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Abstract: Three-mode models in factor analysis have not been used very frequently due in part to 
their mathematical, statistical, and computational complexity. It is shown that standardly-available 
computer programs such as LISREL and EQS can be used to estimate and test such models. The 
models are generalized to permit more complex measurement structures, as well as to allow linear 
structural regressions among the latent variables. These generalized multimode models can be 
similarly easily computationally implemented. An example is used to illustrate the ideas. 

Keywork Multimode factor analysis, Latent variables, Structural models, Kronecker product 
models. 

1. Introduction 

When the design of a measurement instrument, such as psychological ratings, 
permit a systematic crossing of various facets of content to produce a set of 
variables, the resulting variables are said to be of the multimode type. An 
example would be the measurement of four personality traits such as extraver- 
sion, anxiety, impulsivity, and motivation by each of three methods, such as peer, 
teacher, and self-ratings. This design would produce 4 x 3 = 12 variables. A 
random sample assessed on these 12 variables would produce, in Tucker’s [12] 
terminology, three mode data, where the modes are traits, methods, and subjects. 
Tucker treated these modes interchangeably, leading to exploratory procedures 
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for data analysis that are least-squares algebraic and relatively straightforward to 
implement [g]. These procedures, however, have no statistical basis. Bloxom [5] 
noted that the sampling mode can be considered random, and that statistical 
analysis can focus on the two fixed design modes yielding a modified factor 
analytic model. Extending the model to include both exploratory and confirma- 
tory variants, Bentler and Lee [3] developed statistical methods for three mode 
data that permit testing the adequacy of any specific parameterization. However, 
practical analysis of such data has been hindered by the extreme complexity of 
the methodology. For example, Bentler and Lee presented 1; pages of matrix 
equations required for implementing a Gauss-Newton procedure to estimate the 
parameters of their model, and they made no program publically available to do 
the estimation. While Tracy and Jinadasa [ll] provided a simplified derivation 
for the Bentler-Lee equations, the resulting derivatives still require three or 
four-level Kronecker products and, thus, are not usable in practice because they 
require very extensive computer storage. It is no wonder that these statistical 
models have not been used very much. 

This paper considers several new generalized latent variable models for multi- 
mode data and applies the BMDP package program EQS [2] to estimating the 
parameters of the models and evaluating the goodness of fit of the models to 
data. Previous approaches to multimode data have been nonstatistical in nature, 
limited in the number of modes that were considered, have ignored scale-in- 
variant representations, have dealt with a limited set of matrix products, and have 
not dealt with structural relations among latent or constructed variables. The 
models considered here allow arbitrary numbers of modes, allow scale-invariant 
representations when desired, deal with arbitrary matrix products, and allow 
structural relations among variables. Although the approach to three-mode mod- 
els developed by Bentler and Lee [3] was quite general in that it developed the 
statistical, exploratory and confirmatory aspects of the Tucker-Bloxom approach, 
estimation and testing of even this simple model was conceived in a framework 
that utilized a specially developed mathematical, statistical, and programming 
approach. In contrast, in this paper any of the generalized models is viewed as 
representing a system of linear structural equations, whose parameters under 
constraints can be estimated by various standard generalized methods such as 
EQS and LISREL [6]. Estimation and testing is especially easy with the equa- 
tions-based computer program EQS which is based on the Bentler-Weeks [4] 
structural relations model. As a consequence, least squares, generalized least 
squares, and maximum likelihood estimates based on multivariate normal distrib- 
utional assumptions on the measured variables are available. However, because 
EQS also provides estimation and testing under elliptical distributions (symmetric 
generalizations of normal distributions allowing more or less kurtosis for varia- 
bles), as well as a statistical method for arbitrary distributions (i.e., a 
distribution-free procedure), this approach for the first time introduces statistical 
methods for nonnormally distributed multimode data. Related statistical machin- 
ery such as Lagrange Multiplier and Wald tests that are available in EQS thus 
also become automatically accessible to multimode analysis. 
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In the next section, the Bentler-Weeks model and EQS program are reviewed. 
In Section 3, some general models for multimode data and their implementation 
via EQS are discussed. An illustrative example is reported in Section 4, and a 
concluding discussion is presented in Section 5. A major point of this paper is to 
show that no new implementation concepts are needed, once the conceptual 
structure of a model has been developed and its Bentler-Weeks specification 
generated in an identified form. 

