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Abstract

In this paper, we investigate the accuracy and precision of the results from diode array detector (DAD) data and mass
spectrometry (MS) data as obtained subsequent to chromatographic separations using computer simulations. Special attention
was given to simulations of multiple injections from a developing enzymatic reaction. These simulations result in three-way
LC–DAD–MS kinetic data; LC–DAD and LC–MS data were also evaluated independently in this investigation. The noise
characteristics of the MS detector prevent accurate determination of the individual reaction rate constants by the analysis
method. Using the data from the DAD in combination with the MS detector results in improved estimation of the rate constants.
The results also indicate that the higher resolving power of the MS information compensates for the lower signal-to-noise
ratio in these data, compared to DAD data.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mass spectrometry (MS) detectors are commonly
used with liquid chromatography (LC) instruments
[1]. This coupling allows for the identification of un-
known compounds found in the chromatograms. The
structural information given by MS is far superior
to the traditionally used UV-Vis detectors, such as
single wavelength detectors and diode array detec-
tors (DAD) [2]. However, these spectrophotometric
detectors have highly reproducible responses and are,
therefore, excellent for quantification[1]. Quantifi-
cation is important for many LC applications. In our

∗ Corresponding author. Tel.:+1-80-4828-7517;
fax: +1-80-4828-8599.
E-mail address:srutan@saturn.vcu.edu (S. Rutan).

current research, the determination of rate constants
from multiple injections of evolving chemical sys-
tems into a LC–DAD–MS instrument is of interest.
In order to fully understand the complete three-way
LC–DAD–MS: kinetic data analysis, reduced order
datasets are studied first. This is achieved by initially
investigating two-way data arrays to characterize the
effects of combining spectroscopic and mass spectro-
metric detection methods. This is followed by a study
of fitting kinetic data to the enzyme kinetic model
to isolate possible complications resulting from the
kinetic fitting routine. Lastly, all the individual anal-
yses are combined into a single three-way analysis
of a simulated enzyme kinetic experiment using a
LC–DAD–MS instrument.

The evolving chemical system under investigation
is the enzyme-catalyzed conversion of a substrate to
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Scheme 1.

a product. The general scheme for this reaction is
shown inScheme 1, in which E is the enzyme; S, the
substrate; ES, the enzyme substrate complex; and P,
the product. This system is typically described by the
Michaelis–Menten equation shown inEq. (1) [3].(

dP

dt

)
t=0

= v0 = vmax[S]

Km + [S]
(1)

where v0 is the initial rate of formation of prod-
uct, vmax is the maximal conversion rate,Km is the
Michaelis constant and [S] is the initial substrate
concentration.

The Michaelis–Menten equation is based on sev-
eral assumptions, including that the enzyme–substrate
complex concentration is at a steady state. For this
assumption to be valid, the substrate has to be in large
excess[3]. A more accurate and complete descrip-
tion would be to use the rate equations as given in
Eqs. (2)–(5), which are not based on these assump-
tions and are valid for any substrate concentration at
any time point.

d[S]

dt
= −k1[E][S] + k2[ES]

= −1 × k1[E][S] + 1 × k2[ES] + 0 × k3[ES]

(2)
d[P]

dt
= k3[ES]

= +0 × k1[E][S] + 0 × k2[ES] + 1 × k3[ES]

(3)
d[E]

dt
= −k1[E][S] + k2[ES] + k3[ES]

= −1 × k1[E][S] + 1 × k2[ES] + 1 × k3[ES]

(4)
d[ES]

dt
= k1[E][S] − k2[ES] − k3[ES]

= +1 × k1[E][S] − 1 × k2[ES] − 1 × k3[ES]

(5)

These equations can be further expanded using
Eqs. (6)–(8)

k1[E][S] = k1[E]1[S]1[ES]0[P]0 (6)

