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Abstract

This paper describes an improved three-way alternating least-squares multivariate curve resolution algorithm that makes use

of the recently introduced multi-dimensional arrays of MATLABR. Multi-dimensional arrays allow for a convenient way to

apply chemically sound constraints, such as closure, in the third dimension. The program is designed for kinetic studies on

liquid chromatography with diode array detection but can be used for other three-way data analysis. The program is tested with

a large number of synthetic data sets and its flexibility is demonstrated, especially when non-trilinear data sets are fit. In this

case, the algorithm finds a solution with a better fit than direct trilinear decomposition (DTD). When trilinear data are used, the

optimal fit is not as good as when a direct decomposition method is used. Most real data sets, however, have some degree of

non-trilinearity. This makes this method a better choice to analyze non-trilinear, three-way data than direct trilinear

decomposition. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent analytical hardware developments have

resulted in commonly available hyphenated instru-

ments, such as GC-MS and HPLC-DAD, which give

rise to very large data sets. The information of interest

is the retention profiles and the spectra corresponding

to each of the pure components, allowing for subse-

quent qualitative or quantitative analysis depending

on the goals of the investigator. Additional data are

obtained when investigating reaction kinetics, where

samples are studied at regular time intervals to

observe concentration differences in the various reac-

tive species. In a kinetic study, the retention profiles

and pure component spectra remain the same in

theory, while only the concentrations of the species

change. Thus, besides the retention profiles and the

pure component spectra, a third form of information

can be abstracted, the kinetic profiles.

These multi-dimensional data sets are often useful

when peak overlap occurs. One or more peaks of

interest might coelute with other compounds or base-

line effects and noise might prevent accurate integra-

tion of a signal. Chemometric methods allow for

isolation of a peak out of a complex background

mathematically, increasing the accuracy of the deter-

mination of the concentration [1]. Second-order infor-

mation given by a diode array detector, in the case of
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liquid chromatography, or by mass spectral detection

with gas chromatography, can reduce the ambiguity in

the resolution results [2,3]. When observing kinetic

behavior, there is additional information in the third

order, which can further improve the accuracy of the

results.

The current chemometric algorithms that use three-

way data sets stack the two-way data sets together

resulting in a large two-dimensional data matrix, even

when a three-way model is applied [4–7]. This results

in unnatural formatting of the data set and can be

avoided. The algorithm described here makes use of

three-dimensional data tensors, resulting in a true

three-way alternating least-squares algorithm. This

has only become possible with MATLABR version

5 or higher, which for the first time includes the

capability of faithfully representing multi-dimensional

arrays [8].

With the use of a true three-way data representa-

tion, flexible implementation of various constraints

(i.e. non-negativity, closure, unimodality, trilinearity)

is facilitated, in any of the three data directions.

2. Theory

The literature on multi-way analysis is not consis-

tent in the notation of variables of different orders.

The notation used in this paper is as follows: Bold

outlined letters (D) are used for three-dimensional

tensors. Bold capital letters (C) are used for matrices.

Small bold letters (p) are used for vectors. Capital

italic letters (K) are used for the size of a dimension

and the total number of measurements. Small italic

letters (k) are used for scalars. Small italic letters with

subscripts (drsk) are used to indicate matrix or tensor

elements.

A two-way bilinear data matrix, obtained from a

hyphenated instrument, can be described as the inner

product of the concentration profiles and the pure

component spectra according to Eq. (1) [9],

D ¼ C � ST þ E ð1Þ

where D (T� S) is the data matrix, C (T�N) consists

of the concentration profiles for each of the pure

components, S (S�N) are the pure component spectra

and E (T� S) is the error matrix. The variables T, S

and N represent the number of chromatographic time

points, the number of measured wavelengths and the

number of components, respectively.

To decompose the data matrix via an alternating

least-squares method, one of the profile matrices has

to be estimated to provide an initial guess for the

algorithm. This is where most of the various chemo-

metric algorithms differ [10]. Some algorithms use a

form of principal component analyses [11–16], while

others have used a variety of other mathematical tools

to generate the initial guesses, ranging from orthogo-

nal projections to Kalman filtering [17–22]. With one

set of pure component profiles estimated (the concen-

tration profiles in this example), the second set of

profiles can be calculated using Eq. (2).

