2 loading matrix would be given by [B', .85B']'. Unlike ordinary factor 
analysis, however, the complete loading matrix is not needed to reproduce the common 
portions of the data. Obviously, B is taken as the estimator that reproduces the correla- 
tions among self-report variables, via BB'. The correlations among peer-report variables, 
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estimated at .852BB ', are systematically somewhat smaller than among self-report vari- 
ables, but only marginally so in view of the standard error of .10 associated with the 
multiplier .85. The reproduced cross-method correlations, given by .85BB', are estimated 
at an intermediate value. Finally, turning to the psychological content of the variables 
under consideration, it appears that Variable I (ambition) assesses a different dimension 
from Variables 3 and 4 (leadership and extraversion). Variable 2 (attractiveness) is not a 
particularly good indicator of either dimension. In this instance, there appears to be no 
particular reason to transform B to a more meaningful factorial structure, although an 
oblique transformation might produce a cleaner simple structure. 

Discussion 

The statistical approach to three-mode models rather naturally considers these mod- 
els as covariance structure models of a particular sort, and, when this approach is taken, 
the statistical ideas associated with such models become relevant [e.g., J/Sreskog, 1973]. 
The simplest conceptual notion is that of variables and random observations on the 
variables. Some of the modes can quite obviously be taken to represent measurable 
variables in the traditional sense, though the factor structure that generates the variables is 
a very specialized one. On the other hand, one of the modes must be taken to represent no 
more than a series of observations on the variables, having no associated parameters. Such 
a distinction between variables and observations on variables is quite a natural one for the 
area of psychological testing where subjects describe themselves, their friends, or their 
knowledge with respect to the specific variables under investigation. No ambiguity about 
this distinction would seem possible for the data used to illustrate the proposed model and 
estimation method. In other circumstances, however, an ambiguity might arise. 

Our approach to estimating model (4) has involved the statistical theory associated 
with weighted least-squares estimation in the context of multi-normal variables. Since the 
ordinary factor model is a special case of the model developed in the current paper, it is 
apparent that the procedures we have developed also include as a special case the 
generalized least-squares approach to the Thurstonian model as developed by J6reskog 
and Goldberger [1972]. Furthermore, Lee [1977] has proven that when the weight matrix 
V in (10) is replaced at every iteration by the matrix [~t(0)-l], if the iterative procedure 
converges, it will converge to the maximum-likelihood estimator. Consequently, (4) can be 
utilized with our equations to provide maximum-likelihood solutions to the exploratory 
factor analysis model, as described by JSreskog [1967]. In spite of this generality, it must 
be acknowledged that the current model remains too specialized to be able to fit the wide 
variety of data envisioned by Tucker [ 1966]. In the particular example being investigated, 
the correlation matrices within and between each of the two methods of measurement 
were assumed to be generated by a simple proportional process, except for the unique- 
nesses. Such a process was found to be useful because of its economy of representation; 
alternative models, such as those based on separate additive common factors for content 
and method components of the variables, would require a greater number of parameters. 
Nonetheless, it is clear that an important task for the future must include the statistical 
development of Tucker's more general model, as modified, perhaps, by Bloxom [ 1968]. A 
statistical approach to the more general model would, of course, also subsume the 
developments of the current paper. However, we believe that our results demonstrate that 
a statistical approach to multimode models can be pursued successfully. 

If a researcher does not wish to adopt a factor analytic multimode model, perhaps 
because of such concerns as factor indeterminacy, or small sample size, the principal 
component equivalent of (4) with Z 2 = 0 could be adopted. In such an instance, ordinary 
least squares estimation might be desirable. This can be accomplished with the current 
equations by setting V = I in (9). However, it should be recognized that in the absence of 
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relevant statistical theory, the inferential methods associated with the current approach 
cannot be applied. 

Appendix: Partial Derivatives 

In order to implement the Gauss-Newton method, the partial derivatives aZ are 
required. We will obtain these derivatives with the help of the following additional 
notation. 

For any diagonal matrix Z, let Dz denote the column vector of all diagonal elements 
of Z. 

Let Kct~l denote a (p x p) matrix with the unit scalar in the (ij) TM position, and with 
zeros elsewhere. 

Let X~t~I denote the matrix (K~t~I @ X). 
For any (p × p) matrix Y = [Yu], let Ylg"~l denote the partitioned matrix whose (i,j) th 

block is given by y,,~j~,c'~o~. Note that yu<-" <"~ is a (m × m) matrix, whose (u, v) TM element is 
equal to Yu. 

Let A* = AA' = [as*] and B* = BB' = [brs*]. 
We are now ready to proceed with the differentiation. We shall require two com- 

ponents, and then we combine the results to yield the required derivative. First we note 
that for the element au of A = [au], 

Oast Oart] Oars*= ~ a r t _ _ + a s t _ ~ a u  j 
Oatj t=l  Oaty 

0 r # i ,  s ~ i  
= ar j  s = i 

as j  r = i 

2a u r = s = i 

(A1) 

From the definition, we obviously have 

oz o(AA'®BB') 
(A2) ~ = 

0 Ors* 0 ars * 

= (BB' )cT,  I .  

By elementary calculus, we obtain 

Oat1 s=t r=l Oau Oars* 

(A3) = _~ ~ Oars'----~*(BB'),~r]]. 
s : x  r : t  Oau 

We now expand (A3) and simplify the results using (A1) repeatedly. 

F Oa,,* Oar,*( B,~(e~ O~ = ~ k._ff~_au (BB,)(~) + . . .  + ~-~( Oau (B ,,~o,.j 
Oat1 = s : l  

Oals tB B,~ m) = al, (aB')(r,l + . . .  + --b-~a,j ~ ~,,~ + . . .  + (BB')~I 
O a l j  s = t tj  

= ~ (BB')~.~I + ~ ._~au(BBOa,,* ')i~l + aa"~(BB')~iql 
r,~t tJ sa t  dau 

= ~ a.AB,')gl + ~ a.,(BB'),~I + 2a,(,B'),l~,I. 
r ~  s~t 
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This can be written in the final form as 

0__Z_E .& 
(A4) = ~_~ arj(BB')~rat~ + ,~, asj(BB')~t~s~. 

~atj r=l 8=i 

We obtain the complete result by analogous procedures to yield the matrix 

~9~/~o~t 

az 
(A5) aA = 

(Recall from (12) that the notation S denotes a row vector which takes all elements of S 
row by row.) 

Now we determine the derivatives for the right-hand matrices in the Kronecker 
product. From the definition, we have 

= )(~ J • (A6) ~b~j* ( A A '  ~m) 

By methods similar to those used above we obtain 

~gZ = ~__ m 0brs* c~Z 
~r/~j --~ Oblj ~b~8* S ~ t  r = l  

0 * (A7) = ~ ~ Obrs*'A'c"~Pm' 
8=1 r = t  ~ b t J  -~ '° tza I ( r  s) 

- f :  Z t (pro) = brj(AA )Cr ~) + bsJ(AA'~pm) 1( t s) • 
rffil 8=1 

Again we form the final matrix 

(A8) 

° o o  

~B " ' "  

Finally, it can be easily shown that 

(A9) ( ~ 9 ~ )  = { 2 Z , , i f j = p m ( i - 1 ) + /  
~1 0 otherwise 

where 0 < i <_ prn. 
Equations (A5), (A8) and (A9) provide the required derivatives for c~;. Since the 

fixed parameters are no longer unknown mathematical variables, the corresponding rows 
from ~ are eliminated. 
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