2. The Bentler-Weeks model and EQS 

A general statistical approach to the analysis of linear structural equation systems 
based on the Bentler-Weeks [4] model is given as 

17 = P17 + Y5, (1) 

where /I contains the coefficient for regression of “dependent” n variables on 
each other and y contains the coefficient for the regression of q variables on 5 
variables. Only the “independent” variables 6 have variances and covariances as 
parameters of the model. Assuming all variables have zero means, with @ = E( 55’) 
the covariance matrix of the independent variables, the parameter matrices of the 
model are p, y and @. These matrices generate the covariance structure of any 
observed or measured variables involved in (n, 0, which are a subset of (n, 5) 
since n and 5 may contain latent variables (hypothetical constructs such as 
factors), errors in variables, disturbances in equations (in the econometric sense), 
residuals, i.e., any and all variables that may be involved in a linear system. Let 
v = (n’, t’)‘, B be a partitioned matrix containing rows (/3, 0) and (0, 0), and 
I’ = (y’, I)‘. Then Y = Bv + r< is equivalent to (1). Assuming the inverse exists, it 
follows that all variables can be expressed as v = (I - B)-'I'<, namely, as a linear 
combination of independent variables. Now, letting x be the vector of measured 
variables which must be a subset of all variables v, they can be expressed as 
x = G,v where G, is a known selection matrix of zeros and ones. Thus, x = 
G,(I- B)-'r(, and the covariance matrix 2 of x is obtained as 2 = E( xx’), or 

Z= G,(I-- B)-'lW'(I-B)-"G;. (2) 

Thus if B is the vector of free or unknown parameters in /3, y, and @, ,Z = Z( 0). 
Considering only the nonredundant elements in 27, the lower triangle, and placing 
these into the vector B, we have (I = a( 0). Evidently, this is a covariance structure 
model. We shall assume that the means p = E(x) are not a function of 8, so that 
estimation and evaluation of (2) can be done on deviation scores and the sample 
covariance matrix S. 

The EQS [2] program estimates the parameters via the generalized least squares 
(minimum distance) approach by minimizing a function 

Q(e) = b - dS)>‘J,f+ - @>), (3) 
where s is the vector of nonredundant sample covariances (selected from S) to be 
modeled, and a( 0) is a model for the covariances with the unknown elements 
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taken from the parameter matrices /3, y and @. Aside from the fixed parameters, 
the unknown parameters may be freely estimated, or the free parameters can be 
estimated within specified intervals, or they may be made to satisfy linear 
equality constraints. The weight matrix W can be specified in several ways to 
yield a number of different estimates that depends on the distribution assumed 
for the variables x (normal, elliptical, arbitrary) and the computational method 
involved. Under arbitrary distributions, W-l must be a consistent estimator of 
the asymptotic covariance matrix of the data vector s, so that Q(6) has an 
asymptotic &i-square distribution to evaluate the structural hypothesis ,Y = z( 0). 
Under normal distributions on x, W has a simpler form depending only on a 
consistent estimator of the sample covariance matrix S (to yield best generalized 
least squares estimates) or z(8) (iteratively updated, to yield maximum likeli- 
hood estimates). The statistical theory is summarized in Chapter 3 of [2]. The 
output of the program gives the final estimates, standard error estimates, the 
goodness-of-fit test, and other important information such as Lagrange Multiplier 
or Wald tests of restrictions, for further statistical inferences. The simple form of 
eq. (1) makes it clear that any linear structural model can be analyzed by EQS. 
For example, the factor analytic model x = AS + E can be handled by letting 
7 = x, /I = 0, y = (A, I) and 5 = (S’, E’)‘. Next, we will demonstrate how EQS 
can be applied to analyze various multimode models. 