Table 1

Chemical model Reaction pathway
matrix

Reaction
order matrix

Enzyme kinetic
modela




−1 +1 0

0 0 +1

−1 +1 +1

+1 −1 −1







1 1 0 0

0 0 1 0

0 0 1 0




Zero-order kinetic
model

[
−1

+1

] [
0 0

]
a This model, based on the rate constants instead of the

Michaelis–Menten parameters,vmax andKm, does not require the
steady state assumption to be made.

k2[ES] = k2[E]0[S]0[ES]1[P]0 (7)

k3[ES] = k3[E]0[S]0[ES]1[P]0 (8)

The coefficients of the linear combinations in each
differential equation (Eqs. (2)–(5)) form the reaction
pathway matrix as shown inTable 1. The exponents
for each species inEqs. (6)–(8)form the reaction order
matrix shown also inTable 1.

The parameters in the Michaelis–Menten equation
can be related to the micro-rate constants (k1, k2 and
k3) in Eqs. (2)–(8)by Eqs. (9) and (10) [3]

Km = k2 + k3

k1
(9)

vmax = k3[E]T (10)

where [E]T is the total enzyme concentration.
We have previously described an approach for fit-

ting kinetic data to any chemical model[4]. This
approach encodes the information represented by
Eqs. (2)–(8) (or alternatively any other chemical
model) as two matrices, as described earlier. This
method for describing kinetic systems has advantages
relative to previously reported methods, as it can be
easily generalized to, for example, inhibition of the
enzyme by excess substrate, multiple substrate mod-
els or multiple enzyme models. These applications,
however, are beyond the scope of this paper. In the
present work, a kinetic fitting approach, using the ma-
trix representation described earlier, is used to inves-
tigate the estimation of rate constants inEqs. (2)–(8)
from LC–DAD–MS kinetic data and to understand
the influence of the addition of an MS detector to an
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LC–DAD instrument on the accuracy and precision of
the rate constants. The effect of this additional data on
the chemometric resolution of chromatographically
overlapped compounds has also been studied.

A multivariate curve resolution method using al-
ternating least squares (MCR-ALS) was used for the
analysis[5,6]. The MCR-ALS algorithm has been de-
scribed previously and is based on Beer’s law, as
shown inEq. (11) [7]

D = C · ST + E (11)

whereD is the data matrix (mλ × mrt) containing ab-
sorbance measurements as a function of retention time
(rt), wavelength (λ) and mrt and mλ are the number
of data points of the spectrum and chromatogram, re-
spectively,C (mrt ×n) contains the concentration pro-
files of each component,ST (mλ × n) is the transpose
of the pure component spectra matrix (wheren is the
number of components) andE (mλ×mrt) contains the
error. TheS matrix contains the spectral information
of each pure component, and can be row augmented
to contain MS data as well as DAD data.

When an extra order of information is present, such
as for reaction kinetic data, the model can be described
as shown inEq. (12)

D = R · K · ST + E (12)

whereD is a three-way array (mrt×mλ×mrx) contain-
ing absorbance measurements as a function of reten-
tion time, wavelength and reaction time,K (mrx × n)
contains the kinetic profiles for each component andR

(mrt ×n) contains the retention profiles for each com-
ponent.R is a two-way array when the trilinearity con-
straint is applied and a three-way array (mrt ×mrx ×n)
when the bilinearity constraint is applied.

The data array,D, is decomposed intoR, K andS

by assuming theR andK can be combined into aC
matrix according toEq. (13) [8].

D = (R · K) · ST + E = C · ST + E (13)

TheC andST matrices are subsequently solved by
alternating betweenEqs. (14) and (15)until a mini-
mum fit error is reached[7].

ST=(CT · C)−1 · CT · D (14)

C = D · (ST · S)−1 · S (15)

The search for this minimum may be guided by
the use of chemically relevant constraints, such as

non-negativity, unimodality, selectivity and trilinear-
ity. All these constraints are commonly used with the
ALS algorithm and have been described in detail in
the literature[7,9].

The application of a kinetic model during the reso-
lution of chromatographically overlapped compounds
has been performed by other research groups[10–12].
However, none of these methods are able to flexibly
describe any chemical kinetic model. The method
recently described by our group has been shown
to effectively encode any reaction mechanism com-
prised of elementary reaction steps and is used in this
work [4].

