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Abstract

ŽThis paper describes the incorporation of a hard modeling step based on a kinetic model, into a soft modeling multi-
.variate curve resolution technique. The soft modeling technique allows for the determination of the retention and spectral

profiles from overlapped components while the hard modeling step allows for the simultaneous prediction of the rate con-
stants of the various steps in the reaction pathway. The program uses standard MATLABw functions for determining the
solutions of the differential equations as well as for finding the optimal rate constants to describe the kinetic profiles. The
kinetic model is entered by a set of command line parameters and can describe any order chemical reaction with multiple
reaction pathways. This paper uses simulated first- and second-order reaction data as well as real data to characterize the
performance of the program. The algorithm is able to resolve overlapped retention and spectral profiles and predict the rate
constants for the reaction.q2001 Elsevier Science B.V. All rights reserved.

Keywords: Multivariate curve resolution; Non-linear fitting; Kinetic model

1. Introduction

When chemical species have overlapping re-
sponses, soft modeling chemometric methods may be
used to isolate the individual species-dependent re-
sponses. Chemometric techniques such as multivari-

Žate curve resolution-alternating least squares MCR-
.ALS are very flexible and let the operator apply

constraints that prevent the calculation from converg-
w xing to a chemically invalid solution 1 . But in order

to determine the kinetic parameters of the chemical
system, the kinetic profiles resolved by this tech-

) Corresponding author. Tel.:q1-804-828-7517; fax:q1-804-
828-8599.

nique have to be fit to a chemical model separately
w x2,3 .

The incorporation of a hard modeling step into a
soft modeling method can decrease the rotational
ambiguity of the soft modeling solution. Some re-
searchers have done exactly this, by incorporating a
chemical-kinetic model into their soft modeling

w xmethods. De Juan et al. 4 have used the analytical
solution of the corresponding differential equation
while applying MCR-ALS to a three-way data set in
order to estimate rate constants for consecutive first-

w xorder reactions. Bijlsma et al. 5–8 also used the an-
alytical solution of the corresponding differential
equation for consecutive first- and second-order reac-
tions in conjunction with the generalized rank anni-
hilation method and with PARAFAC. This is an ex-

0169-7439r01r$ - see front matterq2001 Elsevier Science B.V. All rights reserved.
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cellent and fast approach when the solution of the
differential equations is known or when the kinetic
profiles can be described by a sum of exponential

w xfunctions 9 10 . However, this is not always possi-
ble for some reaction pathways. Haario and Taavit-

w xsainen 11 applied a numerical differential equation
solver to determine the rate constants during indirect
calibration methods such as principal component re-
gression and partial least squares, and direct calibra-
tion methods such as generalized ridge regression.
However, all these methods are fixed for a single re-
action pathway. When a different reaction needs to be
investigated, the program has to be partly rewritten.

Ž .The method described in this paper ALS-DQ
uses the standard MATLABw ordinary differential
equation solvers rather than the analytical solution of
the corresponding differential equations. This paper
also illustrates a convenient set of parameters to ex-
press the differential equations in such a way that it
can be used by a differential equation solver without
the need for rewriting part of the program when
changing between different reaction models. The fo-
cus here is on fitting liquid chromatography-diode

Ž .array detection LC-DAD data, but the curve resolu-
tion approach described here can be applied to a wide
range of data types. Moreover, the kinetic fitting al-
gorithm is a stand-alone subroutine that can be used
to fit kinetic profiles from any type of experiment.

This paper examines the behavior of this non-lin-
ear kinetic fitting algorithm incorporated into an
MCR method by analyzing synthetic data and the
chemical degradation reaction of the herbicide Ally.
The Ally degradation pathway is depicted in Scheme
1. The ability of the ALS-DQ program to fit the data
representing this complex pathway demonstrates the
applicability of this method for handling diverse ki-
netic models.

2. Theory

2.1. MCR-ALS

The MCR-ALS algorithm used here has been ex-
tensively described in an earlier paper and the gen-

Scheme 1. The degradation of Ally.
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w xeral approach will be summarized here 12 . In this
approach, a two-way data set can be described as the
inner product of the concentration profiles and the

Ž . w xpure component spectra according to Eq. 1 13 .

DsCPSTqE 1Ž .

Ž . Ž .whereD T=S is the data matrix,C T=N con-
tains the concentration profiles for each of the pure

Ž .components,S S=N contains the pure component
Ž .spectra andE T=S is the error matrix. The vari-

ablesT, S and N represent the number of chromato-
graphic time points, the number of measured wave-
lengths and the number of components, respectively.

With one set of the pure component profiles esti-
Žmated initially the concentration profiles in this

.case , the other set of profiles can be calculated us-
Ž .ing Eq. 2 .

y1T TSs C PC PC PD 2Ž . Ž .

