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Abstract

This paper demonstrates a novel implementation of an alternating least squares (ALS) algorithm for resolving three- and four-way data.

Computer-simulated multi-way data are studied as well as the multi-way data obtained from typical kinetic experiments observed using liquid

chromatography with diode array detection (LC-DAD) and UV–visible spectroscopy. Each data set is analyzed using this new multi-way ALS

algorithm, not only providing estimates of the spectral profiles (and retention profiles in the case of LC-DAD measurements) for each of the

components involved, but also simultaneously estimating the rate constants for the reaction steps at different experimental conditions using a

global kinetic analysis. However, when the reaction conditions do not require that all the rate constants are identical for each experiment, as is the

case when the reactions are observed at different temperatures, the data analysis still benefits from the common information present in the data,

such as spectral and retention profiles, as well as a common reaction mechanism.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The determination of reaction rate constants can be

accomplished by fitting of experimentally determined concen-

tration profiles of reactants, intermediates and products as a

function of time. The analysis becomes more complicated

when the responses of the reactants and the products overlap

and one cannot directly determine their concentration profiles

over time. One can apply many curve resolution methods to

these overlapped species in order to mathematically resolve the

individual concentration profiles [1–3] and subsequently fit

these with any of the available kinetic fitting programs, for

example, Gepasi [4–6] and WinNonlin\ [7].

Many groups have integrated these kinetic fitting routines

into their curve resolution algorithms [8–14] reducing this

previous multi-step process, into a single data analysis

procedure. The results of these analyses provide both the
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individual component response profiles (such as spectra) and

the rate constants for the reaction.

Many researchers have used the analytical solutions for the

differential equations to estimate rate constants of spectroscopic

data during a multivariate curve resolution method for a

consecutive first-order model [15] as well as first- and

second-order kinetic models [12,16]. These methods lack the

flexibility of being able to analyze more complex kinetic models

for which the analytical solutions of the differential equations

cannot be obtained. Moreover, studying different kinetic models

(other than the three mentioned above) requires modifications to

the program code, rather than a change in the input parameters.

Using the analytical solutions for the differential equations

increases the calculation speed; however, when modern desktop

computers are used to solve the differential equations numer-

ically, only a few seconds are added to the analysis.

Gemperline et al. have implemented kinetic fitting routines

based on chemical representations of the component reactions.

This is accomplished by parsing the reaction mechanism as

entered by the user. The resulting differential equations are

solved, and this approach allows for the analysis of kinetic

models of any complexity [17]. Moreover, this method also

allows for the global estimation of rate constants of multiple
ory Systems 81 (2006) 82 – 93
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reaction kinetic experiments simultaneously. However, the

method implemented by Gemperline et al. is not based on a

curve resolution algorithm but on the Levenberg–Marquardt

(LM) optimization of the projection of the concentration

profiles into the null space spanned by the data [17]. The

approach described here utilizes an ALS algorithm that allows

for the flexible implementation of various constraints. More-

over, Gemperline’s approach has only been applied to

spectroscopic measurements and, thus, is limited to three-way

data (wavelength, reaction time and reaction conditions).

The chemometric method described in this paper is

applicable to the analysis of multi-way experiments with

two-way kinetic data forming four-way data sets (the

measured response as a function retention time, wavelength,

reaction time and initial reaction conditions). The extended

kinetic fitting algorithm described in this paper is imple-

mented within the ALS algorithm, which allows for the

application of multiple constraints to help resolve chromato-

graphically or spectrally overlapped components and to limit

the results to a chemically reasonable solution [3,18]. The

underlying assumption is that the individual component

responses (such as spectra or chromatograms) do not change

with variations in the reaction conditions. This is typically

the case for different initial concentrations of the reactants

but may also be the case for reactions studied at different

temperatures.

This new chemometric algorithm has been characterized

by fitting computer-simulated data in order to compare the

results obtained with the parameters used to generate the data.

Secondly, the performance has been investigated by analyzing

data from typical kinetic experiments. In the first experiment,

the hydrolysis of the dye molecule 4-nitrophenyl-pivalate

(2,2-dimethylpropionate) (4NPP) was studied using a ther-

mostated cuvette holder in a diode-array UV–vis spectrom-

eter. The final products from this reaction are 4-nitrophenol

and pivalate [19]. This experiment resulted in a two-way data

set of absorbance measurements as a function of wavelength

and reaction time. In order to get an insight into the

thermodynamic parameters of this reaction, the spectroscopic

experiment was repeated at several different temperatures

resulting in a three-way data set of absorbance measurements

as a function of wavelength, reaction time and reaction

temperature.

