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Constrained least squares methods for estimating reaction
rate constants from spectroscopic data
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Model errors, experimental errors and instrumental noise influence the accuracy of reaction rate
constant estimates obtained from spectral data recorded in time during a chemical reaction. In order
to improve the accuracy, which can be divided into the precision and bias of reaction rate constant
estimates, constraints can be used within the estimation procedure. The impact of different
constraints on the accuracy of reaction rate constant estimates has been investigated using classical
curve resolution (CCR). Different types of constraints can be used in CCR. For example, if pure
spectra of reacting absorbing species are known in advance, this knowledge can be used explicitly.
Also, the fact that pure spectra of reacting absorbing species are non-negative is a constraint that can
be used in CCR. Experimental data have been obtained from UV-vis spectra taken in time of a
biochemical reaction. From the experimental data, reaction rate constants and pure spectra were
estimated with and without implementation of constraints in CCR. Because only the precision of
reaction rate constant estimates could be investigated using the experimental data, simulations were
set up that were similar to the experimental data in order to additionally investigate the bias of
reaction rate constant estimates. From the results of the simulated data it is concluded that the use of
constraints does not result self-evidently in an improvement in the accuracy of rate constant
estimates. Guidelines for using constraints are given. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many methods are available which can be used to estimate
reaction rate constants from spectral data of chemical
reactions [1-18] (also S. Bijlsma et al., submitted). Different
techniques such as target testing (TT) [1], global analysis
[2-4], Kalman filter [5,6], traditional curve-fitting (TCF)-
based techniques [7-12], curve resolution [13-17] and three-
way analysis [16,18,19] are used to obtain unknown reaction
rate constants from spectral data of chemical reactions. All
these methods except TCF are multivariate methods which
can deal with the presence of spectral overlap.

Curve resolution [13,20] is a group of techniques based on
the determination of qualitative information and the
recovery of response profiles, e.g. time profiles. The
traditional curve resolution techniques can be adapted in
order to estimate pure spectra of reacting absorbing species
and reaction rate constants from kinetic data simultaneously
using specific kinetic model information. In that case the
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kinetic equations are used explicitly by the algorithm [14-
17].

The accuracy of an estimated reaction rate constant can be
divided into the precision and bias of the estimate. The
accuracy of the reaction rate constant estimate decreases by
increasing model errors, experimental errors and instru-
mental noise. Model errors, experimental errors and instru-
mental noise are always present. Examples of experimental
errors are errors due to the start of the reaction, initial
concentration errors of reactants at the start of the reaction
and temperature fluctuations during the reaction. If a
suitable kinetic model for the data is used and the Beer-
Lambert law is valid, model errors can be kept small.

Possibly, the accuracy of reaction rate constant estimates
can be improved by using constraints during the optimiza-
tion procedure. In the literature, constraints such as
unimodality of concentration profiles [21,22], closure
[20,23], selectivity [21] and non-negativity of both concentra-
tion profiles and pure spectra [21,23] are used during
optimization of the curve resolution model in order to
improve the precision of parameter estimates. Often some of
the pure spectra of the absorbing species involved in the
chemical reactions of interest are known beforehand or easy
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to measure. These pure spectra can be used as constraints in
curve resolution techniques. In previous work [15,16] this
approach appeared to be very useful, leading to more precise
estimates of reaction rate constants. The property that pure
spectra are always non-negative was also used as a
constraint in previous work [12,15-17]. This constraint can
be used in the fast non-negative least squares algorithm of
Bro and de Jong [24].

The goal of this paper is to determine the impact of
constraints in CCR on the accuracy of reaction rate constant
estimates, to establish whether the use of constraints is
always beneficial, and finally to define guidelines for the use
of constraints. Also, the use of perfect a priori knowledge and
imperfect a priori knowledge of the constraints is investi-
gated. This paper reports a first systematic study on
imposing constraints in algorithms for estimating reaction
rate constants from spectral data.