S ¼ ðCT � CÞ�1 � CT � D ð2Þ

This process can be constrained and iterated upon

until a set minimal improvement of the fit error is

reached [23].

A three-way kinetic trilinear data set D (T� S�K)

can be described as the inner product of the retention

profiles R (T�N), the pure component spectra S

(S�N) and the kinetic profiles K (K�N) according

to Eq. (3) [24],

D ¼ R � S�K þ E ð3Þ

where E is the error tensor, K is the number of kinetic

time points and N is the number of components. Fig. 1

shows a graphical representation of the tensor multi-

Fig. 1. Tensor multiplication in the trilinear model.
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plication and is known as the trilinear model. In the

ideal case, the data tensor can be unambiguously

decomposed into the corresponding matrices using

direct trilinear decomposition (DTD) or a generalized

rank annihilation method (GRAM) [25,26]. However,

for real data, where there are retention time shifts,

intermolecular interactions and other effects that cause

the data set to be non-trilinear, this direct approach

cannot be used and an iterative method has to be

employed.

There are several multi-way data analysis techni-

ques such as PARAFAC, Tucker3 and N-PLS [4–6].

All these decomposition methods are based on prin-

cipal component analysis of the data set. PARAFAC is

a constrained form of Tucker3 and Tucker3 is a

constrained form of N-PLS [27]. These three algo-

rithms operate by regression of the dependent varia-

bles onto the scores and have the core tensor H

(N1�N2�N3) in common as shown in Eq. (4).

D ¼ R �H� ðST �KTÞ þ E ð4Þ

The core matrix may have a different number of

components in each direction but can be constrained

to a super identity tensor resulting in the PARAFAC

model and a trilinear solution.

The algorithm described in this paper is an alter-

nating least-squares method, which is a multivariate

curve resolution technique. It does not use a core

matrix as found in PARAFAC and Tucker3, but the

data are dissected as shown in Eq. (5),

D ¼ R� S�K þ E ð5Þ

where D (T� S�K) is the data tensor, E (T� S�K)

is the error, R (T�N�K) contains the retention

profiles, S (S�N�K) contains the spectral profiles

and K (K�N) contains the kinetic profiles. This

model still assumes bilinearity regarding the spectral

and retention profiles so that the spectrum of each

component is the same at each chromatographic time

point. In the trilinear case, the retention and spectral

profiles for each component are identical in all kinetic

experiments and the model becomes identical to

Eq. (3).

Unlike the earlier mentioned multi-way tech-

niques, this algorithm is not based on principal com-

ponent analysis even though the initial guesses can be

generated that way. It uses the data structure and

chemically relevant constraints to find a chemically

reasonable solution. The choice of the number of

components is not as crucial for this method as it is

in PARAFAC, Tucker3, N-PLS or DTD models. This

is an advantage in kinetic studies where not all

components are present at the same time, since

intermediates and products might only appear long

after the starting materials are gone. In this work, we

have used principal component analysis techniques

such as singular value decomposition (SVD) and

evolving factor analysis (EFA) to generate the initial

guesses. These methods have been described earlier

[28,29]. The MCR-ALS algorithm by Gargallo et al.

[7] models only the predetermined number of compo-

nents by working with a data matrix reproduced from

the scores and loading matrices. This ignores infor-

mation that might be hidden in a higher number of

principal components and can be a potential limitation

when using non-trilinear data since in that case, the

rank of the data tensor can be higher than the number

of real components. In the present work, instead of

PCA compression, an extra unconstrained component

can be added to account for the baseline and noise of

the measurements.

To best explain the functionality of the algorithm,

an example of kinetic measurements obtained using a

LC-DAD is used. The data set is organized in a three-

dimensional cube where each slice of the cube is a

chromatogram with a spectral profile at each time

point and each slice is a consecutive injection of an

aliquot of the evolving chemical system.

A block diagram of the algorithm is shown in Fig.

2. As in two-way ALS, in step 1, the data tensor (D) is

divided (slice by slice) by each slice in the initial

guess tensor (Cinitial) (or multiplied by the pseudo-

inverse of the initial guess tensor) to obtain the

spectral profile tensor (Scalc). Each of the K slices

of the spectral profile tensor is a (S�N) matrix with

estimates for the pure component spectra on each row.