In a second experiment, the decomposition of an herbicide

(Allyi) was followed by injecting aliquots of the reaction

mixture into an LC-DAD instrument at regular time intervals

while the reaction mixture was kept at a constant temperature,

as reported in an earlier publication [20]. The resulting three-

way data sets consist of absorbance measurements as a

function of wavelength, retention time and reaction time.

However, when multiple reaction mixtures are held at

different temperatures, this results in a combined four-way

data set of absorbance measurements as a function of

wavelength, retention time, reaction time and reaction

temperature.

These two experiments serve as examples of data types that

can be analyzed using this new approach.
2. Theory

2.1. Multivariate curve resolution–alternating least squares

Two-way LC-DAD data are frequently resolved using

multivariate curve resolution methods, where the model is

given as [21]

D ¼ RST þ E ð1Þ

where D (R�S) is a spectrochromatographic data matrix with

R retention times and S wavelengths, R (R�N) contains the

chromatographic profiles for N species present in the mixture,

S (S�N) contains the spectral profiles and E (R�S) is the

error matrix. The iterative procedure to minimize the error

matrix (E) is based on alternation between Eqs. (2) and (3)

until a minimal improvement is achieved or a preset number of

iterations is accomplished.

S ¼ R.D ð2Þ

R ¼ D ST
� �. ð3Þ

where . indicates the pseudo-inverse of the matrix. The ALS

algorithm requires an initial estimate of either S or R, which

can be obtained using, for example, SIMPLISMA or evolving

factor analysis (EFA), respectively [22,23].

The most general model used for multi-way analysis in this

work can be expressed by

Dk ¼ RkQkS
T
k þ Ek ð4Þ

where Dk is the spectrochromatogram (R�S) for the kth

time point in a kinetic experiment, Rk (R�N) contains the

pure component chromatograms for the kth reaction time

point, Sk (S�N) contains the pure component spectra for the

kth time point, Qk is an (N�N) diagonal matrix constructed

from the k1k. . . kNk elements in the N�K kinetic profile

matrix, K and Ek is the error matrix for the kth time point.

In the discussion that follows, we follow closely the

nomenclature suggestions given by Smilde et al.[24]. Briefly,

italic lower case are scalar values, upper case values

represent array dimensions, bold lower case represent

vectors, bold upper case represent matrices, and underlined

bold upper case is reserved for tensors. Tensors, i.e., D, may

be matricized, where the R�S�K tensor, can be represented

as DRK�S, indicating the data are represented in RK rows

and S columns.

The ALS algorithm must be initialized, and there are two

possible cases for the initial estimates. If the initial guess is

given as an R�N�K tensor Z, with the R�N pure

component chromatograms for each of the K time points

obtained from two-way ALS fits of each Dk matrix, then the R

and K arrays are obtained from the initial guess Z by

normalization where

knk ¼ �znk� ð5Þ
and

rnk ¼ znk=knk ð6Þ
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Fig. 1. A graphical depiction of the Z tensor, matricized as ZNxRK for use in step (6) of Table 1. Reactant (—); product (- - - -).
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The structure of the matricized Z array, ZN�RK, is depicted in

Fig. 1. The S tensor isdetermined as follows

Sk ¼ DT
k QkR

T
k

� �.
: ð7Þ

Alternatively, the initial guess may be given in terms of the

S�N pure component spectra for the k different time points, Y,

an S�N�K tensor, and the initial values for the R, S and K

arrays are found in an analogous fashion to that shown in Eqs.

(5)–(7).

The iterative calculations of the algorithm are carried out as

shown in Table 1, depending on the structure of the model,

where the iterations are started with step (1) in the case of a

spectral initial guess (Y), or with step (6) in the case of a

chromatographic initial guess (Z). If there is no trilinear or

bilinear structure at all, then K independent two-way ALS

analyses are carried out. However, this algorithm allows for the

presence of components with different structures, for example,
Table 1

Equations for MCR-ALS algorithm

Bilinear S Trilinear Bilinear R Step

R=DR�SKY
.
N�SK (1)

YSK�N=DSK�R(R
T). (2)

knk = |ynk | (3)

Snk =ynk/knk (4)

Zk =QkRk
T Zk =QkR

T (5)

S=DS�RKZ
.
N�RK (6)

ZRK�N=DRK�S(S
T). (7)

knk =�znk� (8)

rnk =znk/knk (9)

Yk =QkS
T Yk =QkSk

T (10)

Xn =rnsn
T (11)

K=(DK�RSX
.
N�RS)

T (12)
a background component lacking all structure while another

component might be trilinear. The component with the lowest

level structure determines which column of Table 1 is used.

Components that have a higher order structure are constrained

according to a method described earlier [25]. A graphical

depiction of one of the steps in the algorithm, step (6), for

trilinear data is shown in Fig. 2.