In order to start the iterations, an initial estimate
of either the concentration profiles (C) or the pure
component spectra (S) has to be obtained. Evolving
factor analysis (EFA) has been used here to generate
the starting profiles for the concentration profiles[13].
EFA follows the evolution of the principal components
as a function of retention time by applying singular
value decomposition (SVD) on an increasing number
of rows of the dataset. It makes the chemically valid
assumption that the first component to elute from the
chromatographic column is also the first component to
stop eluting, and so on, for each additional component.
It uses this assumption to correlate the forward and
backward analyses and generates an initial estimate
for the concentration profiles[13].

Many examples can be found in literature on the
application of chemometric methods to overlapped
LC–DAD data [14,15] and to resolve overlapped
GC–MS data[16–19] and overlapped LC–MS data
[20–23]. Others have used the MS information to
determine reaction rates, with limited success[24].
Enzyme kinetics have also been characterized by MS
[25]. The combination of DAD and MS data that are
examined here, is rarely described, thus an investiga-
tion into the usability of this type of augmented data
is warranted.

2. Experimental

All data were simulated in the MATLAB program-
ming environment on various AthlonTM and Pentium
IVTM computers. The data were generated using the
model represented byScheme 1, resulting in a to-
tal of four components. However, the enzyme and
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enzyme–substrate complex are not often observed in
typical enzyme kinetic experiments as the enzymes are
typically denatured and precipitated before analysis.
In addition, many analytical techniques have difficulty
analyzing relatively small molecules, such as typical
substrates and products, while at the same time deter-
mining the concentration of relatively large molecules
such as enzymes. Moreover, only accurate mass de-
terminations will permit differentiation between an
enzyme and an enzyme with a substrate molecule
bound to it. Therefore, these species are omitted in our
analysis.

The retention profiles for the substrate and prod-
uct were generated by Gaussian functions consisting
of 50 points, as shown inFig. 1A. The DAD-spectral
profiles were generated by adding Gaussian functions

Fig. 1. (A) The synthetic retention profiles, (B) DAD spectral profiles, (C) MS spectral profiles and (D) kinetic profiles for the substrate
( ) and the product ( ).

to first-order decay curves, yielding spectra with 51
points, as shown inFig. 1B. The simulated electro-
spray MS spectral profile was an all zero vector of
52 points with a single point with a value of one to
indicate the parent ion. A typical MS spectrum (sim-
ulated for unit mass resolution) including noise is
shown in Fig. 1C. The kinetic profiles were gener-
ated using the enzyme kinetic model with rate con-
stants of 0.58 (�M s)−1, 4.0 s−1 and 0.29 s−1, for k1,
k2 and k3, respectively. These numbers are compa-
rable to typical enzyme parameters, such as those
found for the CYP2D6 catalyzed O-demethylation of
dextromethorphan, which has values of 7.5�M and
17.3 nmol (nmol min)−1 for theKm andvmax, respec-
tively [26]. The initial substrate concentration was
20�M while the enzyme concentration was 0.03�M.
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A typical kinetic profile is shown inFig. 1D. The 10
reaction time points were chosen between 0 to 8000 s
at increasing sampling intervals (6, 120, 300, 600,
1200, 1800, 2800, 4000, 6000, 8000 s). While the ac-
tual time and concentration values for the simulations
could be arbitrary, the values chosen here are typi-
cal for those observed in real enzyme kinetic exper-
iments. The spectral profiles for the combined DAD
and MS instrument were created by augmenting the
DAD spectral profiles with the MS profiles, resulting
in a single mixed spectral profile for each component.

