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Multivariate Image Analysis for Real-Time Process Monitoring and

Control
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Information from on-line imaging sensors has great potential for the monitoring and control of
spatially distributed systems. The major difficulty lies in the efficient extraction of information
from the images in real-time, information such as the frequencies of occurrence of specific features
and their locations in the process or product space. This paper uses multivariate image analysis
(MIA) methods based on multiway principal component analysis to decompose the highly
correlated data present in multispectral images. The frequencies of occurrence of certain features
in the image, regardless of their spatial locations, can be easily monitored in the space of the
principal components (PC). The spatial locations of these features in the original image space
can then be obtained by transposing highlighted pixels from the PC space into the original image
space. In this manner it is possible to easily detect and locate (even very subtle) features from
real-time imaging sensors for the purpose of performing statistical process control or feedback
control of spatial processes. Due to the current lack of availability of such multispectral sensors
in industrial processes, the concepts and potential of this approach are illustrated using a
sequence of multispectral images obtained from a LANDSAT satellite, as it passes over a certain
geographical region of the earth’s surface.

1. Introduction

Digital imaging sensors have recently become very
popular in many off-line laboratory applications, par-
ticularly in the biological and medical areas. Digital
microscopes are extensively used to gather images of
cell cultures in a biological laboratory or of wood fiber
slurries in a pulp and paper company quality control
laboratory.}? Magnetic resonance imaging (MRI), ul-
trasonic imaging, and positron emission tomography
(PET) routinely provide three-dimensional image data
in most hospitals. A large amount of digital image
processing literature deals with approaches for image
enhancement, restoration, analysis, compression, and
synthesis. Methods such as edge detection filtering,
histogram equalization, image segmentation, and mor-
phological operations are developed to enhance digital
images and quantitatively extract relevant information
from them. Most of these methods are applied off-line
and require considerable computer resources (hardware
and software) to process the image data. Further
information on these and other digital image processing
approaches can be found in various texts.3—%

Imaging sensors have been applied to a much more
limited extent for monitoring industrial processes.
Examples include TV cameras for visually monitoring
the state of combustion in engines,” robot-mounted
digital cameras for monitoring the sizes and shapes of
machine-made parts,® and laser scanners to monitor the
surface properties and to detect faults in sheet forming
processes.’ These industrial imaging sensors are usu-
ally much less sophisticated than the laboratory and
medical applications discussed earlier; they usually
involve only grayscale or binary images. Due to the
limited time available to analyze these images, the
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techniques used for analysis are usually quite simple
(e.g. histogram thresholding and area counting).

The purpose of this paper is to investigate an on-line
approach to extracting information from time-varying
multivariate (3-dimensional) spectral images that will
allow for the rapid monitoring, detection, and isolation
of process faults and product quality in industrial
processes. The approach uses multivariate image analy-
sis (MIA) methods that are based on multiway principal
component analysis (PCA). Section 2 provides an
overview of these MIA methods including a brief litera-
ture review of their theory. The strength of the ap-
proach is illustrated through an application of MIA to
a LANDSAT multispectral scanner (MSS) satellite
image. These methods are then extended to the on-line
situation in section 3 where one receives a sequence of
images in time, and the purpose is to detect and isolate
specific features from the images for statistical process
control or feedback control of spatial processes. The
approach is again illustrated using successive LAND-
SAT (MSS) satellite images as the satellite passes over
the earth in a north—south trajectory.

2. Overview of Multivariate Image Analysis

Image data when collected in multiple spectral bands
produce a multivariate image. It consists of a stack of
congruent images, where each image in the stack is
measured for a different wavelength, frequency, or
energy.l® Figure 1 illustrates a stack of 4 congruent 512
x 512 pixel images, with each image having a unique
wavelength. Alternately, one could view a multivariate
image as a two-way array of pixel intensity vectors with
one vector at each pixel location in the (x, y) image plane
(Figure 2).