In the present example, trilinearity implies that each species

spectral profile is the same for each retention measurement and

reaction time, each species chromatographic profile is the same

for each wavelength and reaction time and each species kinetic

profile is the same for each retention time and wavelength. In

chromatographic measurements, however, retention profiles

may change in shape depending on the concentration, giving

nonbilinear retention behavior. A graphical depiction of the

ZN�RK matrix for a nonbilinear R is shown in Fig. 3.

2.2. Constraints

During the iterations, after a variable is recalculated, the

appropriate constraints may be applied, such as non-negativity

and unimodality, and these have been described earlier by

several investigators [18,21]. The profiles adjusted by the

constraints are subsequently used for the next step in the

calculation. While this approach does not give true least-

squares solutions, it is a commonly used approach that has

been used to speed up calculations, and it allows for

constraints to be applied on a component-by-component basis

[26–33].

The kinetic model is implemented in a similar fashion to

that described earlier [14], in that the kinetic profiles calculated

during the ALS iterations are fit to the differential equations,

and the optimal reaction parameters are used to simulate new
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kinetic profiles, which are subsequently used in the next

iteration. The description of the implementation of the reaction

mechanism as well as the individual kinetic fitting is described

in an earlier paper [14]. In that work, simplex optimization was

used to find the optimal kinetic parameters for the reaction,

whereas, in this work, the method is extended to include global

or local searches for the optimal rate constants, as well as the

incorporation of the Gauss–Newton (GN) and LM optimiza-

tion methods that are implemented in the optimization toolbox

for Matlab by Mathworks [34].
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2.3. Two-way kinetic model fitting

When different reaction conditions or initial concentrations

are used, a UV–visible kinetic experiment will result in two-

way kinetic data. Moreover, if each reaction condition results in

a three-way data set (e.g., LC-DAD) the overall data would be

four-way data. Note that these data are not quadrilinear. Unlike

spectral profiles and retention profiles, the different kinetic

profiles (at different reaction conditions) have a non-linear

relationship with each other.
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on time Retention time
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In order to facilitate the analysis of four-way data, the data

for the different kinetic experiments are unfolded as shown in

Fig. 4, thus simplifying the four-way analysis to a three-way

ALS as described above. This method maintains the bilinear or

trilinear structure of the data and takes advantage of the

common properties of the data (identical spectral and/or

retention profiles). During the iterations of the ALS algorithm,

whether using Eqs. (2) and (3) for two-way analysis or the

equations shown in Table 1 for three-way analysis, the

intermediate kinetic profiles contain all the profiles for each

experiment unfolded as depicted in Fig. 4.

The algorithm that performs the kinetic fitting allows for the

use of a single kinetic model to be applied to all the different

reaction condition resulting in a global fit of all the data. This

method is useful when duplicates are analyzed simultaneously

or when different initial reagent concentrations are used, as

these experiments can be described by a single kinetic model.

However, when experiments are performed that have similar

models but different rate constants (e.g., at different reaction

temperatures), the algorithm allows for a local fit of the kinetic

profiles, resulting in a set of rate constants for each reaction

kinetic experiment. Subsequently, these rate constants may be

examined for their adherence to an activation model such as the

Arrhenius equation.

3. Experimental

Most chemicals were purchased from Aldrich and used

without further purification, while the Allyi herbicide was

donated by DuPont, as acknowledged previously [20].

The hydrolysis of 4NPP was characterized at a fixed pH as

follows. A pH 9.00 buffer was prepared by titrating a 0.1 M

potassium borate solution with hydrochloric acid at each

temperature. A 30.0 mg quantity of 4NPP was dissolved in

5.00 mL of methanol. A 10.0 AL aliquot of this solution was

added to 2.50 ml of the buffer in a stoppered cuvette for the
k 1

k 2

k 3S + E ES P + E

Fig. 5. Enzyme kinetic model. Conversion by an enzyme (E) of a substrate (S)

forming the enzyme–substrate complex (ES) intermediate and the product (P).
UV–visible experiments. The UV–visible spectrophotometer

was a Hewlett-Packard (Palo Alto, CA) 8453 with a Hewlett-

Packard 89090A temperature-controlled cell compartment set

at 20, 37 or 50 -C. Spectra were collected from 200 to 500 nm

at 1-nm intervals. The reaction was monitored approximately

every minute at the beginning of the reaction, and the interval

was increased as the reaction progressed.