These default profiles were adjusted to investigate
the influence of various factors on the resolution re-
sults. The retention times were changed to modify
the degree of chromatographic overlap between the
substrate and the product peaks. The position of the
Gaussian function in the spectral profile was changed
to vary the spectral similarity between the two com-
ponents. The position of the peak in the mass spec-
trum, corresponding to the mass-to-charge ratio of the
product, was changed to determine the influence of
differences in molecular weight. The initial substrate
concentration was varied in a manner similar to that
used in enzyme kinetic experiments and ranged from
10 to 200�M. Two different kinetic model constraints
were explored: the enzyme kinetic model shown in
Scheme 1and zero-order kinetics. The zero-order ki-
netic model was applied because when the substrate
is in large excess relative to the enzyme concentra-
tion, the kinetic profiles are linear.Table 1shows the
reaction order and pathway matrices that describe the
models that were used to fit enzyme kinetic simulated
data.

The noise in the data was generated in a way
that was analogous to that observed in real DAD
and MS data. Normally distributed random numbers
were added to the DAD spectral profiles. In order
to simulate the chemical noise found in MS data,
non-negative (clipped), normally distributed random
numbers were added to the MS profiles. The default
noise level for the simulations are 1 and 5% for the
DAD and MS profiles, respectively. These noise lev-
els were varied over the range from 0 to 15% for the
noise level in the DAD and from 0 to 50% for the MS
profiles. These values are relative to the maximum
signal value in the corresponding spectrum.

The aging of the column and other instrument fluc-
tuations were simulated by decreasing the retention

time of the product, thereby increasing the chromato-
graphic overlap with the substrate peak as the reac-
tion progresses. In the three-way data consisting of
LC–DAD–MS kinetic data this breaks the trilinearity
of the data and could introduce errors in the results.

The data analysis was performed using in-house
programs written in the MATLAB programming en-
vironment[27]. EFA, originally developed by Maeder
and Zilian [13] and Keller and Massart[28], was
adapted from a program written by the Tauler research
group [29]. The MCR-ALS program used here was
developed in this research group[8], but was based on
some of the approaches used in the MCR-ALS pro-
gram developed in Tauler’s research group[30,31].

The initial estimates for the ALS algorithm were
generated by EFA using two components. All profiles
were constrained to non-negativity. The retention pro-
files were constrained by horizontal unimodality[9].
With this set of synthetic data, the retention and mass
spectral profiles have selective regions in which only a
single component contributes to data and even though
the ALS algorithm allows for the use of selectivity
constraints, we did not apply this constraint during
the analysis to prevent improving the results by this
a priori information that may not be available when
analyzing real data.

When three-way reaction kinetic data were ana-
lyzed, EFA was applied to the sixth slice (which cor-
responds to approximately equal amounts of substrate
and product), and the resulting chromatographic pro-
files were used as the initial guess for all slices of the
data array. Besides the earlier mentioned constraints,
trilinearity was also applied to the first component,
which included no retention time shifts. The analy-
sis was performed while the second component was
constrained to either trilinearity or bilinearity in the
spectral dimension to determine the influence of con-
straining a non-trilinear component to trilinearity.

The quality of ALS resolution results was evalu-
ated according toEq. (16). Although the fit error does
not indicate the fit quality for each individual profile,
earlier publications have shown that the total fit error
follows the same trends as the fit quality for the indi-
vidual component profiles[8].

Fit error(%) = 100

√√√√∑
t,s,k(d

optimal
t,s,k − ddata

t,s,k)
2∑

t,s,k(d
data
t,s,k)

2
(16)
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3. Results and discussion

3.1. Analysis of two-way LC–DAD, LC–MS, and
LC–DAD–MS data

3.1.1. Influence of the noise level
The influence of the noise level in the DAD and

MS data was analyzed by changing the noise level in
the DAD signal from 0 to 15% while changing the
noise level of the MS data from 0 to 50%. All the
other parameters for the synthetic dataset remained
constant. For these experiments, the kinetic direction
was ignored and only two-way data were analyzed,
with an initial substrate concentration of 20�M. Ten
synthetic sets were created and the results were aver-
aged to obtain more precise estimates of the effect of
a particular noise level. Furthermore, three different
two-way datasets were analyzed: LC–DAD, LC–MS
and LC–DAD–MS.