3. Multimode latent variable models 

Tucker [12] developed a generalization of principal component analysis to more 
than two modes of measurements. His model was rewritten as a modified factor 
analytic model by Bloxom [5], and developed statistically by Bentler and Lee [3]. 
A representation of this model is given by 

x=/~-t(A@B)Gq+l, (4 

where p = E(x) and 2 = E(x - p)(x - p)‘. Assuming that E( ~5’) = 0, the co- 
variance structure is 

,X=(A@I?)G@G’(A@B)‘+Z, (5) 

where 8 is the Kronecker product of matrices, A and B are factor loading 
matrices for the two fixed modes, G is a rearranged core matrix, @ is the 
covariance matrix of the common factors q, and Z is the arbitrary (not neces- 
sarily diagonal) covariance matrix of the unique factors [. Many interesting 
specializations of this model exist, but these will not be discussed here. 

Consider the following system of structural equations 

x=jJ+(A@I)OL*+~, 

(6) 
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where (or and (Ye are random vectors of appropriate order. Evidently, the 
equations (6) are equivalent to (4) as can be verified by substitution. To 
demonstrate that (6) is a special case of (l), let 77 = ((x - ,u)‘, cr;, ai)’ and 
5 = ([‘, 77’)’ be the vectors of (1) in terms of the vectors of (6); let fi be the 3 x 3 
supermatrix with rows (0, A @ I, 0), (0, 0, I @ B), and (0, 0, 0); and let y be the 
3 x 2 supermatrix with rows (I, 0), (0, 0), and (0, G). Clearly (6) is a special case 
of (l), with the covariance structure given in (5) consequently being a special case 
of (2). As a result, the EQS program can be applied to analyze the model. Note 
that the Kronecker product matrices in (6) are simply matrices with some known 
zeros and equality constraints among elements. 

Principal component models have been extended to more than three modes 
[7,9], but this has not been done for factor analytic models. The above approach 
can be easily extended to an arbitrary number of modes by considering the model 

x=/~u((A,@ a.. @&)Gq+S (7) 

with covariance structure 

X=((A,@ *** &4,)G@G’(A, @ *. . @A,+) + Z. 

The Bentler-Weeks representation of (7) is given by 

x=/.L+(Al@I*Q3 *-* @I,&+[, 

q 4 (I, @AA, 63 - * * @I/Ja*, 

a,_,=(I,6JIz@ *-* @Ak)(Yk, 

ak = Gq. 

(8) 

(9) 

Stacking (9) into supervectors with 7) = ((x - cl)‘, cy;,. .., &__i, a;)’ and 5 = 
(5’17’)’ and placing the matrices of (9) into appropriate sections of p and y of (l), 
shows that (1) can handle the model (7). Thus, the covariance structure (8) 
follows, which, being a special case of (2), can be handled by EQS. 

The structures of all standard three-mode models are destroyed by variable 
resealing. For example, if x * = Dx where D is a diagonal matrix, with 

X *=~*+D(A@b)G~+~*, 

only CL* and {* are scale-free (i.e., have p* = 0~ and l* = DC), and the 
Kronecker product structure is destroyed. Statistically speaking, it is thus im- 
proper to analyze arbitrarily scaled (e.g. correlation-metric) data since conclu- 
sions about the structure will depend on the metric chosen. It is possible to 
generate scale-invariant models. For example, Lee and Fong [lo] considered the 
model 

x=j~++[(A@@Gq+5] (IO) 

whose structure in the brackets is invariant to resealing by diagonal matrices, 
since the diagonal matrix D absorbs the scaling. Thus, the covariance structure 