Congruence in imaging is defined® as two or more
stacked images such that for each pixel in one image
there is a corresponding pixel in the other images that
can be referred to the same position in the object or
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Figure 1. Stack of 4 congruent images (collected in 4 different
wavelengths) to form a 512 x 512 x 4 multivariate image.
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Figure 2. 512 x 512 x 4 multivariate image viewed as a two-
way array of 4 x 1 variable vectors in the image plane. For
graphical clarity not all variable vectors are shown.

scene depicted. Since data in multivariate images
consists of several congruent images, each variable
vector in such an image contains highly correlated pixel
intensity values. Furthermore, a common multivariate
image usually contains an enormous amount of data
(e.g. 512 x 512 x 4 = 1048576 pixel intensities),
making the analysis of such images computationally
intensive. As a result, there is a definite need for data
analysis techniques that can handle large volumes of
highly correlated data.

Latent variable statistical methods like multiway
principal component analysis (PCA) and multiway
partial least squares or projection to latent structures
(PLS) have been successfully used for MIA.11-13 These
methods efficiently compress highly correlated data and
project it onto a reduced dimensional subspace through
a few linear combinations of the original multivariate
data. Multiway PCA of a three-dimensional (ny x ny x
n.) digital image array X consists of decomposing it into
a series of A (<n,) principal components consisting of
(nx x ny) score matrices T, and (n, x 1) loading vectors
pa plus a residual array E, i.e.

A
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where ® denotes the Kronecker product. The principal
components are ordered in the sense that the first
component explains the greatest amount of variance in
X, the second component explains the next greatest
variance, and so forth. The number of components (A)
necessary to extract most of the meaningful information
can be determined by various procedures.415

This method of multiway PCA is equivalent to unfold-
ing the 3-way array X into an extended 2-way matrix
X, as illustrated in Figure 3, and then performing
ordinary PCA on it:

unfold A
X —— X = Ztapl+E @)
X N, (neny) xn, £
where t, is a (Ny'ny) x 1 score vector, and p, is a (n; x
1) loading vector. The score vectorsty (a=1, ..., A) are
orthogonal, and the loading vectors p, (a=1, ..., A) are
orthonormal. Although the 3-way digital image array
X could be unfolded in three different orientations to
form 2-way arrays, only two of these orientations do so
in such a way that the intensity variable vector z
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Figure 3. 512 x 512 x 4 multivariate image reorganized into a
(512 x 512) x 4 array followed by PCA decomposition into reduced
dimensional subspace.

corresponds to the columns in the 2-way array. The
objects (rows) in either of these two unfolded forms then
correspond to the pixel locations in the ny x ny image
plane of the multivariate image.

The row dimension of the X matrix resulting from the
unfolding operation is very large (equal to 262 144 for
a 512 x 512 image space). Performing PCA on such a
high-dimensional X matrix using the NIPALS algo-
rithm?® or using singular value decomposition (SVD)’
would lead to excessive computational times. Therefore,
with essentially all multivariate image data having long
and thin unfolded matrices, a kernel algorithm?! is used.
In this algorithm the kernel matrix (X7X) is first formed,
and then an SVD is performed on this very low
dimensional (n, x n;) matrix to obtain the loading
vectors pa (& =1, ..., A). The corresponding score vectors
t, are then computed via eq 4. The only time consuming
step in this kernel algorithm is the (one time) construc-
tion of the kernel matrix (XTX).

Upon completion of PCA on this long and thin two-
dimensional matrix X, the (ny'ny) x 1 score vectors ta
(a=1, ..., A) can then be reorganized back into (nx x
ny) score matrices T, (a =1, ..., A) giving a representa-
tion of the original X array as expressed in eq 1 and
illustrated in Figure 3. In this way one can see that
the score matrices T, (a=1, ..., A) themselves represent
images in the original (ny x ny) scene space, T, being
the image with the largest variance, followed by T, with
the second largest variance, and so forth. A recon-
structed multivariate image which eliminates much of
the unstructured noise from the original image can be
obtained by using only the dominant A principal com-
ponents:

A
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where the residual component E has been omitted.
However, such multiway PCA (MPCA) methods are not
very useful for image enhancement as they are not
specifically designed to sharpen edges or enhance other
specific features in the image. Other image analysis
techniques such as various filtering methods, wavelets
analysis, and morphological operations provide more
powerful approaches to image enhancement or restora-



tion.#%18 The power of the MPCA approach lies in its
ability to extract and isolate specific image features in
a common region of the score space and, then, once the
feature is detected, to reveal the locations where it
occurs in the scene space. MPCA appears to be more
powerful in this image analysis and interrogation aspect
as compared to other image analysis methods.