A two-step biochemical reaction, of which the first step
may be described by pseudo-first-order kinetics, has been
monitored using UV-vis spectroscopy [25]. The severe
overlap of the spectra of the reactant and product makes
this data set especially suitable for investigating the
application of constraints. In previous work [12, 17] the
same experimental data were used in order to estimate the
reaction rate constants involved using algorithms such
classical curve resolution (CCR) [12, 17] and TCF [12]. In
other work [15,16,19], experimental data from the same
reaction were used to estimate the reaction rate constants of
interest using CCR [15,16], weighted curve resolution
(WCR) [16] and three-way analysis [16,19], although those
data were obtained at a larger pH which resulted in other
values for the reaction rate constants.

From the collected spectral data the reaction rate constants
and the pure spectra of individual reacting absorbing species
have been estimated simultaneously. CCR with and without
constraints was used. Using the experimental data, only the
precision of the reaction rate constant estimates could be
investigated, because the true values for the reaction rate
constants are unknown. Therefore simulations have been
performed to investigate the bias of reaction rate constant
estimates.

2. THEORY
2.1. Notation

Bold-face capital characters represent matrices and bold-face
lower-case characters represent vectors. The superscript ‘T’
indicates the transpose, X denotes the estimate of matrix X,
and X! represents the inverse of matrix X.

2.2. The measurement model

Suppose matrix A (M x N) contains a collection of spectra in
time of a chemical reaction with M wavelengths, N time
points and K reacting absorbing species. Matrix A can be
decomposed as follows assuming the Beer-Lambert law [24]:

A=DF' +E (1)

The matrices in Equation (1) have the following properties.
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1.D (M xK) contains the pure spectra of K reacting
absorbing species stored in columns.

2. F (N x K) contains the concentration profiles of K reacting
absorbing species stored in columns.

3. E (M x N) is a matrix of errors (model errors, experimental
errors and instrumental noise).

In practice, F and D are both unknown. Sometimes a part of
D (pure spectra of reacting absorbing species) is known in
advance. If this is not the case, it is very often possible to
measure pure spectra of reactants and products easily.
However, obtaining the pure spectrum of an intermediate
species can be a problem, because it is difficult to isolate.
Matrix F is unknown, but a model for F (structure) is known if
a suitable kinetic model for the chemical reaction of interest
is known. Suppose the following reaction is considered:

where k; is a pseudo-first-order reaction rate constant in
min~". If pseudo-first-order kinetics can be assumed (large
excess of speciesV) and k, is a first-order reaction rate
constant also in min~!, Equations (2)-(4) describe the
concentration profiles of species U (reactant), species W
(intermediate) and species Y (product) respectively:

Cy; = Cuioefk‘t’ (2)
R CU,Okl —kit; —kat;

CW,l = k2 — kl (e € ) (3)

Cyi = Cuo — Cu;i — Cw; 4)

where Cy o is the initial concentration of species U, and Cy;,
Cw,; and Cy, are the concentrations of species U, species W
and species Y at time t; respectively. It is assumed that
initially only reactant species U and V are present.

The first column of F can be represented by Equation (2).
Hence matrix F can be reconstructed if the reaction rate
constants are given a value. For first-order kinetics the
decomposition of Equation (1) is unique apart from a
permutation of the kinetic constants [26,27] (also A. K.
Smilde et al., submitted). Chemical knowledge is required to
solve this permutation ambiguity.

2.3. Classical curve resolution (CCR)

An estimate of k, k; and D can be obtained simultaneously
by minimization of the sum of squares (SSQ) of residuals
defined in Equation (5) according to an alternating least
squares scheme:

M N
SSQ=3 "> ®)

m=1 n=1

where the residual e, is the (m,n)th element of matrix E
from Equation (1). In the Appendix the algorithm of CCR is
listed.

2.4. Different types of constraints

Three constraints are used in which the measured pure
spectra of reactant and/or product have been supplied to
CCR. For each constraint the spectra of the compounds in
matrix D that are not supplied to CCR and the values of k;
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and k; are still updated by the algorithm. In constraint R the
pure spectrum of the reactant, which was measured for
every individual batch, is supplied; in constraint P the pure
spectrum of the reaction product measured is used; and in
constraint RP the pure spectra of both the reactant and
product are fixed.