~=D[(A~B)G~G’(A~B)‘+Z]D=DPD (II) 
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has an invariant three-mode representation under such constraints as Diag( P) = I 
or Z = I. The former represents the three-mode structure in a correlation metric, 
while the latter is in the form of Bentler’s [l] factor analytic model. In similar 
fashion as above, it can be shown that this model is a special case of the 
Bentler-Weeks model with structural equations 

and with same covariance structure (11). 
In all the above models, the unobserved random variables 77 and 1 have been 

considered as noncausally related. Next, we consider models that allow the 
variables to be structurally related. For example, if 

x=p+D[(A 
and 

77 = Ps + Y5, 

then, if the inverse 

x=/.L+D (A [ 

Q B)Gq + S] 

exists, 17 = (I - /3)-iy& Thus, 

@B)G(M)-‘ut+& 

(13) 

(14 

(15) 

with the obvious covariance structure under the typical assumption that E(t[‘) 
= 0. Such models generalize multimode structural models as they are currently 
conceived. The Bentler-Weeks representation of (15) is given by 

x=p+Dy, y=(A@%+l, 

ai = (18 @a,, a2 = Ga3, a3=Pa3+a4, a4 = u5‘. 
(16) 

Substitution of (16) to yield (15) requires noting that the equation for a3 can be 
equivalently written as a3 = (I - /3)-la4. 

The models defined by (7), (10) and (15) are extensions of the basic Bentler-Lee 
model (4) with various special features. The following model is a general one 
which combines all three extensions together: 

x=j.J+D (A,@ **a [ @A,)G(I- P)-‘~5 + P], 07) 

with the appropriate covariance structure. Again this general model can be 
written as a special case of the Bentler-Weeks model by defining 

x=p+Dy, 

Y=(A,@~~@ ... @lk)al+{, 

ai = (I, @A, C3 . a. @Jk)a2, 

ak_l = (I, @ I2 @ - - - @Ak)ak, 

ak = GP,, 

Pl =Pp, + P2, 

P2 = vtv 

(18) 
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with additional random vectors pi and p2. Hence, this complicated multimode 
model can be handled easily via the EQS program. 

4. Example 

To provide an example to illustrate the materials discussed, we reanalyzed the 
data reported in Bentler and Lee [3] via the EQS program, which consisted of 
four personality traits measured by three methods of measurement. The traits 
were extraversion (E), anxiety (A), impulsivity (I), and achievement motivation 
(M), and the methods were peer report (P), teacher.rating (T), and self-rating (S). 
Thus there were 12 measured variables (EP, AP, IP, MP, ET, AT, IT, MT, ES, 
AS, IS, MS), which, in EQS as shown in Appendix 1, are labeled Vl-V12. The 
covariance matrix was reported in Bentler and Lee (actually, a correlation matrix 
with standard deviations unavailable), and is reproduced in the last section of 
Appendix 1. The proposed 3-mode model was given by (4) and (5) with A = 

[IA, al’, B = [Itt, 4’ where 1,(2 X 2) and 1,(3 X 3) are fixed identity matrices, 
a(2 x 1) and b(3 x 1) are parameter vectors, @(6 X 6) is a fixed identity matrix, 
the upper triangular elements of G(6 X 5) are fixed at zero while the remaining 
elements of G are free parameters, and Z is diagonal with Z(l, 1) and Z(5, 5) 
fixed at zero (for correspondence to [3]). The 3 X 2 matrix A provides a 2-factor 
representation of the three methods. The 4 X 3 matrix B provides a 3-factor 
representation of the four traits. The identity submatrices of these matrices were 
fixed for purposes of identification. The G matrix provides the transformation of 
the 2 x 3 = 6 trait-method factors into 5 individual difference person factors. 