The hydrolysis of methyl-2-[[(4-methoxy-6-methyl-1,3,5-

triazin-2-yl) aminocarbonyl] aminosulfonyl] benzoate (Allyi)

has been studied previously [20]. The procedure used was to

dissolve 10.0 mg of Allyi into 0.500 ml of acetonitrile. This

solution was then diluted to 100.0 mL using a 0.0050 M aspartic

acid buffer titrated to pH 2.00. Aliquots of this Allyi solution

were stored in closed vials and kept in waterbaths held at 25, 35,

45 and 53 -C. At each time point, a sample was injected through

a 20-Al sample loop into the LC-DAD instrument. The LC-

DAD instrument was a Hewlett-Packard 1090 LC with diode

array detector equipped with a Phenomenex LUNA C18

(15�4.6 mm) column with 5-Am silica particles, running an

isocratic mobile phase consisting of 50% acetonitrile and 50%

of the pH 2.00 aspartic acid buffer at 0.2 mL/min. Spectra

(200–500 nm) of the eluent were obtained at approximately 1-s

intervals.

3.1. Generation of simulated data

The synthetic data were generated using the enzyme kinetic

model shown in Fig. 5.
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Fig. 6. Simulated spectral profiles used for the synthetic data sets. Reactant (—);

product (- - - -).
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Table 2

List of reaction time points (seconds) for simulated enzyme reaction data at

each substrate levela

Time point Substrate concentration (AM)

5 10 20 50 100 200 500

1 55 60 70 100 150 250 550

2 220 240 280 400 600 1000 2200

3 495 540 630 900 1350 2250 4950

4 880 960 1120 1600 2400 4000 8800

5 1375 1500 1750 2500 3750 6250 13,750

6 1980 2160 2520 3600 5400 9000 19,800

7 2695 2940 3430 4900 7350 12,250 26,950

8 3520 3840 4480 6400 9600 16,000 35,200

9 4455 4860 5670 8100 12,150 20,250 44,550

10 5500 6000 7000 10,000 15,000 25,000 55,000

a Values for the time points were calculated using Eq. (10).
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The three micro-rate constants for this model are related

to the Michaelis constant and the vmax by Eqs. (8) and (9)

[35].

Km ¼
k2 þ k3

k1
ð8Þ

vmax ¼ k3 E½ �T ð9Þ

where [E]T is the total enzyme concentration.

Enzyme parameters are typically reported in the literature

as vmax and Km. In the present work, instead of fitting the

data to the classical Michaelis–Menten model, which assumes

steady state conditions, we fit the micro-rate constant model

directly. Although the k1 and k2 are not well defined, the Km

values calculated from Eq. (8) are expected to be reasonably

accurate.

In the simulations carried out in this work, we followed

the enzymatic substrate conversion at different substrate

levels using hypothetical UV–vis experiments as well as

LC-DAD experiments. The data were created using the

spectral and retention profiles shown in Figs. 6 and 7,

respectively. The micro-rate constants used for the simula-

tions were set to values of 0.58 AM�1 s�1, 4.0 s�1 and 0.29

s�1, for k1, k2 and k3, respectively. These rate constants

result in KM=7.5 AM and vmax/[E]T=17.6 nmol P/nmol E/

min, which are similar to the enzyme parameters found for

the O-demethylation of dextromethorphan by CYP2D6 in the

presence of antibody [36]. The enzyme concentration was

0.03 AM for all simulated experiments, while the initial

substrate concentrations were 5, 10, 20, 50, 100, 200 and

500 AM.

The total time was calculated by adding 5000–100

times the initial substrate concentration. The total time was

divided into 10 quadratically separated time points accord-

ing to Eq. (10) resulting in the time points shown in

Table 2.

time point�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
total time
p

10

 !2

: ð10Þ

Normally distributed random numbers were added

corresponding to S/N=100 at the peak maximum to simulate

homoscedastic measurement noise.
3.2. Data analysis algorithm

The three-way ALS algorithm was written in the MATLAB

(versions 5.3–7.0) programming environment from Math-

works [34] while the kinetic fitting routine as described in an

earlier paper [14] was modified to fit multi-dimensional kinetic

profiles. The program was executed on various x86 computers

running Windows XP.

4. Results and discussion

4.1. Computer simulated data

In typical enzyme experiments, a mixture of enzyme and

substrate is incubated for a predetermined period of time and

a single aliquot is analyzed to determine the concentration of

product formed during the reaction. The initial rate of

reaction estimated from this data point is plotted vs. the

initial substrate concentration [35]. In a previous paper we

investigated the influence of using a single substrate

concentration but following the concentrations of the

substrate and product over time rather than only at a single

incubation time [37]. This additional time-dependent infor-

mation aided in the determination of the micro-rate

constants. However, under certain reaction conditions some

sets of micro-rate constants are indistinguishable from others

within the error of the experiments. By adding multiple

substrate concentration experiments to our data, it may now

be possible to relieve this ambiguity, while at the same time

reducing the number of experiments (different substrate

concentration levels) that need to be performed from many

to a few. The multiple incubation times used were calculated

according to Eq. (10) and were dependent on the initial

substrate concentration, as shown in Table 1. The selected

time points were chosen empirically, using a quadratic

function to sample the reaction less frequently towards the

end of the reaction. Other investigators have determined

optimal sampling schedules for kinetic experiments based on

analysis of the information function for some kinetic models

that have analytical solutions for the set of differential



Table 3

Summary of analysis of enzyme kinetic data from simulated three-way UV–visible spectroscopy experiments