Additionally, in the fourth constraint NNLS the ordinary
least squares step of the CCR algorithm (see Appendix) that
is used to determine the D matrix is changed into a non-
negative least squares step [24].

2.5. Accuracy of reaction rate constant estimates
The accuracy of a parameter can be split into the precision
and bias of the parameter according to

E(k —kie)® = E(k — E(R)* + (EK) — ko) (6)

accuracy precision bias

where E indicates the expectation operator. The accuracy,
bias and precision of a parameter can be estimated by
applying Equations (7)-(9) respectively

1. -
accuracy = ;(kn — Kirue)” (7)
bias = (IT< - ktme)2 (8)
recision = L i(i( - i)z 9)
P a N-1 n=1 !
where
= 1.
k:N;k717 n:172,3,...7N (10)

Relative errors are reported according to

VACCHTASY  100% (11)

relative error =
true value

3. EXPERIMENTAL

3.1. The biochemical reaction monitored

A two-step consecutive biochemical reaction was monitored
using UV-vis spectroscopy [8,10,19]. In the first reaction step,
3-chlorophenylhydrazonopropane dinitrile (species U) re-
acts with a large excess of 2-mercaptoethanol (species V) into
an intermediate adduct (species W). In the second step of the
reaction, main product 3-chlorophenylhydrazonocyanoace-
tamide (species Y) and by-product ethylene sulphide
(species Z) are created from the intermediate adduct by
means of an intramolecular reaction. A detailed reaction
mechanism can be found in an earlier paper [19].

3.2. Reagents and experimental set-up

The reagents, sample preparation and experimental set-up
used were described in earlier papers [12,17]. A 1.00 cm
cuvette (Hellma Benelux) was filled with 2.5ml of the
reaction mixture containing 54 pmol 17" of species U buf-
fered with KH,PO, (Acros, pro analysis 0.2 mol 1", pH 4.4).
After reaching the reaction temperature of 25 °C, 10 pul of
species V. was added and data collection was started

Copyright © 2002 John Wiley & Sons, Ltd.

immediately. Every 10 s a spectrum of the reaction mixture
was recorded for the wavelength range 300-500 nm. The
reaction was monitored for 45 min. Four experiments were
run per day. In total, 32 experiments were performed under
the same conditions (N = 32).

A Hewlett Packard 8453 spectrophotometer with diode
array detection was used to obtain spectra of the reaction
mixture. The reaction temperature was kept constant using a
water bath (Neslab) equipped with a thermocouple inside
the cuvette as external temperature sensor.

3.3. Measured pure spectrum of reactant
(species U) and product (species Y)

As an estimate of the pure spectrum of the reactant, the
average of 21 blank corrected spectra was calculated. For
each individual batch these 21 spectra were recorded before
species V was added to the reactant. For all 32 batches these
pure spectra of the reactant were calculated. The pure
spectrum of the product is estimated by taking the average of
21 blank-corrected spectra of the reaction mixture after a
reaction time of 8 h. The reaction constants as estimated by
CCR show that the conversion after this time period is about
100%. At that time, only species V, species Y and species Z
are present in the reaction mixture. Because species V and
species Z both have no absorbances in the considered
wavelength range, the calculated spectrum can be consid-
ered as the pure spectrum of the product. Only for two
batches was this pure spectrum determined. Figure 1 shows
the pure spectra of the reactant and product. It can be
observed that the overlap between the two pure spectra
shown is severe. This overlap makes this data set a nice
example for testing the usefulness of applying constraints.

3.4. Data processing

The spectrum of the buffer solution was used as blank for all
experiments described. The starting values for k; and k, in
the CCR algorithm were set to 0.30 and 0.03 min '
respectively. These starting values were chosen around the
optimal values of the reaction rate constants obtained in
previous papers [12,17]. Using different starting values
yielded similar results. An offset correction has been applied
by subtracting the mean absorbance in the wavelength range
560-600 nm from all absorbances. Because of the low
repeatability of the first recorded spectrum after the start
of the reaction, this spectrum was not further used.

3.5. Simulations

The simulations were set up to ensure that the simulated
spectra of the reaction mixture are very similar to the
measured spectra during the batch experiments.