The program code for using EQS to get the GLS solution is presented in 
Appendix 1. The first 14 lines of EQS code provide identifying information for 
the run and indicate that GLS estimation is to be used. The model as given in (6) 
contains three sets of equations. The first, x - p = (A @ I)ai + l1 provides 12 
equations for the 12 measured variables in terms of the 8 ai and 12 [ factors. 
Thus (A @ I) is 12 x 8 with only a few unknown entries. In the /EQUATIONS 
section of Appendix 1, the first 12 equations for Vl-V12 provide the specifi- 
cation. The 8 (pi factors are called Fl-F8 and the 12 S factors are called El-El2 
in the job setup. The * indicates a free parameter and the number next to it is an 
initial estimate of its value. Since (A @ I) contains equalities, these are specified 
in the first two lines of the /CONSTRAINTS section. A free parameter can be 
located by the equation involved and the predictor variable, e.g., (V9, Fl) refers 
to the V9 predicted by Fl, that is, the .5* in the equation for V9. Although 
equations for Vl-V12 seem to contain 8 free parameters, the two constraint lines 
verify that there are only 2 free parameters - the number specified in a (2 x 1) as 
noted above - with the rest being functionally dependent, specifically, identical 
to the 2 free parameters. 

The second set of equations in (6), (pi = (I Q B)a2, is given in Appendix 1 by 
the 8 equations for Fl-F8. Since (I @ B) is 8 X 6, a2 is 6 x 1 with the labels 
F9-F14 in the program. Only 6 elements of (I @ B) are free parameters and, 
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Table 1 
GLS solution of Bentler and Lee’s example 

A B Z diag 

1 0 1 0 0 0 
0 1 0 1 0 0.20 (0.08) 
0.34 (0.11) 0.25 (0.11) 0 0 1 0.15 (0.10) 

0.62 (0.13) 0.92 (0.15) - 0.55 (0.16) 0.20 (0.08) 
0.0 
0.22 (0.08) 

G 

0.88 (0.09) 0.32 (0.09) 
- 0.47 (0.12) 0.69 (0.10) 0.17 (0.07) 

0.36 (0.12) - 0.09 (0.14) 0.71 (0.11) 0.48 (0.10) 
0.56 (0.11) 0.14 (0.11) 0.09 (0.11) 0.71 (0.07) 0.62 (0.13) 

- 0.30 (0.12) 0.58 (0.11) 0.07 (0.10) - 0.19 (0.09) 0.44 (0.10) 0.37 (0.10) 
0.33 (0.11) 0.10 (0.13) 0.55 (0.11) 0.32 (0.09) - 0.08 (0.12) 0.33 (0.08) 

Note: Standard errors are in parentheses. 

according to the specification, 3 of these are free and the other 3 are equal as 
shown in the last three lines of the /CONSTRAINTS section. The final set of 
equation in (6) a2 = Gn, is given by the equations for F9-F14 in the /EQUA- 
TIONS stream. The 5 person factors n1 - n5 are called F15-F19 in the program. 

The only variances that need estimation are those for the { variables, since the 
n variables are specified to be uncorrelated, unit variance. The free [ variances 
are given in the first row of the /VARIANCES section, while the fixed 5 and 

Table 2 
ML solution of Bentler and Lee’s example 

A B Z diag 

1 0 1 0 0 0 
0 1 0 1 0 0.43 (0.09) 
0.22 (0.10) 0.43 (0.11) 0 0 1 0.23 (0.11) 

0.56 (0.11) 1.13 (0.13) - 0.64 (0.15) 0.24 (0.09) 
0 
0.36 (0.09) 

G 

1.0 (0.09) 0.39 (0.09) 
- 0.43 (0.11) 0.59 (0.09) 0.22 (0.08) 

0.45 (0.12) - 0.07 (0.16) 0.77 (0.11) 0.72 (0.12) 
0.64 (0.11) 0.16 (0.11) 0.01 (0.11) 0.75 (0.07) 0.96 (0.17) 

- 0.28 (0.11) 0.64 (0.11) 0.03 (0.11) - 0.11 (0.09) 0.32 (0.14) 0.72 (0.13) 
0.41 (0.11) 0.18 (0.13) 0.49 (0.12) 0.37 (0.09) -0.10 (0.15) 0.55 (0.10) 

Note: Standard errors are in parentheses. 
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fixed n variances are specified in the subsequent two lines. The input matrix 
completes the EQS specification. 