This process can be constrained and iterated upon
until a set minimal improvement of the fit error is

w xreached 14 .
When analyzing three-way data using the general-

Ž .ized ALS program, the data is described by Eq. 3
w x12 .

Ds RmK mSqE 3Ž . Ž .

Ž . ŽwhereD T=S=K is the data tensor,E T=S=
. Ž .K is the error,R T=N=K represents the reten-

Ž .tion profiles, S S=N=K contains the spectral
Ž .profiles andK K=N holds the kinetic profiles.K

is the number of kinetic time points.
The resolution occurs analogously to the two-way

approach by multiplying the data set by the pseudo
Ž .inverse of RmK and S in sequence.RmK are

subsequently separated by normalization.
The solutions are limited by chemically relevant

constraints, such as non-negativity and unimodality
and the kinetic model constraint. The kinetic profiles
are fit to the chemical model and rate constants are
obtained that can be used to simulate updated kinetic
profiles. These new kinetic profiles result in different
retention- and spectral profiles during the next step of
the iteration and help the program to converge to a
chemically sound solution.

2.2. Parameters describing a kinetic model

The method described in this paper uses a numeri-
cal approach to solve the differential equations by
using an ordinary differential equation solver
Ž . w w xODE23 that comes with MATLAB 15 . It re-
quires simple parameters, not unlike state-space
models, to describe the reaction pathway. This re-
sults in the flexibility to fit any chemical reaction
pathway, including those with non-first-order reac-
tions.

For a reaction pathway withN rate constants and
M components, the differential equation describing
the kinetic profile for each component can be ex-

Ž .pressed by Eq. 4 .

N Md X oj jis k X 4Ž .Ý Łi jž /dt js1is1

where k is the rate constant ando is the order ofi ji

the reaction in speciesX in the ith step of the over-j

all reaction pathway.
Consider for example the following hypothetical

reaction:AqB™ k1 C and 2C™ k 2 Dwhere the
rate equations for the various components can be

Ž .written as Eq. 5 .

w xd A
w x w xsyk A B1dt

1 1 0 0w x w x w x w xsy1=k A B C D1

0 0 2 0w x w x w x w xq0=k A B C D2

w xd B
w x w xsyk A B1dt

1 1 0 0w x w x w x w xsy1=k A B C D1

0 0 2 0w x w x w x w xq0=k A B C D2

w xd C 2w x w x w xsk A B yk C1 2dt
1 1 0 0w x w x w x w xsq1=k A B C D1

0 0 2 0w x w x w x w xy1=k A B C D2

w xd D 1 2 1 1 0 0w x w x w x w x w xs k C sq0=k A B C D2 1dt 2
1 0 0 2 0w x w x w x w xq =k A B C D 5Ž .22
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A closer examination reveals that each rate constant
is multiplied by the same component concentrations
in all cases. This understanding is used in this algo-
rithm in order to describe the chemical model. Each
rate constant has a corresponding vector indicating
the order of the components in each reactant. Fork1

w x w x w x w x w xthis would be 1 1 0 0 for A , B , C and D , re-
w xspectively, while fork this vector is 0 0 2 0 . The2

combination of these two vectors constitutes the re-
action order matrix,O.

The next step is to indicate which rate constants
are used to model each time dependent concentration
for each species. These are the coefficients shown in

Ž . w x w xbold in Eq. 5 . For dA rdt this would be y1 0
for k and k , respectively. Each row in the matrix1 2

indicates a time-dependent concentration for a com-
ponent and each column corresponds to a rate con-
stant, resulting in the reaction pathway matrix,

y1 q0
y1 q0
q1 y1R:

1
q0 q

2

When O is the reaction order matrix,o an ele-ji

ment of this matrix,k is the rate constant,M is thej
w xnumber of reacting components andX is the con-i

centration of theith component, for each reaction
step, the rate law for each step in the reaction mecha-

Ž .nism can be calculated according to Eq. 6 .

M
ojiw xp sk X 6Ž .Ž .Łj j i

is1

Then whenR is the reaction pathway matrix,rm j

is an element in this matrix,N is the number of rate
constants andm is the component number, it follows
that each time derivative of each component concen-

Ž . Ž .tration as shown in Eq. 4 is given by Eq. 7 .

Nw xXm
s r =p 7Ž .Ž .Ý m j jdt js1

Ž . Ž .Eqs. 6 and 7 are converted into a Matlab func-
Ž .tion ‘kinfun’ that requires the input parameters of

the reaction order and reaction pathway matrix as well
as a vector containing the rate constants. The output
is a vector containing the derivatives for each com-

ponent. The ODE function call is given by the fol-
lowing command line

w xt , y sODE23 @kinfun, reaction times,Ž –

wxinitial conc, , model ;.–

where y contains the concentration profiles for each
reaction time int, kinfun is the name of the function
described above, reaction times is a vector contain-–
ing the various time points, initial conc is a vector–
containing the starting concentrations for each of the
components and model is a structure array contain-
ing the reaction order and pathway matrix and the
vector with the rate constants.