Optimization method Initial

concentration (AM)

Global fit ALS fit error (%) Rate constantsa Michaelis

constant (AM)b
k1 (AM

�1 s�1) k2 (s
�1) k3 (s

�1)

Simplex All Yes 2.08 0.21 0.85 0.29 5.43

Levenberg Marquardt All Yes 2.08 0.43 2.10 0.29 5.56

Simplex 5 No 2.09 0.19 0.73 0.23 5.05

10 0.15 0.79 0.29 7.20

20 0.16 0.78 0.29 6.69

50 0.19 0.68 0.28 5.05

100 0.16 0.81 0.29 6.88

200 0.22 0.44 0.29 3.32

500 0.38 0.0002 0.28 0.74

Levenberg Marquardt 5 No 2.10 0.47 2.13 0.23 5.02

10 0.36 2.36 0.29 7.36

20 0.43 2.20 0.27 5.74

50 0.47 2.14 0.28 5.15

100 0.37 2.29 0.29 6.97

200 0.65 1.85 0.29 3.29

500 4.00 0.0001 0.28 0.07

a The true values are 0.58 AM�1 s�1, 4.0 s�1 and 0.29 s�1 for k1, k2 and k3, respectively.
b The Michaelis constant calculated from the true values using Eq. (8) is 7.40 AM.
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equations to be solved [38–40]. Our design follows the

general pattern of sampling found to be optimal for related

models [38].

4.1.1. Generation of initial estimates for the analysis of the

simulated data

The initial estimates were created by first performing EFA

[23] on each data matrix, assuming the presence of two

components. These coarse initial estimates were refined by

using two-way ALS on each data matrix using just the non-

negativity constraint. In the case of LC-DAD (four-way data)

these two-way ALS results were further refined by performing

three-way ALS using the non-negativity and trilinearity

constraints. The initial guesses for the rate constants were

0.1, 5 and 0.5 for k1, k2 and k3, respectively.
Table 4

Summary of analysis of enzyme kinetic data from simulated four-way LC-DAD ex

Optimization method Initial

concentration (AM)

Global fit ALS fit erro

Simplex All Yes 6.03

Levenberg Marquardt All Yes 6.03

5 No 6.03

10

20

50

100

200

500

Levenberg Marquardt 5 No 6.04

10

20

50

100

200

500

a The true values are 0.58 AM�1 s�1, 4.0 s�1 and 0.29 s�1 for k1, k2 and k3 res
b The Michaelis constant calculated from the true values using Eq. (8) is 7.40 AM
4.1.2. Simulated enzyme kinetics using UV–visible

spectroscopy resulting in three-way data

The three-way data set (wavelength, reaction time and initial

concentration) obtained from this simulation was analyzed

using global analysis (one set of rate constants for all kinetic

experiments) or with a local kinetic fit (a set of rate constants

for each kinetic experiment). The latter method still takes

advantage of the fact that the spectral profiles and reaction

kinetic model are identical for all experiments. Furthermore,

the ALS algorithm was modified to be able to use the different

optimization algorithms that are available in the optimization

toolbox for Matlab.

Table 3 shows the result of the three-way analysis; the

results from the Gauss Newton optimization were virtually

identical to those obtained for the Levenberg–Marquardt (LM)
periments

r (%) Rate constantsa Michaelis

constant (AM)b
k1 (AM

�1 s�1) k2 (s
�1) k3 (s

�1)

0.44 2.86 0.29 7.16

0.59 3.99 0.29 7.25

0.17 0.93 0.28 7.12

0.17 0.95 0.28 7.24

0.17 0.96 0.29 7.35

0.18 0.97 0.29 7.00

0.17 1.01 0.29 7.65

0.17 1.02 0.29 7.71

0.19 0.88 0.29 6.16

5.51 5.51 0.51 15.4

4.78 4.78 0.47 15.4

3.86 3.86 0.42 15.3

3.30 3.30 0.29 7.18

3.33 3.33 0.29 7.54

3.34 3.34 0.29 7.56

3.19 3.19 0.29 6.00

pectively.
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optimization; therefore, only the results from the latter

algorithm are shown here. The results from using the default

optimization method available in the base Matlab package,

based on simplex optimization, are also shown in Table 3.