3.1.2. Influence of the noise level on singular values
It is important to evaluate the influence of the noise

level on the number of significant singular values as
determined by SVD. Instead of plotting numerous
SVD plots (log singular value versus singular value
number), our attention was focused on the relative

Fig. 2. The SV3-ratio as a function of the DAD and the MS noise levels for a single simulated LC injection 30 min into the reaction
(substrate and product concentration each at 10�M).

magnitude of the third singular value. The data were
generated using two components, therefore, the third
singular value (sv3) should be due to noise only and
should not be significantly greater than the fourth (sv4)
and higher singular values. In order to display the in-
formation found by SVD analysis, the ratio of the third
singular value was calculated in relation to the second
and the fourth singular values according toEq. (17).

SV3-ratio = sv3 − sv4

sv2 − sv4
(17)

This ratio indicates whether the third component is
closer to the noise level (sv4) or to the real component
(sv2). When the SV3-ratio is small (i.e.<0.5), the third
singular value is closer to the noise level, represented
by sv4, and generally indicates the presence of only
two components. As the SV3-ratio increases, the third
singular value approaches the second singular value
and could be falsely attributed to a third component
present in the data. The results from the SVD-analysis
of the LC–DAD–MS data are shown inFig. 2. The
SV3-ratio increases approximately linearly with the
increasing noise level in the MS profile. The reason
that the third singular value becomes more significant
as the amount of noise in the MS data increases is due
to the fact that this noise is non-random and causes
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a positive bias in the data. Although normally dis-
tributed random numbers were used to simulate the
noise, the negative numbers were replaced by zeros,
in an attempt to represent chemical noise in the mass
spectrum. This effectively increases the rank of the
data matrix. It is interesting to note that when a higher
level of random noise is present in the DAD profile, a
more reliable estimation of the number of components
is obtained for the LC–DAD–MS experiment than for
the corresponding LC–MS experiment. This is prob-
ably caused by the noise in the DAD profile masking
the effect of the bias caused by the MS noise.

The cause of the lowering of the SV3-ratio seen at
higher noise levels (>40%) in the MS direction and
at moderately low noise levels in the DAD direction,
is that both the third and fourth singular values have
become significant and thus the difference between the
third and fourth singular value is decreasing. At this
point the SV4-ratio indicates that four components are
present, due to the high levels of non-random noise in
the mass spectral data.

The analysis of the LC–DAD data indicated clear
evidence for the presence of two components only for
all noise levels (data not shown), where even at the
highest noise level of 15%, the SV3-ratio is<0.05.

Analysis of the LC–MS data (not shown) indicates
that when the MS noise level increases the SV3-ratio

Fig. 3. The ALS fit error for LC–DAD–MS data as a function of the DAD noise level and the MS noise level for a single simulated LC
injection 30 min into the reaction (substrate and product concentration of 10�M).

increases and levels off at 0.4 above the 15% noise
level. This is again due to the increase in the signifi-
cance of the fourth singular value.

3.1.3. Influence of noise level on resolution results
The same variations in the noise levels that were

used to study the SVD results were used to examine
the effect of the noise on the resolution results. The
results for the analysis of the LC–DAD–MS data are
shown inFig. 3. The trend in fit error as a function
of the noise level is similar in both the MS and DAD
directions. When the LC–DAD or LC–MS data are
analyzed individually, the effect of increasing the noise
level in either the MS or DAD profiles on the fit error
follows the same trend.

3.1.4. Influence of signal overlap
The algorithm used here underwent a thorough in-

vestigation of its behavior with respect to retention
time and DAD spectral overlap, as described in a pre-
vious publication[8]. In the present work, the addition
of MS data provides a more complete picture of the
behavior of the algorithm.