Thus, each component can have a unique spectral

profile for each kinetic measurement. This would

apply, for example, when molecular interactions dis-

tort the fluorescence spectrum [30].

After applying the appropriate constraints in steps 2

and 3, the data tensor is divided in step 4 by the newly

calculated spectral tensor resulting in the concentration

profile tensor (Ccalc). As in the case for the spectral
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tensor, each component is allowed to have a unique

chromatographic profile at each kinetic point. This

occurs fairly commonly in chromatography where

retention time or peak shape may change due to column

aging or temperature variations. This is a related

approach to that found in PARAFAC2 [4]. However,

to take advantage of the third-order information, clo-

sure and trilinearity constraints are used here. Without

these constraints, the data slices are independent and

the algorithm performs two-way ALS on each of the

slices. The ability of this algorithm to provide the op-

tion of being able to relax the constraints on three-way

data from complete trilinearity to bilinearity assists in

dealing with non-trilinear data.

Gargallo et al. [7] implemented a different ap-

proach in the MCR-ALS algorithm to specifically

Fig. 2. Block diagram of the three-way MCR-ALS program.
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handle peak shifts. The peak maxima are sought out

and aligned. Alternatively, the trilinearity constraint is

relaxed to accommodate non-trilinear data.

An important assumption made is that it is pos-

sible to isolate the retention profiles R (T�N�K) by

rearranging Eq. (5) to Eq. (6),

D ¼ C� Sþ E with C ¼ R�K ð6Þ

where C (T�N�K) contains the concentration pro-

files and K (K�N) is a matrix containing the concen-

trations of each species at each of the sample times.

The bilinearity assumption is only valid when the re-

tention profile (or peak shape) is not concentration

dependent and thus a concentration profile is merely

the retention profile multiplied by a scalar. These

scalars are calculated in step 8 and form the kinetic

profiles after applying the concentration-based con-

straints in steps 5 and 7 and normalizing the retention

profiles in step 6.

After applying constraints to the kinetic profile in

step 9, the quality of the fit is checked for conver-

gence in steps 10 and 11. If convergence has not yet

been achieved, the concentration profile (C) is recon-

structed from the retention profile tensor (R) and the

kinetic profile matrix (K) in step 12 and is consec-

utively used to calculate a new spectral tensor in step

13. This process is iterated until a minimum error is

reached or a set number of iterations have occurred.

3. Validation of the method

3.1. Generation of the validation data set

The algorithm was tested using a large number of

different synthetic three-way data sets with two over-

lapping components. A typical data set would be

composed of the three matrices shown in Fig. 3.

Two components of equal height with Gaussian peak

shapes were used for the retention profiles (Fig. 3a).

Simple first-order kinetics (exponential decay) was

used to simulate the kinetic profiles (Fig. 3b). The

spectral profiles were generated by adding a Gaussian

function to an exponential decay function (Fig. 3c).

The characteristic parameters for the simulated data

are as follows. The chromatographic axis is 100 units

with 0.5 resolution resulting in 201 data points. The

wavelength window is also 100 with intervals of 0.5.

The total kinetic time window was also 100 units with

a first-order rate constant of 0.07. However, only eight

Fig. 3. Typical (a) retention profiles, (b) kinetic profiles and (c)

spectral profiles for the generation of the three-way data sets. The

profile of the reactant is indicated by a solid line (——), while the

profile of the product is indicated by a dashed line (– – ).
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kinetic measurements were taken with an exponen-

tially increasing time interval. The retention times

were 40 and 70, for the reactant and product compo-

nents, respectively. The standard deviation of the

Gaussian retention peaks was 10. The pure component

spectra were composed of an exponential decay func-

tion (k = 0.07) plus a Gaussian function. For the

reactant, this Gaussian had a mean of 40 and a

standard deviation of 10 and the product species had

a mean of 70 and a standard deviation of 10. The

Gaussian functions were multiplied by 10 before

being added to the exponential decay function to form

the spectrum. Lastly, normally distributed random

numbers with a standard deviation of 10% of the

maximum value of the data set were added to simulate

noise. Three identical validation data sets were gen-

erated with different noise components. The fit errors

of these three data sets were averaged to minimize the

influence of the difference in the random fluctuations

of the noise component.