In each dimension (a = 1, ..., A) MPCA extracts a
principal component variable t; which is defined as a
linear combination of the intensities at each wavelength.
The particular linear combination is given by the
corresponding loading vector p,. The vector of values
of the principal component at each pixel location in the
scence space is defined by the score vector:

t, = Xpa (4)

Hence each principal component variable extracts a
particular spectral feature (i.e. a linear combination of
the intensities over all the wavelengths) from the image.
The reorganized score matrix T, is a representation of
the image in terms of that spectral feature.

A more important analysis of the image comes from
the compressed representation of the intensity informa-
tion at each pixel location in terms of the score values
(tg, ta, ...) of the dominant principal components. These
score values summarize the dominant spectral features
of the image at each pixel location. If, at different pixel
locations in an image, the same feature is present (e.g.
surface dirt particles in a sheet forming process), the
score value combination (ty, ty) would be almost identical
for these pixels. Regardless of the spatial locations of
the various occurrences of this feature in the image
space, MPCA would represent it by the same combina-
tion of score values (t1, t;). Therefore, by the plotting
of the score values of the dominant principal compo-
nents (t;, tp) for each object (i.e. each pixel location)
against each other in a scatter plot, the score combina-
tions for all pixel locations in the scene space having
the same spectral characteristics would plot on top of
one another or at least in the same neighborhood in this
score plot. These score plots will therefore be invaluable
in the analysis and monitoring of on-line multispectral
images. The above MPCA decomposition of images and
subsequent analysis of the results are best presented
by way of an example.

2.1. Example: LANDSAT (MSS) Satellite Image.
Although the focus of this paper is on the on-line
monitoring of industrial processes using real-time mul-
tispectral imaging sensors, there are as yet almost no
industrial examples of this. Therefore, we have chosen
to illustrate these methods with multivariate image
data from a satellite as it scans a section of the earth’s
surface. The image used in this example isa LANDSAT
(MSS) satellite image of size 512 x 512 consisting of 4
wavelength bands ranging 500—1100 nm. The image
has been geometrically corrected with each pixel rep-
resenting a surface area of 80 x 80 m2. It has also been
used previously by Geladi et al.1%1° to demonstrate the
use of MIA. Technical details regarding the raw mul-
tivariate image data are provided in these references.
The satellite image depicts a scene of the city of Mobile
in Alabama, U.S. (in the center of the image), along with
the Alabama river delta (toward the top-right corner of
the image) and the Gulf of Mexico (toward the bottom-
right corner of the image). Figure 4 represents a false
color composite provided by the first score matrix T;
from the MPCA analysis.
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Figure 4. False color composite of the T; score image representing
Mobile, AL.

Figure 5. Color-coded t;—t; score plot of the satellite multivariate
image.

The cumulative percent sum of squares explained by
the first two principal components is 99.7% (95.0% and
4.7%, respectively). Therefore, only A = 2 components
will be used in the subsequent analyses. The loading
vectors for these two dimensions are p,™ = [0.356 0.402
0.607 0.586], p2" = [-0.550 —0.583 0.149 0.579]. From
these loading values it can be seen that the first
principal component (PC) represents some type of an
average of the pixel intensities at each wavelength,
while the second PC represents a contrast or difference
among the pixel intensities at various wavelengths.
Further details regarding the MPCA decomposition and
interpretation of the multivariate image can be found
in Bharati.°

A scatter plot of the first two score vectors (t; vs ty)
is illustrated in Figure 5. In this plot there are 262 144
score combinations plotted, one for each of the 512 x
512 pixel locations in the original image. Since similar
features in the original image will yield almost identical
(t1, tp) score combinations, many points overlap in this
scatter plot. If the score plots are drawn as simple black
and white (binary) scatter plots, there would be no way
of visualizing the number of overlapping pixels at a
particular point. The number of pixels represented by
a single point in a score plot is called the pixel density.
Following Geladi et al.’® an intensity matrix can be
constructed which represents the number of pixels at
each point in the score space. The score plot (t; vs ty)
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is constructed as a 3D histogram with a grid of 256 x
256 bins. Each bin is filled with a bar giving the count
of pixels belonging to that bin. This matrix is then color
coded depending upon the number of pixels in each bin
(i.e. pixel density) using a color scheme ranging from
cold colors (e.g. black) representing bins with a low
number of overlapping pixels to hot colors (e.g. white)
representing bins having the highest pixel density.