3.5.1.

1. The mean reaction rate constants k;( = 0.2396 min—') and
K, (=0.0266 min™") based on all individual reaction rate

Set-up

constant estimates for the experimental data were deter-
mined. These mean values were taken to be the ‘true’
values of the reaction rate constants throughout the
simulations.

2. The concentration profiles in matrix F were reconstructed
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Figure 1. Averaged recorded pure spectra of reactant and product.

using ki and k, and setting the initial concentration of the
reactant to 54 pmol 171,

3. The pure spectra estimated from a single batch using the
CCR algorithm without constraints were taken as the
‘true’ pure spectra in the simulations (matrix D).

4. Using the equation A = DF’, the spectra of the reaction
mixture in time were calculated (= matrix A).

5. To these ‘true’ spectra, normally distributed white noise
was added. The sigma of the noise was taken to be a
percentage of the maximum absorbance of the first
simulated spectrum in matrix A. Two different noise
levels, namely 0.2% and 2%, were selected. The level of
0.2% is approximately equal to the level of the instru-
mental noise. For each noise level, 500 instances of data
matrix A were generated.

3.5.2.  Types of a priori knowledge

When applying the constraints R, P or RP, two types of a
priori knowledge were considered. Assuming perfect a priori
knowledge, the ‘true’ pure spectra (see step 3 above) were
imposed, and assuming imperfect a priori knowledge, these
‘true” pure spectra were disturbed. This disturbance con-
sisted either of white noise or of (realistic) shape differences.
The level of the disturbing white noise was always selected
equal to the noise level of the simulated spectra of the
reaction mixture.

The procedure used to determine the realistic shape
differences for the reactant spectrum is the following. As
already mentioned, 32 estimates of the pure spectra of the
reactant are available. The difference spectra of these
estimates were calculated with respect to the pure spectrum
of the reactant for the specific batch run used to generate the
simulation model. Of the 31 difference spectra obtained in
this way, the largest was used to disturb the pure spectrum
of the reactant that was supplied to the CCR algorihm. Even
larger, and therefore non-realistic, shape differences were

Copyright © 2002 John Wiley & Sons, Ltd.

introduced by first multiplying the previously calculated
difference spectrum by a factor of 10 before adding it to the
pure spectrum of the reactant.

The available data set to determine realistic shape
differences for the product spectrum consists of only two
estimated pure spectra of the product. The difference
spectrum of the two spectra was calculated and added to
the pure spectrum of the product. Again a larger shape
difference was also introduced by multiplying the difference
spectrum by a factor of 10 before addition to the pure
spectrum of the reactant.

2 (reactant) and 3 (product) show the imposed pure
spectra in the case of no shape differences, of realistic shape
differences and of large shape differences.

4. RESULTS AND DISCUSSION

4.1. Experiments

4.1.1. Precision of reaction rate constant estimates
The CCR algorithm with and without constraints imple-
mented has been used to estimate the reaction rate constants
from the pseudo-first-order data set described. The reaction
rate constant estimates from all individual batches are
shown in Figure 4. From this figure the following can be
observed.

1. The use of constraint R (Figure 4B) has led to a slightly
poorer precision of the k, estimates compared to the k;
estimates using no constraints (Figure 4A). The precision
of the k; estimates is the same.

2. The use of constraint RP (Figure 4C) and constraint P
(Figure 4D) has led to the best precision of the k, estimates
compared to the results for no constraints (Figure 4A) and
constraint R (Figure 4B). The precision of the k; estimates
is again not affected by imposing constraints.

3. There is a small systematic difference between the reaction
rate constant estimates for k, obtained with unconstrained

J. Chemometrics 2002; 16: 28-40
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Figure 2. A. Imposed spectra of reactant without shape differences (full line), with realistic shape differences (dotted line) and with large
shape differences (broken line). B. Differences between imposed pure spectrum without shape differences and imposed pure spectra

with realistic shape differences (dotted line) and large shape differe

CCR, constraint R, constraint RP and constraint P (Figures
4A-4D respectively).