In all cases, the spectral and kinetic profiles estimated by

the algorithm were similar to the profiles used to generate the

data, within the simulated noise level. However, the response

surface for this model and parameter set has a very shallow

minimum [37], leading to ambiguity in the kinetic model

parameters. This results in different combinations of k1 and k2
that do not change the overall ALS fit error (calculated as

described previously [3]) significantly for any of the analyses,

as shown in Table 3. Although the estimated values of the

rate constants were different from those that were used to

simulate the data, it is clear that using a global analysis

removes the ambiguity of some of the individual kinetic

experiments, specifically the experiments with high initial

substrate levels. A two-level–two-factor design for the initial

guess showed that the resulting k1 and k2 values were highly

dependent on the starting values, whereas the k3 and the KM

value calculated according to Eq. (8) were independent of the

starting values employed. It should be noted that the latter

two parameters are of most interest in typical biochemical

enzyme studies.

4.1.3. Simulated enzyme kinetics using an LC-DAD resulting in

four-way data

In this case four-way data were simulated and analyzed,

with the independent variables consisting of wavelength,

retention time, reaction time and initial substrate concentration.

The results of the four-way ALS resolution using multi-way

kinetic fitting are summarized in Table 4. The addition of the

extra data dimension significantly improves the accuracy of the

kinetic fitting results. Specifically, the k3 value is more

accurately predicted by the global fits and in many of the

local fits. In addition, although the estimated values of the k1
and k2 rate constants were different in most cases from those

that were used to simulate the data, the Michaelis constant

calculated from the micro-rate constants using Eq. (8) is more

accurately estimated in many instances. The most accurate

parameter estimates are obtained from the global LM analysis,
Table 5

Summary of ALS fit results of LC-DAD enzymatic data using only one kinetic tim

Time point ALS fit error (%)

using simplex

Simplex rate constantsa

k1 (AM
�1 s�1) k2 (s

�1) k3 (s
�1) KM (A

1 5.02 0.42 0.0018 15.6 37.1

2 5.24 0.25 1.47 0.33 7.20

3 5.47 0.23 1.21 0.29 6.52

4 5.84 0.18 1.03 0.30 7.39

5 6.28 0.20 1.06 0.30 6.80

6 6.62 0.19 1.13 0.29 7.47

7 7.02 0.18 1.00 0.29 7.17

8 6.94 0.28 1.65 0.29 6.93

9 6.43 0.22 1.22 0.29 6.86

10 5.61 0.27 1.72 0.29 7.44

a The true values are 0.58 AM�1 s�1, 4.0 s�1 and 0.29 s�1 for k1, k2 and k3 resp
b The Michaelis constant calculated from the true values using Eq. (8) is 7.40 AM
clearly indicating the advantage of using a global search over a

local analysis.

4.1.4. Simulated traditional enzyme kinetic experiments using

an LC-DAD resulting in three-way data

In traditional enzyme kinetic experiments, the enzyme and

substrate are incubated for a specific time. For this type of data

set, the reaction time dimension is missing, resulting in three-

way data with independent variables of wavelength, retention

time and initial substrate concentration.

One can imagine that the incubation time would make

significant impact on the results of the analysis as during

short incubations hardly any substrate is converted, while, on

the other hand, during a near infinitely long incubation,

hardly any substrate is left. Either case would result in data

with very limited information about the rates of the reaction.

The same 10 time points were used as described earlier, and

the subsequent analysis was done for each row of Table 2.

The fit parameters for the single time point simulations at

multiple substrate concentrations are shown in Table 5. The

ALS fit errors showed negligible differences between the LM

and simplex kinetic fitting methods, but the resulting

parameters were different indicating the presence of local

minima in the response surface. Once again, the LM

optimization method performed identically to the GN search

method (results not shown), and these methods showed
e point using multiple initial substrate concentrations

ALS fit error (%)

using LM

LM rate constantsb

M) k1 (AM
�1 s�1) k2 (s

�1) k3 (s
�1) KM (AM)

5.02 1.20 25.1 17.3 35.3

5.24 0.73 4.95 0.33 7.23

5.47 0.89 5.47 0.29 6.47

5.84 0.69 4.82 0.30 7.42

6.28 0.57 3.60 0.30 6.84

6.62 0.66 4.56 0.29 7.35

7.02 0.64 4.23 0.29 7.06

6.94 0.61 3.92 0.29 6.90

6.43 0.75 4.77 0.29 6.75

5.61 0.90 6.40 0.29 7.43

ectively.

.
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significant improvement over the simplex method in regards

to the accuracy of the estimation of the micro-rate constants.