It is relatively easy to detect outlier pixels which are
remote from the pixel clusters in the score space. Itis
also easy to detect high density clusters and the various
pixel density gradients that exist both within and
between clusters. Figure 5 reveals two major dense
classes of pixels which are separated by a prominent
area of between-class pixels. As mentioned earlier,
pixels having similar spectral features in the multivari-
ate image will have comparable combinations of score
values and result in point clusters in the score plot. This
fact can be put to use in segmentation of features from
the multivariate image through delineating pixel classes
in the score plots. In effect, one can delineate a
tentative data class corresponding to pixels having
similar spectral fingerprints.!2

Pixel class delineation may be carried out in more
than one way. An area in the score space may be
selected and the corresponding pixels belonging to this
area highlighted in the image space. The selected area
in the score space is in fact a local model which is chosen
to delineate a tentative class of pixel data from the rest.
The procedure of selecting an area in the score space is
called “masking” in the MIA literature. Since score
plots can themselves be represented as 256 x 256
images, various sizes and shapes of masks can be
selected be carrying out simple graphical operations on
these score plot images. Using the “roipoly” (region of
interest selection by polygon) command in the Image
Processing Toolbox (v1.0b) of MATLAB (v4.2cl), it is
relatively easy to choose any arbitrary size and shape
of polygon to highlight particular pixels in the score
space. The pixels contained within the polygon can be
isolated (into a local model) and projected back to the
image space.

This procedure of masking point clusters and outlier
pixels in the score space and highlighting the chosen
pixels in the image space forms the backbone of the MIA
off-line feature extraction strategy. To successfully
delineate a class of pixels it becomes imperative to study
both the score and image spaces simultaneously. The
ability to toggle between the image space and score
space is quite fast and easy since both spaces are
represented as images in MIA. As a result, it is
relatively simple to interrogate the score space by
masking several clusters in the score space and project-
ing the masked pixels back to the image space. Figure
6a replots the t;—t, score plot of Figure 5 but with a
maroon polygon mask covering a portion of the lower
dense point cluster. The pixel class which has been
masked in the score plot of Figure 6a is outlined in
Figure 6b where each pixel with a t;—t, score combina-
tion lying under the mask has been replotted as an
overlaid white pixel on the false color image of the first
latent variable T;1. From this figure it is evident that
the class of pixels masked in the score space belongs to
major roadways, paved areas, and building tops in and
around the city. Since all the highlighted pixels have
similar spectral combinations, they map into the region
masked by the polygon in the score space.

Figure 6. (a) t;—t, score plot of the satellite multivariate image
with a class-masking of the upper part of the lower dense pixel
cluster (masked in maroon). (b) Overlay of T, image with high-
lighted pixels from class outlined in (a).

By the repeated use of the masking/highlighting
procedure with different polygon masks a signature of
every feature existing in the image space (regardless of
its subtlety or spatial location) can be isolated in the
score space. Due to the ability to switch easily between
score and image spaces, MIA can also be employed as a
reverse mode image analysis tool. Specific pixels be-
longing to known features of interest in the image space
can be highlighted in the score space to determine the
region which represents their corresponding score com-
binations. The area surrounding the highlighted score
points can then be masked using a reasonably sized
polygon. As a result, subtle features that are subjec-
tively difficult to identify in the image space may easily
be identified using the reverse mode application of MIA.
The polygon mask used in Figure 6a was developed
using this methodology. Geladi et al.1? list several other
modes of MIA that employ the use of the image space/
score space relationship.