In general, it was expected that the use of constraints
would always improve the precision of both reaction rate
constant estimates as claimed in the literature [21-23]. It is
possible that noise and shape differences in the imposed

nces (broken line).

pure spectrum of the reactant are responsible for the poorer
precision for k; in the case of constraint R compared to no
constraints. In data matrix A, spectral information about the
reactant is dominant compared to spectral information about
the product. Therefore the imposed pure spectrum of the
reactant should be of high quality.

The precision of the k; estimates obtained using uncon-
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Figure 3. A. Imposed spectra of product without shape differences (full line), with realistic shape differences (dotted line) and with large
shape differences (broken line). B. Differences between imposed pure spectrum without shape differences and imposed pure spectra with
realistic shape differences (dotted line) and large shape differences (broken line).
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Figure 4. Individual reaction rate constant estimates using CCR.

taken in time of the reacting system is low, and hardly any
negative absorbances are present. The non-negativity re-
striction will therefore not have much effect in this case.

strained and constrained CCR is approximately the same.
Temperature fluctuations at the start of the reaction and/or
initial concentration errors of the reactant might explain this
result. These sources of variation mainly affect the first step
of the reaction and hence the value of k;. This extra variation
in ki could easily mask the expected improvement in the
precision of k; brought about by imposing a constraint.
Imposing constraint NNLS did not improve the precision
of the reaction rate constant estimates. In NNLS, negative
absorbances are not allowed. The noise level of the spectra

4.1.2.  Reconstruction error of the pure spectra

The pure spectra of the reactant and product and the CCR-
estimated pure spectra are compared by calculating differ-
ence spectra. Representative difference spectra of the
reactant and product are shown in Figure 5. In the case of
constraint R, only the difference spectrum of the product can

A: No constraints B: Constraint R
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= Product. ) Product.
< =
w wn
= =
P -0.02 Reactant &= -0.02
a a

.04 .04
300 350 400 450 500 300 350 400 450 500
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C: Constraint P

~ 0.02
=
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=

.04
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Wavelength (nm)

Figure 5. Difference spectra obtained for reactant and product using one individual batch.
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Table I. Simulation results for different constraints (constr.) in the case of perfect a priori knowledge and two different noise levels. The
relative error is indicated between parentheses in the columns of the accuracies

Precision kq Precision k; Bias kq Bias k» Accuracy kq Accuracy k»
Constr. Noise level (%) (1077 (min~1)?) (1077 (min~1)?) (107° (min™")?) (1077 (min1)?) (1077 (min~1)?) (1077 (min~1)?)
None 0.2 20 3 <1 <1 20 (<1%) 3 (<1%)
R 0.2 12 3 <1 <1 12 (<1%) 3 (<1%)
P 0.2 7 <1 <1 <1 7 (<1%) <1 (<1%)
RP 0.2 4 <1 <1 <1 4 (<1%) <1 (<1%)
NNLS 0.2 20 3 <1 <1 20 (<1%) 3 (<1%)
None 2 1973 257 1 <1 1974 (<1%) 257 (<1%)
R 2 1169 227 7 1 1176 (<1%) 228 (<1%)
P 2 588 3 <1 <1 588 (<1%) 3 (<1%)
RP 2 345 3 2 <1 347 (<1%) 3 (<1%)
NNLS 2 1383 150 1030 162 2413 (<1%) 312 (2%)

be calculated, whereas for constraint P, only the difference
spectrum of the reactant can be calculated. From Figure 5 the
following can be observed.

1. The order of magnitude of all difference spectra is small
compared to the original spectra (maximum absorbance
1.2 AU); see Figure 1. Yet, some structure is still present in
the difference spectra of the product (Figures 5A and 5B).

2. For unconstrained CCR the difference spectrum of the
reactant is smaller than the difference spectrum of the
product (Figure 5A).

3. The difference spectrum of the product is comparable for
unconstrained CCR and constraint R (Figures 5A and 5B).

4. The order of magnitude of the difference spectrum of the
reactant for unconstrained CCR and constraint P differs
(Figures 5A and 5C).