The kinetic profiles of all four species in this ex-
ample are depicted in Fig. 1 for the case where all the
rate constants are 0.5. When equal starting concen-
trations are used, the concentration profiles of A and
B will be identical in this kinetic model and are over-
lapped in Fig. 1.

2.3. Optimization of the fit

Ž .A second function kinetic fit is used to find the–
rate constants that fit the kinetic profiles using the

Ž .multi-parameter minimum search FminSearch in
MATLAB w based on the Nelder–Mead algorithm
w x16 . This function uses the modeled rate constants,
simulates the kinetic profiles and calculates the dif-
ference between the simulated kinetic profile and the

Fig. 1. Simulated kinetic profile for consecutive second order re-
Ž . Ž . Ž . Ž .actions for A — , B PPP , C P–P– and D ––– .
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chemometrically resolved kinetic profiles. The search
algorithm finds the rate constants that result in the
best fit between the simulated profiles and the re-
solved kinetic profiles during each iteration of the
ALS-DQ procedure. The FminSearch function call is
given by the following command line:

wxopt ratessFminSearch @kinetic fit, old rates, ,Ž– – –

k profiles, model ;.–

where opt rates is a vector with the optimal rate–
constants, kinetic fit is the name of the function de-–
scribed above, old rates is a vector with the length–
equal to the number of rate constants that contain the
initial estimates for the rate constants, k profiles–
contains the matrix with the kinetic profiles resolved
by ALS and model is a structure array containing the
reaction order and pathway matrix and a vector con-
taining the reaction times.

3. Experimental

3.1. Generation of synthetic data

All the simulated data were generated in a similar
w xfashion to that described previously 12 . Compo-

nents with equal height and Gaussian peak shapes
were used for the retention profiles and are shown in
Fig. 2a. The spectral profiles were generated by
adding a Gaussian function to an exponential decay
function and are shown in Fig. 2b. The kinetic pro-
files were generated by numerically solving the dif-
ferential equations for the specific reaction pathway.
A summary of the simulated data sets is given in
Table 1. Table 1 also shows the parameters that were
used to describe the reaction pathways as well as the
parameters to describe the Ally degradation pathway.

For the simple first- and second-order reactions,
the data set was generated with either 1% or 7% nor-
mally distributed random noise, 5, 10 and 15 reac-
tion time points and to 99%, 75% and 50% com-
pletion of the reaction as indicated by the product
concentration. The rate constant was 0.5 for each ex-
periment.

For the multiple step reactions, the data were gen-
erated with 0.1% and 0.5% normally distributed
noise, 5, 10 and 15 reaction time points and 99%,
75% and 50% completion of the reaction as indi-

Ž . Ž .Fig. 2. Simulated retention a and spectral b profiles for compo-
Ž . Ž . Ž . Ž .nents A — , B PPP , C P–P– and D ––– .

cated by the product concentration. For the consecu-
tive first-order reactions, the second rate constant was
varied between 0.25, 0.5 and 1.0 while the first was
set to be constant at 0.5. For the consecutive first-
order reaction with a reversible side reaction,k and1

k were set constant at 0.5, whilek was varied be-2 3

tween 0.25, 0.5 and 1 and the equilibrium constant
was either 5 or 0.2.

The ALS fit quality was calculated according to
Ž .Eq. 8 .

2optimal inputd ydŽ .Ý t ,s ,k t ,s ,k
t ,s ,k%lack of fits100 8Ž .2input) dŽ .Ý t ,s ,k

t ,s ,k

The actual pattern of the noise is different for ev-
ery simulation. Therefore, all simulations and the
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Table 1
Different chemical models used to characterize the ALS-DQ program

Chemical reaction Differential equations Reaction pathway matrix Reaction order matrix

d Ak1 y16 w x w xA B syk A 1 01 1dt

y1d Ak1 26 1w x w x2 A B syk A 2 01dt
2

dB 1
2w xsq k A1dt 2

y1 0d Ak k1 2 1 0 06 6 w xA B C syk A 1 y11 0 1 0dt 0 1
dB

w x w xsqk A yk B1 2dt
dC

w xsk B2dt
y1 0 0 0 1 0 0 0

k k w xd A1 2 1 y1 y1 1 0 1 0 06 6

w xA B C syk A1

R

R 0 1 0 0 0 1 0 0dt
0 0 1 y1 0 0 0 1

k k4 3 w xd B
w x w xsk A yk B1 2dt

D w x w xyk B qk D3 4

w xd C
w xsk B2dt

w xd D
w x w xsk B yk D3 4dt

d Ak k1 26 6 w x w xA B C syk A yk A1 3dt y1 0 y1 0 0 0 0 1 0 0 0 0 0 0
1 y1 0 y1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 y1 0 0 1 0 0 0 0 0 0dBk3 6 w x w x w xA DqE sqk A yk B yk B 0 0 1 1 1 0 0 0 1 0 0 0 0 01 2 4dt 0 0 1 0 0 y1 0 0 0 1 0 0 0 0
0 0 0 1 0 1 y1 0 0 0 0 1 0 0dCk4 6 0 0 0 0 1 0 1 0 0 0 0 0 1 0w x w xB DqF sqk B yk C2 5dt