Increases in the degree of chromatographic peak
overlap or the similarity between the two DAD spectral
profiles result in a corresponding increase in the fit
error. However, changing the MS profile has a more
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Fig. 4. The ALS fit error for LC–DAD–MS data as a function of difference in position of the Gaussian function in the DAD spectral
profile and the difference in the molecular weight of the product and substrate ions for a single simulated LC injection 30 min into the
reaction (substrate and product concentration of 10�M).

abrupt influence on the fit results, as shown inFig. 4.
As soon as the MS spectra are different by 1 point
(1 amu), the ALS algorithm benefits from the unique
selectivity of that data. It results in complete resolution
of the overlapped retention and spectral profiles and
the fit error is no longer dependent on the degree of
overlap of the DAD spectral profiles. This is the case
even though the selectivity constraint was not applied
during the analysis.

3.2. Analysis of one-way kinetic data

The kinetic fitting routine that has been incorporated
into the ALS algorithm has been studied extensively
using a range of different chemical kinetic models[4].
However, it has not previously been used to model of
enzyme kinetics. The problem of model or parameter
indistinguishability of the micro-rate constant descrip-
tion of enzyme kinetics is addressed here. Without the
determination of the concentration profiles of the en-
zyme and the enzyme–substrate complex, and only the
temporal profiles of the substrate and the product are
available, the reaction can be accurately modeled by
zero-order reactions in the case of a large excess of

substrate. This section discusses how well the algo-
rithm can estimate the rate constants from the avail-
able data when this simplified model is used.

For this study, the number of reaction time points
in the simulated dataset remained at 10, however,
the time intervals were changed to accommodate the
longer duration of the reaction at higher substrate
concentrations. The total reaction time was estimated
by multiplying the initial substrate concentration by
100 and adding 5000 s. The time points were created
using exponentially increasing time intervals.

3.2.1. Fits of individual kinetic profiles
When a consecutive first-order reaction is monitored

by measuring the response of the product and/or the
intermediate,k1 andk2 cannot be differentiated. This
is known as the flip–flop effect[32]. When studying
enzyme kinetics with one specific set of starting condi-
tions, it might be possible that different combinations
of rate constants would describe the same enzyme ki-
netic model to the same level of precision. Alterna-
tively, different models may also fit the data to the
same level of precision. To further explore these issues,
the kinetic profiles are studied individually without
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Fig. 5. The median zero-order rate constant (of 10 simulations) as estimated from fitting the enzyme kinetic concentration profiles of the
substrate and the product as a function of the initial substrate concentration () and the true value fork3 ( ).

any of the corresponding chromatographic or spectral
data. The rate constants used to simulate the enzyme
kinetic profiles are kept constant at 0.58 (�M s)−1,
4.0 s−1 and 0.29 s−1 for k1, k2 andk3, respectively.

When using a zero-order reaction mechanism to fit
the enzyme kinetic data, as the initial substrate con-
centration is increased, the concentration profiles will

Fig. 6. The median (of 10 simulations) rate constants ( ) for the enzyme kinetic model while fitting only the kinetic concentration
profiles of the substrate and product, as a function of initial substrate concentration,±1S.D. ( ).

become linear and the zero-order rate constant will ap-
proachk3, as shown inFig. 5. The early points in the
figure that correspond to low substrate concentrations,
where a steady state is never reached, result in a poor fit
to the kinetic profiles by the zero-order kinetic model
and inaccurate estimates for the rate constant. At high
substrate concentration levels, the rate constant for a
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fit of the enzyme kinetic data to a zero-order chemical
model approaches thek3, giving the true maximum
substrate conversion rate (vmax). This is the assump-
tion often used in Michaelis–Menten enzyme kinetic
studies, where a single time point measurement is used
to estimatev0.

Fig. 6shows the estimated rate constants as a func-
tion of the initial substrate concentration obtained by
fitting these data to the correct enzyme kinetic model.
All rate constants are fit accurately at lower (<40�M)
and higher (>160�M) substrate concentrations. How-
ever, at intermediate substrate concentration levels, the
kinetic fitting algorithm finds rate constants of 0.96,
2.53 and 0.26 s−1 for k1, k2 andk3, respectively, which
correspond to 16 nmol (nmol min)−1 and 3.5�M for
vmax andKm, respectively, instead of the true values of
17.3 nmol (nmol min)−1 for vmax and 7.5�M for Km.
The fitting routine finds a local minimum at that com-
bination of rate constants. The larger standard devia-
tions observed fork1 andk2 for some initial substrate
concentrations are also indicative of some of the 10
simulations converging to the alternate minimum.