The difference spectrum of the reactant is smaller than the
difference spectrum of the product (Figure 5A). This may
again be attributed to the dominance of the spectral
information of the reactant, which allows a better CCR
estimate of the reactant spectrum from the available mixture
spectra. It was expected that a poorer precision of reaction
rate constant estimates would correspond also to a poorer
precision of pure spectra estimates. However, if the precision
of the reaction rate constant estimates becomes poorer—
compare CCR using constraint R (Figure 4B) with uncon-
strained CCR (Figure 4A) — this does not correspond to an
increased difference spectrum of the product (compare
Figures 5A and 5B).

The individual estimates of the intermediate spectrum
show very small shape differences. If the precision of the k,
estimates becomes poorer, this is probably compensated by
shape differences in the intermediate pure spectra estimates.

4.1.3. Spectral residuals

The root mean sum of squares of residuals was equal to
1.6 x 10~* AU (no constraints), 2.9 x 10~* AU (constraint R),
29 x 10* AU (constraint P) and 32 x 10™* AU (constraint
RP). The root mean sum of squares of the spectral noise level
is equal to 1.9 x 10°* AU. From these values it can be
concluded that hardly any overfitting occurs.

Copyright © 2002 John Wiley & Sons, Ltd.

4.2. Simulations

4.2.1. Precision, bias and accuracy of reaction rate
constant estimates: perfect a priori knowledge

Table I shows the results for perfect a priori knowledge. From
Table I the following can be observed.

Precision

1. For both noise levels the best precision of both reaction
rate constant estimates is obtained using constraint RP.

2. For both noise levels the precision of the k; estimates
obtained using constraint R is slightly better than the
results obtained in the case of no constraints. The precision
of the k, estimates is similar for constraint R and no
constraints.

3. For both noise levels the precision of the k; estimates
obtained using constraint RP is slightly better than the
results obtained in the case of constraint P. The precision
of the k, estimates is similar for constraint RP and
constraint P.

4. Imposing the NNLS constraint leads to a slight improve-
ment in the precision of both reaction rate constant
estimates only for a noise level of 2%.

Bias

1. For both noise levels there is no bias present in the case of
unconstrained CCR.

2. Imposing the NNLS constraint leads to a large bias
(approximately a factor of 1000 for k; and a factor of 160
for ky) of reaction rate constant estimates compared to
unconstrained CCR for a noise level of 2%.

Accuracy

1. The best accuracy of both reaction rate constant estimates
is obtained using constraint RP. This holds for both noise
levels.

2. For both noise levels the accuracy of the k; estimates
obtained using constraint R is better than the results
obtained in the case of no constraints. The accuracy of the
ko estimates is similar for constraint R and no constraints.

3. For both noise levels the accuracy of the k; estimates

J. Chemometrics 2002; 16: 28-40



Constrained least squares estimation of reaction rate constants

Table Il. Simulation results for different constraints (constr.) in the case of imperfect a priori knowledge and two different noise levels.
Noise has been added to the pure spectra in the case of the use of constraints. The relative error is indicated between parentheses in the
columns of the accuracies

Precision kq Precision k» Bias kq Bias k> Accuracy kq Accuracy ky
Constr. Noise level (%) (1077 (min—1)?) (1077 (min~1)?) (107? (min™")?) (1077 (min1)?) (1077 (min—1)?) (1077 (min—1)?)
None 0.2 20 3 <1 <1 20 (<1%) 3 (<1%)
R 0.2 3830 186 6090 760 9920 (1%) 946 (3%)
P 0.2 230 22 1426 38 1656 (<1%) 60 (1%)
RP 0.2 1630 26 10052 105 11682 (1%) 131 (1%)
None 2 1973 257 1 <1 1974 (<1%) 257 (<1%)
R 2 4657 382 6484 768 11141 (1%) 1150 (3%)
P 2 985 28 1318 39 2303 (1%) 67 (1%)
RP 2 2316 27 10182 109 12498 (1%) 136 (1%)

obtained using constraint RP is better than the results
obtained in the case of constraint P. The accuracy of the k,
estimates is similar for constraint RP and constraint P.

4. For a noise level of 2%, imposing the NNLS constraint
leads to a slightly poorer accuracy of reaction rate constant
estimates compared to the results obtained in the case of
no constraints.