dDk5 6 w x w x w xC DqG sqk A qk B qk C3 4 5dt
dEk6 6 w x w xE F sqk A yk E3 6dt
dFk7 6 w x w x w xF G sqk B qk E yk F4 6 7dt
dG

w x w xsqk C qk F5 7dt
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analysis of the simulated data were done in replicates
of 10 and the resolution results were averaged and the
standard deviations were calculated.

3.2. Chemical data

wwŽMethyl-2- 4-methoxy-6-methyl-1,3,5-triazin-2-
. x xyl aminocarbonyl -aminosulfonyl benzoate is known

under the trade name Metsulfuron methyl or Ally
w x17 . This compound was generously donated by
Dupont de Nemours. All other chemicals were pur-
chased from Aldrich and used without further purifi-
cation. The water was purified using a nanopure, ul-
trapure water system from Barnstead.

The LC-DAD instrument was a Hewlett-Packard
1090 system. The mobile phase consisted of 50%

Table 2
Ž . ŽFit results of simple first- and second-order reactions using the correct kinetic model upper half and the incorrect kinetic model lower

. y1half . The synthetic rate constant is 0.5 time in all cases
k k1 16 6

A B 2 A B
a y1 a y1Ž . Ž .Noise Number of Completion Kinetic k time ALS fit Noise Number of Completion Kinetic k time ALS fit1 1

a aŽ . Ž . Ž . Ž . Ž . Ž .% data points % model error % % data points % model error %

Ž . Ž . Ž . Ž .1 15 99 A™B 0.499 0.003 5.1 0.04 1 5 99 2A™B 0.52 0.01 6.1 0.2
Ž . Ž . Ž . Ž .1 10 99 A™B 0.49 0.004 5.2 0.1 1 10 99 2A™B 0.52 0.01 6.0 0.1
Ž . Ž . Ž . Ž .1 5 99 A™B 0.49 0.01 5.2 0.1 1 15 99 2A™B 0.51 0.004 6.0 0.1
Ž . Ž . Ž . Ž .1 15 75 A™B 0.54 0.004 6.4 0.2 1 5 75 2A™B 0.59 0.02 7.5 0.3
Ž . Ž . Ž . Ž .1 10 75 A™B 0.54 0.005 6.3 0.2 1 10 75 2A™B 0.59 0.02 7.2 0.2
Ž . Ž . Ž . Ž .1 5 75 A™B 0.54 0.01 6.5 0.1 1 15 75 2A™B 0.60 0.01 7.2 0.2
Ž . Ž . Ž . Ž .1 15 50 A™B 0.61 0.01 7.0 0.4 1 5 50 2A™B 0.69 0.07 7.9 0.4
Ž . Ž . Ž . Ž .1 10 50 A™B 0.61 0.01 7.5 0.7 1 10 50 2A™B 0.66 0.02 7.0 0.5
Ž . Ž . Ž . Ž .1 5 50 A™B 0.59 0.01 7.2 0.3 1 15 50 2A™B 0.66 0.01 7.1 0.5
Ž . Ž . Ž . Ž .7 15 99 A™B 0.38 0.02 34.3 0.2 7 5 99 2A™B 0.30 0.06 46.5 0.4
Ž . Ž . Ž . Ž .7 10 99 A™B 0.38 0.04 34.4 0.4 7 10 99 2A™B 0.33 0.04 46.2 0.2
Ž . Ž . Ž . Ž .7 5 99 A™B 0.35 0.04 35.1 0.4 7 15 99 2A™B 0.29 0.03 46.4 0.2
Ž . Ž . Ž . Ž .7 15 75 A™B 0.44 0.02 34.3 0.2 7 5 75 2A™B 0.36 0.03 45.8 0.3
Ž . Ž . Ž . Ž .7 10 75 A™B 0.44 0.02 34.3 0.3 7 10 75 2A™B 0.36 0.05 45.9 0.2
Ž . Ž . Ž . Ž .7 5 75 A™B 0.44 0.03 34.5 0.4 7 15 75 2A™B 0.36 0.04 45.9 0.2
Ž . Ž . Ž . Ž .7 15 50 A™B 0.47 0.03 33.8 0.2 7 5 50 2A™B 0.47 0.03 33.8 0.2
Ž . Ž . Ž . Ž .7 10 50 A™B 0.46 0.06 34.0 0.3 7 10 50 2A™B 0.47 0.05 33.6 0.2
Ž . Ž . Ž . Ž .7 5 50 A™B 0.45 0.04 34.1 0.2 7 15 50 2A™B 0.47 0.05 33.7 0.1