To test the influence of changes in the various

parameters, each of the parameters of the synthetic

data was varied at one time. The noise level was

varied from 1% to 25% in 1% increments. The con-

centration ratio of the two components was varied

from 1:1 to 20:1 with increments of 1. The retention

time of the product species which is the second

‘‘eluting’’ peak, was varied from 41 to 80 with incre-

ments of 1. The standard deviation of the retention

profiles was varied from 2 to 30 with increments of 1.

The mean of the Gaussian function used for the

spectrum of the product ranged from 41 to 70 with

increments of 1, and the number of kinetic time points

was varied from 2 to 20 in steps of 1.

3.2. Generation of the initial estimates

An initial guess tensor was generated for each data

set. To increase the speed of the analysis, the primary

initial guess was not obtained by EFA for every ki-

netic slice. The EFA result from analysis of the data

set with the characteristic parameters was utilized in-

stead. These two profiles had approximate triangular

shapes and formed the initial guess matrix together

with a small constant (0.0001) profile functioning as

the extra background component. Two-way MCR-

ALS was performed on the middle kinetic slice (e.g.

the fourth kinetic measurement out of eight) with a

non-negativity constraint applied to the spectral and

concentration profiles of the two components. The

background component was left unconstrained. The

two-way ALS result was used as initial guesses for

each adjacent slice (in this case, the third and fifth ki-

netic measurement) and two-way ALS was performed

on those slices. This approach was used for each of the

K slices and is schematically depicted in Fig. 4 for a

data set with five kinetic measurements.

3.3. Validation of the program

The data analysis was done without assuming any

prior knowledge of the retention, spectral and kinetic

profiles. The only input used for the algorithm was the

data set, the number of components and various

chemically relevant constraints. The three-way ALS

algorithm used non-negativity constraints on the spec-

tral and retention profiles of the two components and

left the third component (the background) uncon-

strained. The application of the closure and trilinearity

constraints was of special interest; therefore, all data

sets were analyzed using (1) no additional constraints

(no), (2) just closure (cl), (3) only trilinearity (tr) and

(4) both trilinearity and closure (t + c). Although all

the validation data sets had a noise component, the

ability of the algorithm to reproduce the synthetic data

set as it was before the noise was added was eval-

uated. This was accomplished by determining the

percentage lack of fit between the tensor created by

multiplying the optimal retention, kinetic and spectral

profiles of the first two components, leaving out the

background component, with the synthetic data set

before the noise component was added, according to

Eq. (7).

percentage lack of fit

¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t;s;k

ðdoptimal
t;s;k � d

synthetic
t;s;k Þ2

X
t;s;k

ðdinputt;s;k Þ
2

vuuuuut ð7Þ

This results in a fit error that represents the overall

fit of the data tensor, but not the fit for each individual

profile.
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To validate the performance of the program with

regards to the quality of prediction of the chromato-

graphic, spectral and kinetic profiles, the individual

response profiles were compared to the original syn-

thetic profiles by calculating the dissimilarity accord-

ing to Eq. (8) [31],

disðpcalc; psynthÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ðpcalc; psynthÞ

q
ð8Þ

where pcalc is the calculated profile vector, psynth is

synthetic profile vector and r is the correlation coef-

ficient between the two vectors.

The algorithm was tested for stability by decreas-

ing the resolution, increasing the spectral overlap,

changing the number of time points and increasing

the noise level.

4. Results and discussion

The DTD algorithm by Booksh et al. [25] was

implemented in MATLABR and applied to the same

three-way data sets as the MCR-ALS algorithm. The

fit error, as expected with trilinear data, is not depend-

ent on the resolution or any of the other factors tested

other than the noise and the non-trilinear peak shift

[31]. The fit errors as calculated from the optimal

profiles found by DTD for all replicates of all data sets

Fig. 4. Procedure for generating the three-way initial guess tensor. The index k refers to the midpoint measurement in the reaction profile. The

results from the ALS fit for this matrix, Dk, are used as initial guesses for the preceding and subsequent matrices in sequence.
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except for the noise-dependent and peak-shifted data

sets were approximately 1.0%.