In general, the use of perfect a priori spectral knowledge is
beneficial with respect to the precisions and accuracies of
reaction rate constant estimates. The only exception is
constraint NNLS. The best precision/accuracy of reaction
rate constant estimates is obtained for constraint RP. For
constraint R the precision/accuracy for k; is better than
imposing no constraints and worse than imposing constraint
RP.

Matrix A contains less information about the product (low
selectivity in the time direction) compared to the reactant,
and there is a large overlap present between the pure spectra
of the reactant and product (low selectivity in the wave-
length direction). Hence imposing constraint RP or con-
straint P will result in a large gain in precision/accuracy of
reaction rate constant estimates, especially for k,, because the
product is mainly determined by k..

A noise level of 2% on the A matrix results in a large bias if
constraint NNLS is imposed. The considerable amount of
negative absorbances in the simulated mixture spectra at this
noise level and the fact that negative absorbances are not
allowed in NNLS explain this. This means that an offset is
introduced in the fitted spectral data, which may result in a
bias depending on the order of magnitude of the offset.

4.2.2.  Precision, bias and accuracy of reaction rate
constant estimates: imperfect a priori knowledge

Table II shows the results for imperfect a priori knowledge.
The imposed pure spectra of the reactant and product were
disturbed by noise. From Table II the following can be
observed.

Precision

1. For a noise level of 0.2% the use of constraint R, constraint
P or constraint RP leads to a poorer precision of reaction
rate constant estimates compared to the precision in the
case of unconstrained CCR.

2. For both noise levels the use of constraint P and constraint

Copyright © 2002 John Wiley & Sons, Ltd.

RP gives a better precision of reaction rate constant
estimates compared to the precision obtained for con-
straint R.

3. For a noise level of 2% the precision of both k; and k;
estimates is improved using constraint P compared to
unconstrained CCR.

4. For a noise level of 2%, constraint R leads to a poorer
precision of both k; and k, estimates compared to no
constraints.

5. For a noise level of 2%, constraint RP leads to a poorer
precision of k; estimates and a better precision of k;,
estimates compared to unconstrained CCR.

Bias

1. In all cases a large bias (>1%) is obtained compared to
unconstrained CCR.

2. For both noise levels the use of constraint R has led to a
smaller bias for k; compared to the bias for k; in the case of
constraint RP. The opposite is observed for k.

3. For the two noise levels used, the bias of reaction rate
constant estimates is almost independent of the noise
levels.

Accuracy

1. For a noise level of 0.2% the use of constraint R, constraint
P or constraint RP leads to a poorer accuracy of reaction
rate constant estimates compared to the accuracy in the
case of unconstrained CCR.

2. For both noise levels the use of constraint RP only gives a
better accuracy of k, compared to the accuracy obtained
for constraint R.

3. For both noise levels the use of constraint R has led to an
extremely poor accuracy of the reaction rate constant
estimates compared to the accuracy in the case of
unconstrained CCR.

4. For a noise level of 2% the accuracy is improved for the k,
estimates if constraint RP or constraint P is used compared
to unconstrained CCR.

In most cases, imposing constraints with imperfect a priori
knowledge, i.e. adding noise (both noise levels) to the
imposed spectra, must be avoided. However, there are
exceptions. The precision and accuracy of the k; estimates are
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Table lll. Simulation results for different constraints (constr.) in the case of imperfect a priori knowledge and two different noise levels.
Realistic (r) or large (I) shape differences have been introduced in the pure spectra in the case of the use of constraints. The relative error
is indicated between parentheses in the columns of the accuracies

Precision kq Precision k»

Bias kq

Bias k> Accuracy kq Accuracy ky

Constr. Noise level (%) (1077 (min—1)?) (1077 (min~1)?) ~ (min~")?) (1077 (min1)?) (1077 (min—1)?) (1077 (min—1)?)
None 0.2 20 3 <1 <1 20 (<1%) 3 (<1%)
R (r) 0.2 13 3 1 <1 14 (<1%) 4 (<1%)
R () 0.2 12 2 20134 1541 20146 (2%) 1543 (5%)
P (r) 0.2 7 <1 2 <1 9 (<1%) <1 (<1%)
P () 0.2 7 <1 13 1 20 (<1%) 1 (<1%)
RP (r) 0.2 4 <1 <1 <1 4 (< 1%) 1 (< 1%)
RP (1) 0.2 3 <1 16118 83 16121 (2%) 83 (1%)
None 2 1973 257 1 <1 1974 (<1%) 257 (2%)