Ž . Ž . Ž . Ž .1 15 99 2A™B 0.78 0.01 8.1 0.1 1 5 99 A™B 0.32 0.01 8.6 0.3
Ž . Ž . Ž . Ž .1 10 99 2A™B 0.78 0.02 8.1 0.1 1 10 99 A™B 0.31 0.01 7.9 0.4
Ž . Ž . Ž . Ž .1 5 99 2A™B 0.78 0.01 8.0 0.1 1 15 99 A™B 0.31 0.01 7.8 0.3
Ž . Ž . Ž . Ž .1 15 75 2A™B 0.78 0.01 6.6 0.1 1 5 75 A™B 0.41 0.01 8.0 0.3
Ž . Ž . Ž . Ž .1 10 75 2A™B 0.78 0.01 6.7 0.1 1 10 75 A™B 0.41 0.01 7.9 0.3
Ž . Ž . Ž . Ž .1 5 75 2A™B 0.78 0.01 7.0 0.04 1 15 75 A™B 0.42 0.004 7.9 0.1
Ž . Ž . Ž . Ž .1 15 50 2A™B 0.80 0.02 7.1 0.3 1 5 50 A™B 0.50 0.01 7.7 0.7
Ž . Ž . Ž . Ž .1 10 50 2A™B 0.86 0.07 7.3 0.7 1 10 50 A™B 0.50 0.01 7.2 0.5
Ž . Ž . Ž . Ž .1 5 50 2A™B 0.78 0.02 7.3 0.2 1 15 50 A™B 0.50 0.01 7.1 0.5
Ž . Ž . Ž . Ž .7 15 99 2A™B 0.65 0.08 34.8 0.3 7 5 99 A™B 0.16 0.03 46.7 0.4
Ž . Ž . Ž . Ž .7 10 99 2A™B 0.66 0.11 34.7 0.1 7 10 99 A™B 0.17 0.03 46.4 0.2
Ž . Ž . Ž . Ž .7 5 99 2A™B 0.56 0.05 35.1 0.3 7 15 99 A™B 0.16 0.01 46.7 0.3
Ž . Ž . Ž . Ž .7 15 75 2A™B 0.67 0.03 34.4 0.2 7 5 75 A™B 0.24 0.01 45.8 0.3
Ž . Ž . Ž . Ž .7 10 75 2A™B 0.65 0.07 34.4 0.3 7 10 75 A™B 0.23 0.02 45.8 0.2
Ž . Ž . Ž . Ž .7 5 75 2A™B 0.67 0.06 34.7 0.4 7 15 75 A™B 0.24 0.01 45.9 0.2
Ž . Ž . Ž . Ž .7 15 50 2A™B 0.65 0.07 33.9 0.2 7 5 50 A™B 0.36 0.02 33.7 0.2
Ž . Ž . Ž . Ž .7 10 50 2A™B 0.64 0.11 34.1 0.3 7 10 50 A™B 0.35 0.03 33.6 0.2
Ž . Ž . Ž . Ž .7 5 50 2A™B 0.59 0.06 34.1 0.3 7 15 50 A™B 0.36 0.03 33.6 0.2

aThe mean result for 10 fits with the standard deviation given in parenthesis.
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acetonitrile and 50% of a pH 2.00, 0.005 M aspartate
aqueous buffer mixed by the instrument. Particulates
in the mobile phase were removed by 0.45mm mem-
brane vacuum filtration, and solvents were degassed
by a helium purge. The flow rate was 0.4 mlrmin and
the column temperature was controlled at 388C. The
eluate spectra were observed from 212 to 330 nm.
Samples were injected using a 20ml sample loop.

A 3 mg sample of Ally was dissolved in 0.5 ml of
acetonitrile. This solution was diluted to 100 ml with
0.005 M aspartate buffer, pH 2.00. Aliquots of the
Ally solution were stored in closed vials and kept in
a waterbath held at 458C. At each time point, a sam-
ple was taken, after which the vial was discarded.
Further discussions of these experimental conditions

w xare given in Ref. 2 .