The first six series of simulated experiments all

have a trilinear structure. This means that the spectral

profiles and retention profiles have the same shape

and position in each kinetic experiment. The uncon-

strained algorithm allows for these profiles to be

different, while the trilinearity constraint forces the

profiles for each component to be equivalent for each

kinetic experiment.

The influence of the chromatographic resolution

was evaluated by changing the retention time of the

Fig. 5. The fit error (a) as defined in Eq. (7) as a function of the retention time difference between the two components when no (no) constraints

are applied (——), only closure (cl) is applied (– – ), just trilinearity (tr) is applied (: : : : : :) or trilinearity and closure (t + c) are applied (– �– ).
The dissimilarity (b) between the reproduced retention profile of the product in the fourth kinetic experiment and the synthetic retention profile

as defined by Eq. (8) when no (no) constraints are applied (——), only closure (cl) is applied (– – ), just trilinearity (tr) is applied (: : : : : :) or

trilinearity and closure (t + c) are applied (– �–). The dissimilarity (c) as defined by Eq. (8) of the retention profiles of the product as a function

of retention time difference and reaction time when no constraints are applied. The numbers on the right hand side indicate the number of the

kinetic run.
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product species from 41 to 80, while the retention

time of the reactant is held at 40. The results of the

algorithm to reproduce the synthetic data are shown

in Fig. 5a. At a very small difference in retention time

between the two components, the algorithm mini-

mizes on one major component with a spectral profile

that is the average of the two pure component spectra.

This is due to poor initial estimates. The EFA

followed by two-way ALS results in only one major

component when the two profiles are nearly identical.

Once the resolution is increased, the fit error is in the

range of 3–6%. As expected, the use of more con-

straints decreases the fit error. In Fig. 5b, the dissim-

ilarity between the reproduced retention profile of the

product in the fourth kinetic experiment and the

synthetic retention profile is shown when various

constraints are applied. Unlike the overall fit error,

the application of the trilinearity constraint results in a

better prediction of the individual profiles. This is

also an expected result since these constraints enable

the algorithm to find a chemically sound solution that

is not necessarily the global minimum. Fig. 5c shows

the dissimilarity between the reproduced retention

profiles and the synthetic retention profiles of the

product when no constraints are applied. The inten-

sity of the signal for the product component is very

small in the first two kinetic runs which results in

dissimilar profiles, since the synthetic profile is a

Gaussian, while the reproduced profile is mainly

noise. The dissimilarities of all the profiles show

the same trends as the overall fit error for the entire

data tensor. Therefore, only the figures for the fit

errors are given, but the overall results are summar-

ized in Table 1.

The peak width is part of the chromatographic

resolution but was tested separately by changing the

standard deviation of both Gaussian functions from 2

to 30. At a standard deviation of 2, the peaks are

baseline separated, while at 30, they have consider-

able overlap (Rs = 0.25). The results of this simulation

are shown in Fig. 6. As expected, when the peak

widths are increased, the resulting overlap and lower

resolution increases the fit errors. However, it can also

be seen that with increasing overlap, the additional

Table 1

Comparison of the fit qualities

Retention time

difference

Peak width Spectral difference Molar aborptivity

ratio

Noise level Non-trilinearities

Overall

fit error

no, (cl, tr, t + c) no, (tr, t + c), cl no, cl, (tr, t + c) no, (cl, tr, t + c) no, cl, tr, t + c no, cl, tr, t + c

Spectral

profile

(tr, t + c), (cl, no) (tr, t + c), (no, cl) (tr, t + c), (no, cl) (tr, t + c), (no, cl) (tr, t + c), (cl, no) (tr, t + c), (cl, no)

Retention

profile

(tr, t + c), (no, cl) (tr, t + c), (no, cl) (tr, t + c), (no, cl) (tr, t + c), (no, cl) (tr, t + c), (no, cl) (no, cl), (tr, t + c)

Kinetic

profile

(t + c, tr, cl), no (t + c, tr), cl, no (t + c, tr, cl), no (t + c, tr, cl), no (t + c, tr, cl), no (t + c, tr, cl), no

Order (from best to worst) of the fit quality with the application of no constraints (no), closure (cl), trilinearity (tr) and trilinearity and closure

(t + c). When fits are similar, the constraints are given within parentheses.