3. Real-Time Monitoring Using MIA

In this section we proceed to the main thrust of this
paper—the extension of MIA methods to the real-time
monitoring of time-varying processes (i.e. real-time
image analysis). MIA methods have largely been ap-
plied only to off-line analysis of fixed images. However,
the purpose in monitoring an industrial process with
imaging equipment is to detect and isolate faults or
quality defects in the process or product being moni-



tored. For example, in industrial sheet forming pro-
cesses on-line multivariate imaging could be extremely
useful in detecting and isolating the appearance of
various faults in the sheet (e.g. dirt particles, streaks,
variations in layer thickness, etc.). The major impedi-
ments to the use of on-line imaging at present are the
difficulties in handling the large volumes of data col-
lected in real-time and speed limitations in being able
to process all these data with current image analysis
methods. It is shown in this section that an on-line
multiway PCA approach to MIA can provide a powerful
method for monitoring and analyzing many time-vary-
ing industrial processes.

The main concepts of this approach are described as
follows. A multiway PCA model is built off-line on a
training or calibration image which contains all typical
features that one might be interested in detecting using
the on-line monitoring scheme. This training image
may be a single image which contains all such features
of interest, or it may be a composite image put together
from sections selected out of many different images. The
training image should be of the same dimensions as the
subsequent images that are obtained sequentially by the
on-line imaging system.

From the off-line analysis of this image masks are
developed in the score space which correspond to each
feature in the image space that one desires to monitor.
Upon application of the fixed PCA model to the new
images as they become available, values of the scores
are computed for the dominant principal components
ta (eq 4) using the loading vectors p,. The pixel
densities in the score space (Figure 5) can then be
updated for the new image. By monitoring the changing
score point cluster intensities (pixel densities) under
each mask area in the score plot, one can then track
the appearance and disappearance of each feature in
the current image. Upper tolerance limits can be set
on the pixel densities in each mask area. These limits
might be chosen simply on a subjective basis or, as in
statistical process control (SPC) charts, on the underly-
ing statistical distribution of pixel densities when the
process is subject only to common cause variation.
Violation of these limits in future monitoring could then
be handled as in any SPC monitoring scheme. Upon
discovering violation of the SPC tolerance limits for any
feature being monitored, one can investigate further by
switching to the image space to reveal those pixel
locations where the fault feature was present. The
locations of this feature in the image (e.g. all on side of
a moving sheet) might indicate possible assignable
causes which can be corrected. This on-line monitoring
approach is now illustrated by way of an example.

3.1. On-Line Monitoring of Surface Features
from LANDSAT (MSS) Images. A modified version
of the LANDSAT (MSS) multispectral satellite image
example (depicting Mobile, AL) introduced in the earlier
example is used here to illustrate the main ideas of
feature monitoring. The original 512 x 512 x 4 mul-
tivariate image has been segmented into nine sections
of 256 x 256 x 4 multivariate images as the LANDSAT
satellite moves in a north to south trajectory over this
region.

As discussed above, it is extremely important to select
a training image that contains representative samples
of all the features of interest to build a good PCA
training model. In the satellite image example there
are four main features of interest that are chosen from
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Figure 7. Detailed t;—t; score plot of training image with
highlighted masks that adequately represent the four features of
interest.

various landscape features in and around Mobile, AL.
Some of these features of interest are subjectively easy
to detect, whereas others are not so obvious. The four
main features of interest that are chosen to be moni-
tored throughout the sequence of multivariate images,
as the satellite moves over the region, are (a) deep water
areas, (b) shallow water areas, (c) major roads and
paved areas, and (d) golf courses. As a result, a good
representative training multivariate image must con-
tain ample pixels belonging to all of the above four
features of interest. The center 256 x 256 x 4 pixel
subsection of the full scene (Figure 4) in the original
multivariate image adequately meets this requirement.