Table 3
Influence of reaction completion, number of data points and noise level on the fit results of multiple step reactions. The rate constants used
are 0.5, 0.5, 0.5 and 2.5 fork , k , k and k , respectively1 2 3 4

Fit results Synthetic data parameters

ALS fit k k k k Completion Number of Noise Model1 2 3 4
y1 y1 y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž .% time time time time % data points %

k k2.2 0.50 0.50 0.53 2.51 99 15 0.1 1 26 6

A B C

R

R3.4 0.50 0.52 0.53 2.39 99 15 0.5
2.2 0.50 0.50 0.52 2.55 99 10 0.1

k k4 33.4 0.50 0.53 0.53 2.47 99 10 0.5
1.6 0.50 0.50 0.52 2.46 99 5 0.1

D3.4 0.50 0.52 0.52 2.28 99 5 0.5
9.3 0.50 0.51 0.47 2.63 75 15 0.1
9.9 0.49 0.53 0.47 2.72 75 15 0.5
9.5 0.50 0.52 0.45 2.69 75 10 0.1

10.4 0.49 0.53 0.45 2.73 75 10 0.5
10.3 0.50 0.52 0.45 2.74 75 5 0.1
11.2 0.50 0.53 0.44 2.72 75 5 0.5
12.5 0.50 0.63 0.37 2.61 50 15 0.1
12.8 0.50 0.62 0.36 2.39 50 15 0.5
12.6 0.50 0.59 0.35 2.62 50 10 0.1
13.3 0.50 0.61 0.35 2.69 50 10 0.5
13.6 0.50 0.57 0.35 2.89 50 5 0.1
14.2 0.50 0.57 0.37 3.02 50 5 0.5

k k1 26 6

5.5 0.51 0.47 - - 99 15 0.1 A B C
5.0 0.52 0.45 99 15 0.5
5.4 0.51 0.49 99 10 0.1
5.4 0.51 0.47 99 10 0.5
3.5 0.50 0.50 99 5 0.1
4.3 0.50 0.49 99 5 0.5
9.9 0.50 0.50 75 15 0.1

10.9 0.50 0.47 75 15 0.5
9.8 0.50 0.52 75 10 0.1

10.8 0.50 0.48 75 10 0.5
10.3 0.50 0.50 75 5 0.1
11.0 0.50 0.48 75 5 0.5
10.6 0.50 0.65 50 15 0.1
11.9 0.49 0.51 50 15 0.5
11.0 0.50 0.66 50 10 0.1
11.9 0.50 0.53 50 10 0.5
12.2 0.50 0.67 50 5 0.1
12.4 0.50 0.61 50 5 0.5
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4. Data analysis

All data sets were analyzed using an ALS pro-
gram based on a version described in a previous pa-

w xper 12 . The previous version did not include the
kinetic model constraint in the algorithm that is de-
scribed in the present paper. The program was writ-
ten and the data analysis performed using MATLABw

w xon various x86 computers 18 .

4.1. Construction of initial estimates for the simple
first- and second-order reaction

The initial guess tensor was generated by evolv-
Ž .ing factor analysis EFA with two components for

w xeach kinetic time point 19 . The EFA results were
refined by applying two-way ALS with non-negativ-
ity constraints on the retention- and spectral profiles.
These refined results were used as the initial esti-
mates for the three-way ALS-DQ.

4.2. Construction of initial estimates for the multiple
step reactions

Ž . w xDirect trilinear decomposition DTD 20,21 was
used in the automatic generation of the initial esti-
mates for the consecutive first-order reaction and the
same reaction with a reversible side reaction. The re-
tention profiles that resulted from DTD were normal-
ized and matched to the corresponding species in the
kinetic model. These retention profiles were not fur-

ther refined, and the same profiles were used for each
kinetic time point.

For all simulated data sets, three-way ALS was
performed with non-negativity on the retention and
spectral profiles and trilinearity. None of the other
common constraints such as unimodality or local rank
restrictions were used. The kinetic model constraint
was also implemented while fitting the data.

For a complete description of the generation of the
initial estimates for the Ally data set refer to an ear-

w xlier paper 2 . The three-way chemometric analysis of
the Ally hydrolysis data-set benefited from the use of
local rank restrictions. Some of the components were
baseline separated and thus had a local rank of 1.

5. Results and discussion

5.1. Simple first- and second-order synthetic data

The fit results of the simulated simple first- and
second-order reactions are shown in Table 2. The re-
sults from fitting the data to the correct model are
given in the upper half of the table. When comparing
the fit quality of the simple first- and second-order
reactions, the biggest determinant of the fit quality is
the noise level present in the data. The fit error typi-
cally increases fivefold when increasing the noise
level from 1% to 7% while the estimate for the rate
constant is typically biased low at the lower signal-

Table 4
Influence of rate constant on the fit results of multiple step reactions. The reaction was observed to 99% completion, with 15 data points and
0.1% noise was added to the data-set