Fig. 6. The fit error as defined in Eq. (7) as a function of the peak

width in standard deviations of the two components when no (no)

constraints are applied (——), only closure (cl) is applied (– – ),

just trilinearity (tr) is applied (: : : : : :) or trilinearity and closure

(t + c) are applied (– �– ).
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third-order information, exploited by the trilinearity

constraint, results in a better fit as compared to when

the trilinearity constraint is not used. This is also true

for the individual profiles where the fit quality is

higher over the entire range using the trilinearity

constraint.

To test the algorithm on components with similar

spectra, the spectral profile of the product was altered

by changing the position of the Gaussian function.

The position of the Gaussian of the reactant was 40,

hence the position of the Gaussian of the product was

changed from 41 to 80. The results of this simulation

are shown in Fig. 7. When the spectral profiles are

nearly identical, the algorithm converges on two

components, each with a double-peaked retention

profile. This, however, is again an artifact of poor

initial estimates. The application of a unimodality

constraint would improve the algorithms’ ability to

find a better solution; however, this constraint is as of

yet not implemented into the algorithm. The repro-

duction of the individual profiles is once again better

when using the trilinearity constraint.

Another characteristic of a pure component spec-

trum might be a very low molar absorptivity. This

effect is simulated by reducing the peak height of the

product, by varying the intensity ratio (reactant to

product) from 1:1 to 20:1. The results of this simu-

lation are shown in Fig. 8. With the absorbance of the

product at a 20th of that of the reactant, even at the

maximum in the kinetic profile, it is well below the

10% noise level. The application of the closure con-

straint increases the fit error since this constraint is

dependent on the uncertainty in the peak amplitude.

As with the previous simulations, the reproduction of

the individual profiles is once again better when using

the trilinearity constraint.

Instrument noise can be a large factor in the

precision of quantification of a component. The algo-

rithm was tested with data that had a random noise

component added ranging from 1% to 25% of the

maximum value of the data set. The results of this

simulation are shown in Fig. 9. There is quadratic

dependence of the fit error with the noise level, which

appears linear over this limited range. The increasing

noise level decreases the quality of the fit, as is to be

expected. The reproduction of the individual profiles

is once again better when using the trilinearity con-

straint.

The number of injections determines the number of

kinetic data points. The algorithm was tested using

data sets ranging from 2 to 20 kinetic data points. The

points were taken at exponentially increasing time

intervals to maintain the maximum concentration

change between measurements. The results of this

simulation are shown in Fig. 10. The data set becomes

dramatically larger with the number of measurements,

Fig. 7. The fit error as defined in Eq. (7) as a function of spectral

difference between the Gaussians of the two components when

no (no) constraints are applied (——), only closure (cl) is applied

(– – ), just trilinearity (tr) is applied (: : : : : :) or trilinearity and

closure (t + c) are applied (– �– ).

Fig. 8. The fit error as defined in Eq. (7) as a function of the ratio of

the molar absorptivities of the two components when no (no) con-

straints are applied (——), only closure (cl) is applied (– – ), just

trilinearity (tr) is applied (: : : : : :) or trilinearity and closure (t + c)

are applied (– �– ).
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and so does the absolute sum of squared error. How-

ever, the relative error gets smaller when increasing

the number of data points. The advantage of going to

larger data sets is minimal, due to the redundancy of

the additional scans. However, increasing the number

of kinetic measurements will improve the precision of

the determination of rate constants from the extracted

kinetic profiles.

So far, all data sets still have an underlying tri-

linearity, because of the way they are generated. To

investigate how the algorithm is able to deal with non-

trilinear data, the retention time of the product was

shifted to earlier retention times for each succeeding

kinetic measurement. This resulted in more overlap

between the two components as reaction time pro-

gresses. The results of this simulation are shown in

Fig. 11. Applying trilinearity constraints on a non-

trilinear data set dramatically increases the lack of fit.