The PCA training model is calibrated by masking
various point clusters with customized local area score
masks. The sizes and shapes of these masks are
determined by using the previously discussed iterative
procedure of feature extraction from multivariate im-
ages. In this case, since the features of interest are
known beforehand, the reverse mode of MIA is used to
determine the spatial locations of selected feature pixels
in the score space. Once the score points are high-
lighted, manually shaped masks are applied such that
the areas surrounding these scores are covered. All
pixels that are covered by these masks are highlighted
in the image space to determine if the particular masks
adequately segment the features of interest. This
procedure is repeated until an adequate number of
pixels belonging to the above four features of interest
are highlighted in the image space. More optimal
procedures for determining the mask boundaries could
be developed but are not of direct concern in this paper.
Score space masks that adequately represent the four
features of interest in the image space are highlighted
in Figure 7. Using the four customized local area masks
in Figure 7, along with the reduced loading matrix Py,
the calibration of the PCA training model is complete.

To emulate a moving satellite gathering scans of the
earth surface only the left half of the scene is used (i.e.
columns 1-256). This half of the full scene is further
divided into 9 overlapping equal sized scans of 256 x
256 pixels in all four spectral bands. Since the LAND-
SAT satellite moves in a north to south trajectory while
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Figure 8. Three of nine (scan 1, 5, 9) input images outlined as white boxes on false color T; full scene score image with corresponding

color-coded t;—t, score plot images.

gathering images of the earth surface, the first 256 x
256 x 4 scan is located in the top left hand corner of
the image (Figure 8). Each successive scan is gathered
as the satellite moves south in a certain time which is
represented as 32 rows. As a result, the second 256 x
256 x 4 scan spans rows 33—288 whereas the ninth scan
spans rows 257—512 in the left half of the full scene.
Using these nine scans a north to south moving LAND-
SAT satellite is emulated that gathers intermittent
multispectral images as it passes over the region of
Mobile, AL.

The 9 input multivariate images are decomposed into
their score spaces with the help of the PCA training
model. Each 256 x 256 x 4 pixel multivariate scan
image is rearranged into a 65 536 x 4 two-way array
Xtest and multiplied with the training loading vectors
p1 and p, to produce the corresponding score vectors t;
and t,. These score vectors are rearranged into 256 x
256 intensity arrays and viewed as score images, as well
as plotted against each other as color-coded scatter plot
images (256 x 256 pixels). As a result of the decompo-
sition, 9 t;—t, score plot images can be plotted. Figure
8 illustrates three (scans 1, 5, 9) of the 9 scan images
(outlined by white boxes) along with their corresponding
t;—t, color-coded score plot images. Upon examination
of the 3 scan images in Figure 8, it can be seen that
scan no. 1 captures regions that are mainly north of the
city. The majority of the city areas are captured by scan
no. 5; finally, scan no. 9 captures areas that are south
of the city. Some subjective impressions regarding the
four features of interest can be obtained upon observing
these scan images. For example, it is obvious that scan
no. 9 contains more pixels that belong to deep and
shallow water areas as compared to scan no. 5. How-
ever, subtle features like golf courses and roadways are
more difficult to identify with a visual observation of
these image space scans.

A more objective feature monitoring scheme is ob-
tained by monitoring the pixel densities of the corre-
sponding point clusters under the masks in the score
space of Figure 7. The pixel densities under the four
masks in the nine score space images covering the north
to south movement of the satellite are monitored by
enumerating the exact number of pixels belonging to
these four features of interest for each satellite scan.

The total number of pixels belonging to each of the four
features are recorded and plotted as control charts for
all nine scan images. The exact spatial locations of
these feature pixels in the image space are then
obtained by highlighting them in the score space and
transposing them into the image space. The resulting
control charts for the feature pixel counts and the
highlighted spatial locations of these pixels in the image
space are illustrated in Figures 9—12. The score images
used to highlight the spatial locations of pixels belonging
to the four features of interest are false color images of
the first score vectors T in each of these figures. The
bar charts through Figures 9—12 show the exact num-
ber of pixels belonging to each of the four features of
interest for all nine scan images. These provide on-line
monitoring charts for the time variation of all four
features throughout the sequence of the 9 multivariate
images. The deep and shallow water pixels increase as
the satellite moves to the south of the city (scans 8 and
9) whereas the paved area pixels are more pronounced
in scans over the city (scans 4 and 5). A total of three
major golf courses were detected by the satellite as
it moved over the region covered by the nine scans.
The monitoring chart in Figure 12 is seen to detect
one major golf course in scan 1, two in scans 2 and 3,
and three in scans 4—9. The locations of the courses
are highlighted in the corresponding image spaces in
Figure 12. The above results show that all four
prechosen features of interest were adequately moni-
tored through the sequence of 9 multivariate satellite
images.