Fit results Synthetic data parameters

ALS fit k k k k k k k k Model1 2 3 4 3 4 1 2
y1 y1 y1 y1 y1 y1 y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .% time time time time time time time time

k k24.4 0.50 0.52 0.26 0.06 0.25 0.05 0.50 0.50 1 26 6

A B C

R

R2.4 0.50 0.50 0.26 1.24 0.25 1.25
56.8 0.50 0.52 0.53 0.11 0.50 0.10

k k4 32.2 0.50 0.50 0.53 2.51 0.50 2.50
83.5 0.58 0.42 0.79 0.21 1.00 0.20

D2.1 0.50 0.50 1.07 4.90 1.00 5.00
k k1 26 6

6.1 0.50 0.25 - - - - 0.50 0.25 A B C
5.5 0.50 0.47 0.50 0.50
3.1 0.50 0.99 0.50 1.00
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to-noise ratio. The number of kinetic points does not
have a significant impact on the fit quality or the
prediction of the rate constants. By increasing the ex-
tent of reaction completion, local rank and selectivity
constraints can be applied to help in achieving unam-
biguous resolution results. Therefore, the estimated
rate constant is optimal when the reaction is fol-
lowed to completion.

5.2. Multiple step synthetic data

As seen with the simple first- and second-order
reactions, the noise level is of great influence in the
prediction of the rate constants. This is even more the
case for the more complex reaction pathways. Even
at a signal-to-noise ratio of 100, the algorithm has
significant difficulty in achieving a minimum while

Table 5
Influence of using the wrong kinetic model in multiple step reactions. The rate constants are 0.5, 0.5, 0.5 and 2.5 fork , k , k and k ,1 2 3 4

respectively, and 0.1% noise was added to the data-set

Fit results Synthetic data parameters

ALS fit k k k k Fit by model Synthetic model Completion Data1 2 3 4
y1 y1 y1 y1Ž . Ž . Ž . Ž . Ž . Ž .% time time time time % points

k k k k2.2 0.50 0.50 0.53 2.51 99 151 2 1 26 6 6 6

A B C A B C

R

R

R

R2.2 0.50 0.50 0.52 2.55 99 10
1.6 0.50 0.50 0.52 2.46 99 5

k k k k4 3 4 39.2 0.50 0.51 0.47 2.63 75 15
9.4 0.50 0.52 0.45 2.69 75 10

D D10.3 0.50 0.52 0.45 2.74 75 5
12.4 0.50 0.63 0.37 2.61 50 15
12.6 0.50 0.59 0.35 2.62 50 10
13.6 0.50 0.57 0.35 2.89 50 5

k k1 26 6

16.9 0.59 0.32 - - A B C 99 15
16.8 0.62 0.33 99 10
15.8 0.61 0.34 99 5
27.8 0.66 0.26 75 15
26.7 0.63 0.29 75 10
24.8 0.58 0.34 75 5
26.1 0.51 0.46 50 15
26.0 0.50 0.50 50 10
26.5 0.51 0.48 50 5

k k k k1 2 1 26 6 6 6

5.5 0.51 0.47 - - A B C A B C 99 15
5.4 0.51 0.49 99 10
3.5 0.50 0.50 99 5
9.9 0.50 0.50 75 15
9.8 0.50 0.52 75 10

10.3 0.50 0.50 75 5
10.6 0.50 0.65 50 15
11.0 0.50 0.66 50 10
12.2 0.50 0.67 50 5
23.1 0.73 0.32 99 15k k1 26 6

A B C20.1 0.69 0.34 99 10

R

R
21.0 0.80 0.32 99 5

k k4 331.1 0.68 0.24 75 15
31.2 0.71 0.30 75 10

D33.7 0.78 0.23 75 5
30.9 0.74 0.25 50 15
27.6 0.53 0.61 50 10
31.2 0.74 0.35 50 5
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searching for the rate constants. Therefore, the data
Žwas simulated with 0.1% and 0.5% noise signal-to-
.noise ratios of 1000 and 200, respectively . This re-

sults in reasonable fit quality as can be seen in Table
3.

The algorithm is again influenced by the duration
of the experiment. When the reaction is observed up
to 99% completion, the rate constants are estimated
with good accuracy as the availability of data en-
ables local rank and selectivity constraints to be ap-
plied. If the entire reaction is not monitored, the
selectivity and local rank conditions are not valid
constraints, the ambiguity of the resolution is in-
creased and the predicted rate constants are less ac-
curate. The number of data points does not have a
significant influence on the quality of fit.

Especially when the second component has a
maximum intensity of less than 5% of the first com-
ponent, the overall ALS fit error increases dramati-
cally as can be seen in Table 4. This is the case when
k 4k or when the equilibrium constant is either 52 1

or 0.2. However, the found optimal rate constants are

still within one standard deviation of the value used
for the simulation of the data set. This shows a limi-
tation of the ALS curve resolution technique, but not
the fitting of the kinetic model. The ALS method is
not finding the global minimum, which is evidenced
by the fact that fitting using the true profiles as ini-
tial estimates of the true profiles gives fit errors be-
tween 0.17% and 2.3% depending on the noise level
and the degree of reaction completion. Further re-
search needs to focus on the implementation of con-
straints that will drive the resolution to the global
minimum.