The program converged in 5 iterations, yielding a &) = 52.3. The estimates 
and their standard error estimates are reported in Table 1. We observe that this 
solution is very close to that given in Bentler and Lee [3]; the maximum 
difference in estimates and standard errors is .Ol. The same result was obtained 
when residual standard deviations, rather than variances, were estimated, to 
duplicate the result given in [3] (output not shown to conserve space). In addition, 
as was mentioned above, the EQS program can produce maximum likelihood 
estimates as well. To do this, we only need to change the input ‘ME = GLS’ to 
‘ME = ML’. The ML solution for this example is reported in Table 2. We observe 
that the ML solution is quite similar to the GLS solution in terms of relative size 
and signs of estimates. The lack of a closer correspondence is probably due to the 
small sample size (N = 68) of the data. 

We have also analyzed several other data sets, and verified that the EQS 
program produces reasonable results. 

5. Discussion 

We have shown how complex multimode models can be handled by the BMDP 
program EQS because of the simplicity of verifying the correspondence between 
multimode models and the Bentler-Weeks equations, as well as the ease of 
implementation as shown in Appendix 1. Other programs could certainly be used 
as well, at least under the normal distribution assumption (no other publically 
distributed packages currently produce elliptical and distribution-free estimates 
and tests as well). 

At present, perhaps the most widely used package program in covariance 
structure analysis is the LISREL program developed by Jiireskog and Sijrbom [6]. 
The basic model is represented by the following structural equations 

q* = B*n* + r*t* + s*, Y*=pLy+1(2Y*?I*+&*, 

x*=/L,+51,*~*+6*, 09) 

where (I - B * ) is assumed to be nonsingular. Then from (6) we see that if we let 

Y * = & /l_y = p, n* = (a;, a;)‘, t* = q, [* = 0, E* = l, /..tL, =S* = 0, 0; = 0, B* 
be the 2 x 2 supermatrix with rows (0, I@ B) and (0, 0), r* be the 2 x 1 
supermatrix (0, G’)‘, and &?T be the 1 x 2 supermatrix (A 8 I, 0) with COV(E*) = 
Z, and cov( [*) = @, then the LISREL model can handle the basic three-mode 
model as well. By similar reasoning as above, it can be shown that the LISREL 
model can be applied to obtain solutions for other more general 3-mode models 
as described in the previous sections. To illustrate, the job setup for the LISREL 
run corresponding to the ML solution of Table 2 is shown in Appendix 2. To 
conserve space, the input correlation matrix, the labels, and the value cards 
specifying start values are not included. The LISREL results agree with the EQS 
solution of Table 2. 
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This paper has emphasized the confirmatory, hypothesis testing, approach to 
multimode models which permits the statistical evaluation of the adequacy of a 
model, its parameters, and its restrictions. Of course, in many contexts, explora- 
tory data analysis including multimode model evaluation may be more desirable. 
In that case, a least squares approach to model fitting, with its minimal assump- 
tions, may be more appropriate. This can be done with the EQS program as well. 
An advantage of exploratory versions of multimode models is that identification 
conditions that are initially imposed to yield a unique solution may be modified 
subsequently by transformation of relevant matrices into a more interpretable 
form (see, e.g., [3]). Such rotations cannot be carried out within EQS or LISREL. 
If a component rather than latent variable type of solution is desired, more 
specialized programs (e.g., [S]) would probably be more appropriate. 
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Appendix 1 

/TITLE 

BENTLER AND LEE’S DATA (1979) 