DTD still results in a better fit than the ALS algorithm

with the trilinearity constraint applied. However, a

peak shift of 1 point per kinetic experiment causes a

fit error that is larger than that of the ALS algorithm

without trilinearity. The third-order information pre-

sent in the non-trilinear data set can still be used by

applying the closure constraint. A second option is to

assume common spectral profiles, since even though

the retention profiles change, the spectral profile still

stays the same within each kinetic experiment. This is

the case in this synthetic data set but also in typical

LC-DAD data. Applying bilinearity (bl) in only the

spectral direction (meaning the spectrum for each

component is the same in each chromatographic and

kinetic measurement) results in a better fit than even

the unconstrained algorithm. The large increase in the

fit error for large peak shifts when closure is applied is

Fig. 10. The fit error as defined in Eq. (7) as a function of the

number of data points in the third dimension (kinetic measure-

ments), when no (no) constraints are applied (——), only closure

(cl) is applied (– – ), just trilinearity (tr) is applied (: : : : : :) or

trilinearity and closure (t + c) are applied (– �– ).

Fig. 9. The fit error as defined in Eq. (7) as a function of the noise

added to the synthetic data set when no (no) constraints are applied

(——), only closure (cl) is applied (– –), just trilinearity (tr) is

applied (: : : : : :) or trilinearity and closure (t + c) are applied (– �–)
and the fit error by DTD (55).

Fig. 11. The fit error as defined in Eq. (7) as a function of increasing

peak shift in non-trilinear data when no (no) constraints are applied

(——), only closure (cl) is applied (– – ), just trilinearity (tr) is

applied (: : : : : :), trilinearity and closure (t + c) are applied (– �– ),
bilinearity (bl) in spectral dimension (�� ), bilinearity in spectral

dimension and closure (bl + c) (+ +) and the fit error by DTD (55).
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once again an artifact due to the quality of the initial

estimates, because in these cases, the sequence of the

components in the chromatogram is switched during

the automatic generation of the initial estimates. This

problem can be solved by inspection of the two-way

ALS results and reorganizing the columns in the

initial guess matrix to a consistent sequence. Unlike

all previous experiments, the application of the trili-

nearity constraint now increases the dissimilarity

between the true synthetic profiles and the reproduced

profiles.

Fig. 12 shows the typical output from the program

using non-trilinear data when the closure constraint as

well as bilinearity in the spectral profiles are used. The

profiles for each slice are overlaid in each window.

This way, it is easy to interpret whether a peak shift is

occurring or a spectral profile has changed. In the top

window, the retention time shift of the product can be

seen. The retention profiles becomes noisier as the

intensity of that component decreases. The middle

window shows the kinetic profile and the bottom

window shows the spectral profiles of the two species.

In this case, the spectral profiles are matched for each

kinetic experiment, resulting in identical spectra for

each component for every reaction time.

5. Conclusion

This new algorithm makes use of the representation

of multidimensional matrices in MATLABR to per-

form an iterative alternating least-squares technique on

three-way data sets contained in three-dimensional

tensors. This results in a more convenient way to

implement the algorithm than the common method

of stacking a three-way data set into a two-dimensional

matrix. Moreover, this method also allows for a con-

venient application of the closure constraint in the third

dimension. The closure constraint makes use of the

third-order information without assuming trilinearity.

The analysis of the computer-generated data shows

that this algorithm is able to reproduce the three-way

synthetic data for reasonably well-separated peaks and

dissimilar spectral profiles. Increasing spectral over-

lap, decreasing resolution and increasing noise level

increases the lack of fit as is to be expected. When

Fig. 12. Typical output of the algorithm for non-trilinear data when closure and bilinearity in the spectral profiles are used. The profile of the

reactant is indicated by a solid line (——), while the profile of the product is indicated by a dashed line (– – ).
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analyzing poorly resolved chromatograms or compo-

nents with nearly identical spectral profiles, the qual-

ity of the initial estimates is important for finding the

global minimum.

The use of constraints tends to increase the overall

fit error of the total data matrix; however, applying a

trilinearity constraint to trilinear data results in a better

fit of the individual profiles. The application of the

closure constraint has only a slight influence on the

prediction of the retention and spectral profiles but in

general improves the prediction of the kinetic profiles.

The use of the closure constraint in the third

dimension gives the method a clear advantage over

previously used multivariate–multi-way methods for

analysis of kinetic data and allows for higher flexi-

bility.
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