3.3. Fit of three-way data

3.3.1. Analysis of trilinear three-way data
As was seen inSection 3.2.1with the analysis of

kinetic data, the fitting algorithm might find a lo-
cal minimum in the solution for the enzyme kinetic
model. This, however, was the result of a single run
of the simplex search algorithm. Many simplex opti-
mizations are carried out during each ALS analysis.
Having resolved the retention, spectral and kinetic
profiles, the kinetic profiles are fit to the enzyme ki-
netic model, resulting in a set of rate constants. These
rate constants are subsequently used to simulate the
kinetic profiles and are used to recalculate the spectral
and retention profiles. The rate constants found, are
used in the next ALS iteration as the starting point
for the simplex search, such that the kinetic profiles
are slightly changed from the previous iteration. One
would expect that the chances of the algorithm getting
stuck in a local minimum during these multiple starts
of the simplex algorithm within ALS, from different
starting points at each ALS iteration, will be limited. In
this section, we investigated just that LC–DAD–MS,
LC–DAD and LC–MS three-way datasets were gen-
erated using different initial substrate concentrations

Fig. 7. The median rate constantsk1, k2 andk3 (of 10 simulations)
from the analysis for the LC–DAD–MS data ( ), LC–DAD
data (- - -), LC–MS data ( ) and the true values ( ) using
ALS with the kinetic constraint from the analysis of three-way
data for different initial substrate levels.

while maintaining a total enzyme concentration of
0.03�M. Fig. 7shows the median of the results of ana-
lyzing 10 different simulated three-way datasets using
ALS with the implementation of the kinetic constraint.
In comparingFig. 7with Fig. 6, it is immediately ob-
vious that the algorithm no longer finds an alternate
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Fig. 8. The Michaelis constant (Km) as calculated by(k2 + k3)/k1 from the analysis for the LC–DAD–MS data ( ), LC–DAD data
(- - -), LC–MS data ( ) and the true value ( ) using ALS with the kinetic constraint from the analysis of three-way data for different
initial substrate levels.

solution for the rate constants in the 40–160�M range
for the initial substrate concentration.

A closer examination of the results reveals some
more characteristics of this analysis. The analysis of
the LC–MS data (dotted line) shows an underestima-
tion of k1 and k2. However, the Michaelis constant
(Km = (k2 + k3)/k1), as shown inFig. 8, is still sim-
ilar to the true value. The increased noise level of the
MS data does not allow the algorithm to distinguish
between the correct values for the micro-rate constants
and those found here, but does allow for the correct
estimation of Michaelis constant.

The analysis of the LC–DAD data (dashed line) is
inaccurate over the entire range. This is caused by the
incomplete resolution of the overlapped retention pro-
files. (Some of the substrate absorbance is wrongly at-
tributed to the product.) Especially with a lower initial
substrate concentration, slow product formation is ar-
tificially enhanced by this incomplete resolution and
the observedk3 is overestimated.

The three-way ALS resolution of the LC–DAD–MS
kinetic data (solid line) takes advantage of the selec-
tivity in the mass spectrum to better resolve the over-
lapped retention profiles, while at the same time the
lower noise level of the DAD data allows the algorithm
to more accurately determine the micro-rate constants.

3.3.2. Analysis of non-trilinear three-way data
Unless the experimental conditions are very care-

fully controlled, most multi-dimensional datasets will
show non-trilinear characteristics caused by minor
retention time shifts and other non-ideal behavior.
Non-trilinear LC–DAD–MS, LC–DAD and LC–MS
three-way datasets were generated, using an initial
substrate concentration of 20�M and total enzyme
concentration of 0.03�M. The chromatographic peak
corresponding to the product was simulated to shift
towards the substrate peak as the reaction progressed,
resulting in lower chromatographic resolution and
thus breaking the trilinear structure of the data. These
shifts were generated to simulate column deteriora-
tion and temperature drift that may occur during real
chromatographic experiments. The maximum chro-
matographic peak shift was increased systematically
from 0 to 9 s, giving a total of nine shifted exper-
imental datasets, as well as a dataset with no peak
shifts. These maximum shifts are represented on the
x-axis inFig. 9. Each dataset was analyzed using two
different combinations of ALS constraints.