Using the earlier and the later time points resulted in the

poorest estimates for the rate constants as predicted by the

limited kinetic information present in those data. The

intermediate time points resulted in similar rate constants

for each fitting method, with once again the LM algorithm

resulting in sets of rate constants close to the true value. The

estimated KM values for the simplex and LM fits were similar

and were close to the true value, except in the case of the fit

using the earliest time point.

The ALS fit error, however, is the best for the simulations

based on the earlier and later time points. The curve resolution

was performed in all cases assuming the presence of two

components, while at the earliest and latest time points, only

one component is present in the data. The substrate is the only

species present at short incubation times, while the product is

the only species present at the longest incubation times. The

second component in these cases described the noise in the data

and therefore resulted in a better overall fit error due to

overfitting.

4.2. Chemical kinetic data

In order to investigate the real-world performance of the

extended kinetic fitting algorithm, the base catalyzed hydroly-

sis of 4NPP was followed by UV–visible spectroscopy and the

acid-catalyzed hydrolysis of Allyi was followed using LC-

DAD experiments.

4.2.1. UV–Vis spectroscopy of hydrolysis of 4NPP

The dye molecule 4NPP was chosen because both the

reactant and product would have a significant UV–visible
M
ol
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25 -C at different reaction times.
r

absorption spectrum due to the nitrophenyl moiety while the

sterically hindered pivalate group results in a slow hydrolysis

reaction for easy observability. The hydrolysis of 4NPP was

followed using UV–visible spectrophotometer at 20, 37 and 50

-C, resulting in a three-way data set of absorbance measure-

ments as a function of wavelength, reaction time and

temperature.

4.2.1.1. Data pretreatment. The collected data were trans-

ferred to Matlab, and a baseline offset was added so that the

absorbance at 550 nm for each reaction time point was equal to

zero. The different experiments at each temperature were

augmented together into a single three-way data set.

4.2.1.2. Initial estimates. Singular value decomposition

indicated the presence of three components. EFA was used to

obtain an initial estimate for the concentration profiles, and the

normalized EFA profiles were used as the initial guess for the

three-way ALS analysis.
t
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4.2.1.3. Choice of kinetic model. From the outset, it was

clear that the observed kinetic profiles did not correspond to

a simple first-order kinetic model. A maximum absorption

can be seen after the start in some experiments, as shown in

Fig. 8. The literature indicates that in the base-catalyzed

hydrolysis of 4NPP in phosphate buffer, there is a phosphate-

bound intermediate produced by nucleophilic attack of the

phosphate on the carbonyl carbon [19]. The borate ion is a

similar nucleophile which may also attack the carbonyl

carbon forming an analogous borate-bound intermediate as

postulated by Fig. 9. When the data was fit using this model,

k2 and k4 resulted in very small values (<10�8) indicating

that the direct hydrolysis by water/hydroxide as well as the

reverse (equilibrium) reaction were negligible. Therefore, the

model used during the three-way ALS analysis was a

simplified to a consecutive first-order reaction model (k1
and k3 only).

4.2.1.4. Three-way ALS of the 4NPP hydrolysis studied using

UV–visible spectroscopy. Three-way ALS was performed
Fig. 13. Sample screen shot from the four-way ALS program. Each of the four colum

with the rows representing the resolved chromatograms, spectra and kinetic profiles,

temperatures (lower left panel).
using only non-negativity and the kinetic model as constraints.

The resolved spectra are shown in Fig. 10. The spectrum of the

reactant and the intermediate are very similar in shape, as

would be expected for the mechanism shown in Fig. 9 due to

the presence of a common chromophore.

An Arrhenius plot of the estimated rate constants using this

method is shown in Fig. 11 and indicates the linear relationship

between the reciprocal temperature and the natural log of the rate

constants. The activation energy for second step (k3, 90 T3 kJ/

mol) is slightly less than that of the first step in the reaction (k3,

101T7 kJ/mol), while the individual rates are orders of

magnitude lower, demonstrating that the second step is the

rate-determining step (errors were determined from the statistics

of the linear fit).

4.2.2. LC-DAD investigation of the hydrolysis of AllyTM

The acid-catalyzed hydrolysis of Allyi was followed using

an LC-DAD instrument as described previously [20]. These

experiments resulted in a four-way data set (absorbance

measurements as a function of retention time, wavelength,
ns corresponds to an experiment at a different temperature, 25, 35, 45 and 53 -C,

respectively. Note the longer time scales for the experiments carried out at lower
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reaction time and temperature) that was analyzed using the

present algorithm.