5.3. Incorrect chemical model

Fitting the data to the incorrect model in the case
for simple first- and second-order reactions results in
a worse fit until 50% or less of the reaction is ob-
served. This is shown in the lower part of Table 2.
At that point, the fit error for both models is the same
within the standard deviation, resulting in an inabil-
ity to confirm the reaction mechanism. This is not a
limitation of the program but rather the fundamental

Ž .Fig. 3. The time dependence at pH 2 and 458C of Ally and its degradation products as the ALS kinetic profiles symbols and the chemical
vŽ . Ž . Ž . Ž .model with the rate constants fit by this program lines for Ally —— , OH-Ally –P–B , ring-opened Ally P––q , benzenesulfon-

Ž . Ž . Ž . Ž .amide P–P–P–) , triazine –PP–` , OH-triazine –– –̂ and ring opened triazinePPP= .
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observability of the model with respect to the amount
w xof noise and the time range of the data set 22 .

When more complex reaction pathways are ana-
lyzed, the ALS fit error is typically smaller when the
correct model is used as can been seen in Table 5.
However, this may be a result of the higher signal-
to-noise ratio for these data.

5.4. Ally hydrolysis data

When analyzing the real data generated by the hy-
drolysis of Ally, the data are treated in identical

w xmanner to that mentioned in an earlier paper 2 . The
difference is the application of the kinetic model to
the data within the ALS iterations rather than ALS

Ž .resolution followed by a separate program Gepasi
w x23–25 to fit the determined kinetic profiles to a
chemical model. Fig. 3 shows the kinetic profiles of
the components of the Ally hydrolysis. The previ-
ously found kinetic profiles are scaled to match the
concentrations found by the kinetic model in the cur-
rent program implementation. This shows the inten-
sity ambiguity of the earlier methods where the re-
tention and kinetic profiles were multiplied by a
scalar determined by the application of the closure
constraint. With the implementation of the kinetic
model constraint, this scalar is completely specified
and corresponds to a molar absorptivity coefficient.

The rate constants also differ from those found
previously, as can be seen in Table 6. They have the
same order of magnitude, but are significantly differ-
ent. This is also due to the arbitrary scaling, as well
as the necessity of using a closure constraint before
subsequent fitting by a kinetic modeling program.
Application of an additional closure constraint to the
data results in very poor fit quality. The kinetic model
already includes inherent mass balance assumptions
and adding a more general mass balance to the fit-
ting procedure disrupts the optimization process.

6. Conclusion

This is the first reported flexible incorporation of
a differential equation solver into a multivariate curve
resolution technique. It allows for the analysis of
complex reaction pathways without the need for
rewriting the program when exploring different reac-
tion pathways. This method is slower in comparison
to methods that use the analytical solutions of the
corresponding differential equations, but with faster
computers this is not a significant problem. In addi-
tion some complex reaction pathways do not have
analytical solutions to the corresponding differential
equations and can therefore not be analyzed with the
other methods.

In extreme cases, the ALS-DQ program does not
let the operator distinguish whether the correct chem-
ical model is applied to the data by means of the
overall fit error, as in some cases the fit error is the
same when the data is fit to the wrong model. How-
ever, this is not a limitation of the method, but a fun-
damental limitation of the data characteristics as well
as the basic similarities between some models. The
noise level is a very important factor in determining
the accuracy and precision of the prediction of rate
constant from unresolved data. The high signal-to-
noise ratio and long-term stability of UV–VIS mea-
surements are more likely to result in better predic-
tions of the rate constants than experiments such as
mass spectrometry that may be subject to more drift
and have typically lower signal-to-noise ratios.

The MCR-ALS technique resolves the retention
and spectral profiles from overlapped components
while the kinetic model constraint allows the user to
fit the multivariate data to the appropriate kinetic
model, directly calculating the rate constants for the
various steps of the reaction. The inclusion of a ki-
netic model limits the rotational ambiguity found in
the methods that do not use a kinetic model con-

Table 6
Rate constants for the degradation of Ally at pH 2 and 458C determined by previous methods and ALS-DQ

Rate constant k k k k k k k ALS fit Gepasi fit1 2 3 4 5 6 7
y4 y1 Ž . Ž .10 min error % error %

ALSqGepasi 61 33 43 5.7 4.9 1.3 0.16 24 11
ALS-DQ 46 48 29 9.8 0.7 4.8 1.7 19 –
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straint. This program is also an improvement over
previous versions where the kinetic profiles had to be
fit independently by a separate program in order to
determine the rate constants or where the kinetic
models were limited to those with analytical solu-
tions to the corresponding differential equations.
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