Fig. 9 shows the results for the median of 10 sim-
ulations of LC–DAD–MS data, LC–DAD data and
LC–MS data, analyzed using ALS and constraining
all components to trilinearity. The observed rate con-
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Fig. 9. The median rate constantsk1, k2 andk3 from the analysis for
the LC–DAD–MS data ( ), LC–DAD data (- - -), LC–MS data
( ) and the true values ( ) using ALS while constraining
all components to trilinearity from the analysis of three-way data
with a non-trilinear retention time shift of the product peak, using
an initial substrate concentration of 20�M.

stants are independent of the retention time shift of
the product signal. There is an increase in fit error
and a broadening of the retention profile of the prod-
uct component with an increase in the peak shift of
the product as the reaction progresses. However, this
does not significantly affect the resolved kinetic pro-
files for the substrate and the product and thus does
not change the outcome of the kinetic fitting.

When the product signal was no longer constrained
to trilinearity, the resulting rate constants (data not
shown) demonstrate a nearly identical trend to that
observed when both components were constrained by
trilinearity. As a result of these studies we conclude
that there is no effect of these chromatographic peak
shifts on the values of the rate constants.

4. Conclusions

In this paper, we have examined the influence of the
addition of MS data to LC–DAD data on the accuracy
of the estimated rate constants obtained from fitting
simulated enzyme kinetics data.

Incorrect rate constants are found for individual
runs of the kinetic fitting routine results in non-optimal
solutions due to algorithm converging on a local min-
imum. The use of multiple iterations within the ALS
algorithm improves the convergence properties of the
kinetic fitting routine and increases the accuracy of the
resulting parameters. If the three-way data obtained
from each different substrate level are combined in a
four-way dataset, and analyzed by a four-way resolu-
tion algorithm, the remaining ambiguities should be
eliminated.

Analyzing non-trilinear data increases the overall
fit error when the data is fit to a trilinear model. How-
ever, the resolved kinetic profiles are not significantly
changed. Therefore, the estimated rate constants are
not significantly influenced by these non-trilinearities,
even in the case of a significant shift of the chromato-
graphic peaks.

Our analysis of the LC–DAD data indicates the im-
portance of successful curve resolution for accurate
estimation of the kinetic constants. When utilizing
LC–DAD data, it is probably advisable to experiment
with the selectivity constraint to improve the reso-
lution results to obtain reasonable kinetic parameter
estimates.

The higher noise level found in MS data reduces the
accuracy in the estimation of the micro-rate constants
using MS data alone, without spectroscopic data. The
analysis of the LC–MS data, however, provides a good
estimate for the Michaelis constant. The accuracy of
the Michaelis constant is typically more important for
real metabolism studies. In addition, MS data con-
tain much more structural information than DAD data,
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which is beneficial for the elucidation of reaction path-
ways. There is also an advantage in using the MS
data for the resolution of overlapped chromatographic
peaks as the unique selectivity found in MS data as-
sists the chemometric algorithm in resolving the over-
lapped signals.

Using the combined LC–DAD–MS data results in
the best estimates for the micro-rate constants (espe-
cially k1 andk2). The analysis of either LC–DAD–MS
or LC–MS data provides accurate estimations of the
Km andvmax values.

The analysis of the higher order data resulting
from the combination of hyphenated chromatographic
instrumentation with spectroscopic and mass spec-
trometric detection shows promise for the character-
ization of reaction kinetics. The results from these
studies provide useful guidance for the design of
enzyme kinetic experiments in conjunction with
multi-way chemometric methods.
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