In order to apply this type of strategy on a time-
varying industrial process it is important to be able to
process and display the results in a reasonable period
of time. Table 1 provides average times (averaged over
all 9 scans per feature of interest) required to perform
three major tasks in the above feature monitoring
example. The total time required to obtain results for
each feature is dependent on several factors including
size of the local area mask in the score space and the
number of pixels belonging to the feature of interest per
individual scan. The simulations for the above example
were performed on an IBM compatible Pentium 166
MHz personal computer with 64 MB of RAM running
in a Windows ‘95 environment and using MATLAB
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Figure 9. Bar chart of total number of pixels belonging to deep
water areas through scans 1—9 with highlighted spatial locations
of these feature pixels in the image space for scans 1, 5, and 9.

v4.2cl. These average times vary between approxi-
mately 1.5 and 2.5 min using the above mentioned
software and hardware. If desired, these average times
may be considerably reduced upon using faster compiled
software equipped with more efficient code. However,
the above tabulated average times provide a benchmark
for comparing future applications of feature monitoring
schemes using MIA. Some industrial processes that
gather data using on-line imaging sensors (e.g. steel
rolling, paper production etc.) may require much faster
cycle times between gathering images and calculating
results. However, in many process situations, updating
the monitoring plots every 1—-2 min might be quite
adequate for fault detection.

The information extracted from these multivariate
images and plotted in Figures 9—12 can be used for
statistical process control (SPC) or automatic feedback
control. In a SPC scheme the height of the bars
corresponding to the frequency of occurrence of each
type of fault would be monitored in each successive
image. Whenever any one of these bars exceeds a
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Figure 10. Bar chart of total number of pixels belonging to
shallow water areas thorugh scans 1—9 with highlighted spatial
locations of these feature pixels in the image space for scans 1, 5,
and 9.

predetermined threshold or tolerance, an alarm would
be given and the process operator or engineer would look
for an assignable cause. This would be greatly aided
by highlighting the spatial location of the faults in
the image space as shown in the lower half of Figures
9—-12. For example, if most of the faults occurred near
one edge of a sheet coating process, one might logically
investigate the feed system of the coating machine for
that edge. The results could also be used in an
automatic feedback control scheme if spatial actuators
were present which could be used to affect the particular
feature being monitored. For example, if the feature
corresponded to the thickness of a particular layer in a
multilayer sheet coating operation and spatial actuators
were available to adjust the flow of coating material for
that layer in the region of interest, then feedback control
algorithms could be used to maintain the layer thickness
uniform across the sheet. Another example might be
in a situation where a camera is used to monitor
combustion in a furnace or incinerator. An indication
of incomplete combustion occurring in a given region of
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Figure 11. Bar chart of total number of pixels belonging to major
roads and paved areas through scans 1—9 with highlighted spatial
locations of these feature pixels in the image space for scans 1, 5,
and 9.

the furnace could be counteracted by increasing oxygen
or fuel feed to that section. The above SPC and spatial
feedback control strategies would rely upon the suc-
cessful extraction of various features, evaluating their
intensity of occurrence, and identifying their spatial
locations in the image.

3.2. Alternative Approaches for the Detection
of Infrequent Faults. The approach illustrated in the
previous section to process monitoring with real-time
imaging was based on the premise that under normal
process operation the image will contain the whole
range of features. For example, in each satellite scan
of the earth’s surface, most features such as deep and
shallow water, paved areas, etc., were present to some
extent in every image scan; only their relative frequen-
cies changed. Therefore, it was logical to build the PCA
model on an image (or composite image) that contained
all features and use the concept of masking in the score
space to monitor the changing frequencies of occurrence
of each feature.
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Figure 12. Bar chart of total number of pixels belonging to major
golf courses through scans 1—9 with highlighted spatial locations
of these feature pixels in the image space for scans 1, 5, and 9.