INTERCORRELATION OF FOUR PERSONALITY VARIABLES MEASURED BY PEER, 
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TEACHER, AND SELF-RATINGS 
/SPECIFICATIONS 
CASES=68; VARIABLES=12; ME=GLS; 
/LABELS 
Vl=EP; VZ=AP; V3=IP; V4=MP; 
V5=ET; V6=AT; V7=IT; V8=MT; 
V9=ES; Vi O=AS; VI 1 =IS; VI 2=MS; 
F1 =ALPHA11; F2=ALPHA12; F3=ALPHA13; F4=ALPHA14; 
F5=ALPHA15; F6=ALPHA16; F7=ALPHA17; F8=ALPHA18; 
F9=ALPHA21; F1 O=ALPHA22; F11 =ALPHA23; F12=ALPHA24; 
F13=ALPHA25; F14=ALPHA26; 
F15=ETAl; F16=ETA2; F17=ETA3; F18=ETA4; F19=ETA5; 
/EQUATIONS 
Vl=Fl+El; 
V2=F2+E2; 
V3=F3+E3; 
V4=F4+E4; 
V5=F5+E5; 
V6=F6+E6; 
V7=F7+E7; 
V8= F8+E8; 
V9=.5*F1+.3*F5+E9; 
V10=.5*F2+.3*F6+ElO; 
Vll=.5*F3+.3*F7+E11; 
v12=.5*F4+.3*F8+E12; 
F1=F9; 
F2=F10; 
F3=F11; 
F4=.5*F9+.8*F10-.5*F11; 
F5=F12; 
F6=F13; 
F7=F14; 
F8=.5*F12+.8*F13-.5*F14; 
F9=.8*F15; 
F10=-. 5*F15+.6*F16; 
Fll=.3*F15-.l*F16+.7*F17; 
F12=.5*F15+.1*F16+.1*Fl7+.7*F18;- 
F13=-. 3*F15+.5*F16+.1*F17-.2*Fl8+.5*F19; 
F14=.3*F15+.1*F16+.5*Fl7+.3*F18-.1*F19; 
/CONSTRAINTS 
CV9,Fl)=CV1O,F2)=CV1l,F3)=CV12,F4); 
Cv9,F5)=CV1O,F6)=CV1l,F7)=CVl2,F8); 
CF4,F9)=CF8,F12); 
CF4,FlO)=CF8,F13); 
CF4,Fll)=CF8,F14); 
/VARIANCES 
E2 TO El2 X E5 = .5*; 
El =O; E5=0; 
F15 TO F19=1.0; 
/MATRIX 
1.0 
-.38 1.0 

.42 -. 21 1.0 
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-.25 .54 -.54 1.0 
.64 -.I5 -26 -.05 1.0 

-.29 .66 -.I9 -44 -.25 1.0 
-38 -.09 .56 -.I9 -59 -.I4 1.0 

-.22 -51 -.33 .66 -06 -62 -.05 1.0 
-45 -.05 .I2 .I0 -50 -.05 .36 .I7 1.0 
-04 -38 -.03 .I4 -08 -30 -09 .I6 -02 1.0 
.33 -.I3 -35 -.I8 .41 -.I4 -45 -.I3 -43 .I6 1.0 

-.21 -37 -.44 -58 -.Ol .41 -.I0 .62 -06 .04 -.37 1.0 
/END 

Appendix 2 

Bentler and Lee’s data (1979) 
DA NI=12 NO=68 MA=KM 
MO NY=12 NE=14 NK=5 PH=ID,FI PS=ZE,FI BE=FU,FI TE=DI,FR 
FI GA(l,l)-GA(8,5) 
FI GA(9,2)-GA(9,5) GA(10,3)-GA(10,5) GA(11,4bGA(11,5) GA(12,5) 
FI TE(l,l) TE(5,5) 
FR LY(9,l) LY(10,2) LY(11,3) LY(12,4) 
FR LY(9,5) LY(10,6) LY(11,7) LY(12,8) 
FR BE(4,9) BE(4,lO) BE(4,ll) BE(8,12) BE(8,13) BE(8,14) 
EQUAL l,Y(9,1> LY(10,2) LY(11,3) LY(12,4) 
EQUAL LY(9,5) LY(IO,~) LY(l1,7) LY(12,8) 
EQUAL BE(4,9) BE(8,12) 
EQUAL BE(4,lO) BE(8,13) 
EQUAL BE(4,ll) BE(8,14) 
OU ML AL 