4.2.2.1. Pretreatment of AllyTM data. The LC-DAD data

were aligned by interpolating the DAD scan times at an

interval of 1.5 s so that all spectra within the different

chromatograms were taken at the same retention time, and the

chromatograms were cropped to exclude the system peak and

the baseline after the last peak eluted, as described in the

previous publication [20]. An example of part of this data set

is shown in Fig. 12. The three-way data sets from the

experiments at each temperature were subsequently augment-

ed to form the four-way data set, consisting of absorbance

values as a function of wavelength, retention time, reaction

time and temperature.
Table 6

Rate constants for the hydrolysis Ally hydrolysis using four-way ALS analysis

Rate constanta Temperature Ea

(kJ/mol)b
Ea

(kJ/mol)c
25 -C 35 -C 45 -C 53 -C

k1 (10
�4 min�1) 8.49 25.6 54.0 87.7 67.2T5.1 70T14

k2 (10
�4 min�1) 0.44 1.70 1.57 19.6 95T33 116T31

k3 (10
�4 min�1) 3.49 10.9 22.5 32.1 64.3T7.4 70T13

k4 (10
�4 min�1) 0.13 <0.001 3.49 8.30 123T8 247T58

k5 (10
�4 min�1) 0.54 1.24 <0.001 <0.001 –d –d

k6 (10
�4 min�1) 170 296 243 497 25T11 25T11

k7 (10
�4 min�1) 0.61 1.29 32.6 81.8 154T30 –d

a Mechanism shown in Fig. 14.
b Calculated from this work.
c Calculated from Ref. [20].
d Inadequate agreement with Arrhenius model to determine an activation

energy.
4.2.2.2. Initial estimates for four-way AllyTM data analysis.

The initial estimates were obtained as described in the

previous paper [20]. The chromatogram was divided into

peak envelopes, followed by EFA to create the initial

estimates for the concentration profiles of these peak

envelopes. Two-way ALS using only non-negativity was

used to refine these coarse concentration estimates from EFA.

The results of all these two-way ALS analyses were merged

together to form the starting points for concentration profiles

for three-way ALS analysis. The results from the three-way

ALS, using non-negativity, trilinearity and selectivity of the

retention profiles, formed the starting point for the four-way

analysis. This method of analyzing data of increasing

complexity, starting with the combined results from analysis

of less complex data was shown to be successful in previous

studies [20].

4.2.2.3. Resolving four-way AllyTM hydrolysis data. The

three-way data sets at the different reaction temperatures were

augmented to form one four-way data set, while the starting

point for the concentration profiles was the product of the

augmentation of the results of the individual three-way analysis

of each data set at that temperature. These starting estimates

were then refined by performing ALS on this four-way data set

using non-negativity on all components, trilinearity and

selectivity on the retention profiles, but without the kinetic

fitting. These results were used to construct the starting point

for the final four-way ALS resolution.

Fig. 13 shows the graphical output of the program, with

each column containing the optimized profiles at each reaction

condition. In this case, all the retention and spectral profiles for

each component were found to be the same for every
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temperature; therefore, the trilinearity constraint was employed.

The retention time shifts from experiment to experiment were

only minor due to careful experimental procedures. It should be

noted, however, that the program is able to handle severe

chromatographic shift or spectral changes by lowering the

trilinearity requirement for some or all the components.

Earlier research [20] had established that the acid

hydrolysis pathway of Allyi follows the scheme shown in

Fig. 14, in which the herbicide is degraded by cleavage of

the sulfonamide bond, or by demethylation of the triazine

ring. The activation energies for each of the elementary

reaction steps shown in Fig. 14 were estimated using the

Arrhenius model and are summarized in Table 6. These

activation energies are compared to those based on the

previous three-way analysis. It can be seen that the agreement

between the values is generally good, but the precision of the

activation energies calculated using the four-way method is

improved by a factor of two, demonstrating the reliability of

the present approach.

5. Conclusion

In this paper we have demonstrated a four-way alternating

least-squares multivariate curve resolution algorithm that can

take advantage of multi-way reaction kinetic data that have

identical reaction kinetic models but not necessarily identical

reaction rate constants or initial reaction conditions.

From the analysis of simulated data, we conclude that the

use of four-way data results in better estimation of the rate

constants compared to the use of three-way data by reducing

the ambiguity associated with the indistinguishability of

different kinetic models.

Analysis of experimental data obtained by monitoring the

hydrolysis of 4NPP and Allyi demonstrated that this

algorithm can find rate constants at different temperatures

simultaneously. The higher order advantage of similar spectral

and retention profiles as well as the identical reaction

mechanism assisted in this analysis.

The algorithm presented here may be used for many other

multi-way kinetic data as well. For example, data from the

enzyme conversion of different concentration levels of drug

candidates by liver enzymes followed by LC-MS analysis

could be treated using this approach. This method would result

in faster determination of the enzyme parameters and thus

direct further research towards those pharmaceuticals with

more favorable metabolic profiles [41].
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