However, in many statistical process control (SPC)
situations one is producing a product (e.g. sheet or film
production) in which only common cause variation is
present under normal operation. Faults or defect
features appear only as infrequent special causes. In
this situation, rather than using the previous approach
and building a PCA model using a composite image
consisting of common cause background plus represen-
tative features of all known defects, an alternative
would be to build the PCA model on a composite image
that is representative of only the common cause varia-
tion that is present in “good” product. A traditional
multivariate SPC approach?:=23 could then be applied.
An in-control region can be defined in the score space
of the first few principal components. As new “good”
product is scanned by the imaging sensor, the scores
from this image should fall within this in-control region,
and the prediction errors (elements of E in Figure 3)
should be small implying that the PCA model is still
valid. If a defect fault not usually present in good
product were to appear in the image, the scores corre-
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Table 1. Average Times (over 9 Scans) To Monitor 4 Features of Interest from a Satellite Multivariate Image Sequence

time to evaluate and

feature of interest plot scores (s)

time to count no. of pixels
under mask (s)

time to overlay highlighted

pixels on Ty image (s) total time (s)

deep water areas 30.85

shallow water areas 30.12

major roads and 30.69
paved areas

major golf courses 30.78

sponding to the pixel locations where the defect feature
has occurred shall fall outside their control region in
the score space. Furthermore, the squared prediction
errors (SPEs) (i.e. the sum of the squared values of the
elements in the vectors of the E array at each pixel
location—see Figure 2) should become large and exceed
a statistically defined control limit at those same pixel
locations.

Using contribution plots?4 one could then interrogate
the underlying PCA model to see what spectral wave-
lengths were the greatest contributors to score and SPE
deviations at these designated pixel locations. The
spectral features of these contributions might be ex-
pected to contain a signature of the type of fault that
has occurred in any specific pixel region. The spectral
signatures could be obtained for all previously observed
faults or defects and classification methods such as
K-nearest neighbor (KNN)Z® or soft independent model-
ing of class analogy (SIMCA)2526 could be used to assign
the current defect to one of the known causes.

4. Conclusions

In this paper we have investigated the extension of
multivariate image analysis techniques based upon
multiway PCA methods to real-time monitoring situa-
tions. Using a LANDSAT (MSS) satellite image se-
guence as an example these methods were shown to be
capable of utilizing large amounts of digital image data
that are available from on-line imaging equipment. The
information gathered from these data can then be used
to analyze it to detect and isolate faults or quality
features in the process or product and to do so in a time
frame that is reasonable for many industrial situations.

The key points in the approach are as follows. All
modeling and model calibration (mask determination,
etc.) is performed off-line on a representative training
image. On-line monitoring is then achieved quite
rapidly by using the fixed loading vectors for the
primary principal components from this model to update
the score vectors. All monitoring is then performed in
the score space by enumerating the pixel densities in
masked regions of the score space. The number of
defects or product features present in the image space
is proportional to these densities. Once the pixel density
exceeds an upper control limit, one can toggle back to
the image space to view the locations and structure of
the defects. Depending upon the type, severity, and
location of the faults one may stop the process to rectify
any assignable cause, mark the image number and fault
locations for rectification in the next stage of the process,
or apply spatial feedback control strategies to compen-
sate for the occurrence of certain features.

There are many different problems that can be
addressed using multispectral imaging sensors and
several different approaches to building and using
multiway PCA models for feature extraction and process
monitoring. One alternative SPC approach to real-time
MIA was outlined for situations where defects or faults
are infrequent.

122.07 1.06 153.98
96.04 1.01 127.18
65.57 1.39 97.66
94.05 1.01 125.83

In spite of the ready availability of multivariate
imaging systems in off-line settings, there has been very
little application of these systems to industrial processes
for on-line monitoring. One reason for this has been
the lack of suitable image analysis techniques capable
of handling the large volumes of data and extracting
the relevant information in a sufficiently short period
of time. We hope that the on-line MIA approach
proposed in this paper addresses some of these problems
and will expand the use of imaging sensors for monitor-
ing industrial processes.
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