R (r) 2 1299 256 10 <1 1309 (< 1%) 256 (2%)

R (1) 2 1253 239 19865 1479 21118 (<1%) 1718 (5%)
P (1) 2 680 3 8 <1 688 (<1%) 3 (<1%)
P () 2 672 3 3 2 675 (<1%) 5 (<1%)
RP () 2 398 3 2 <1 400 (< 1%) 3 (< 1%)
RP (1) 2 404 3 16148 84 16552 (2%) 87 (1%)

improved if a high noise level is present in the data and pure
spectra (RP or P is imposed), despite the presence of biased
estimates. This is probably caused by the fact that data
matrix A contains less information about the product
compared to the reactant. The accuracy of reaction rate
constant estimates obtained is independent of the two noise
levels used.

Table III shows the simulation results using imperfect a
priori knowledge with realistic or large shape differences in
the pure imposed spectra of the reacting absorbing species.
From Table III the following can be observed.

Precision

1. For both noise levels the use of constraint RP gives the best
precision of reaction rate constant estimates compared to
the precision using constraint R, constraint P or no
constraint.

2. If for both noise levels the precision of reaction rate
constant estimates for constraint R, constraint P and
constraint RP (Table III) for realistic and large shape
differences is compared to the precision obtained for these
constraints in Table I (perfect a priori knowledge), it is
obvious that they are similar.

Bias

1. In the case of large shape differences a large bias (>1%) is
obtained for both noise levels using constraint R and
constraint RP.

2. For both noise levels used, no large bias is obtained in the
case of constraint P and large shape differences.

3. The order of magnitude of the bias of reaction rate
constant estimates is independent of the two noise levels
used.

Accuracy
1. In the case of large shape differences a poor accuracy of
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reaction rate constants is obtained in the case of constraint
R and constraint RP.

2. For a noise level of 0.2% and large shape differences the
accuracy of the k; estimates is improved using constraint P
compared to unconstrained CCR. The accuracy of the k;
estimates is similar.

3. For a noise level of 2% and large shape differences the
accuracy of both the k; and k; estimates is improved using
constraint P compared to unconstrained CCR.

It is obvious that imperfect a priori knowledge by means of
introducing realistic or large shape differences in the pure
spectra has no effect on the precision of the reaction rate
constant estimates. However, for large shape differences
using constraint R and constraint RP, a large bias and poor
accuracy of reaction rate constant estimates are obtained
independently of the noise level. Again the dominance of the
spectral information about the reactant in the data set
explains this.

In the case of constraint P and large shape differences, no
biased estimates are obtained. Moreover, for a high noise
level and large shape differences the accuracy is improved
using constraint P compared to unconstrained CCR, because
less information of the product is present in data matrix A
compared to the reactant.

If realistic shape differences are introduced, which are
representative of the experiments performed, the precision,
bias and accuracy are not affected compared to the
corresponding cases for perfect a priori knowledge.

4.2.3.  Summary of the simulation results

Precision and accuracy

In the case of perfect a priori knowledge, applying constraints
leads to a better precision and accuracy of reaction rate
constant estimates. If noise is added to the imposed pure
spectra, which results in imperfect a priori knowledge, the
precision and accuracy of reaction rate constant estimates
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Figure 6. Spectral residuals of one individual batch process using unconstrained CCR.
The spectral residuals have been plotted using an interval of 10 residual spectra.

become poorer. However, there are exceptions. In the case of
a high noise level, imposing constraint RP or constraint P
may improve the precision and accuracy of reaction rate
constant estimates. If imperfect knowledge is present in the
form of realistic or larger shape differences in the pure
spectra, the precision of reaction rate constant estimates is
similar to that obtained in the case of perfect a priori
knowledge. A poor accuracy of reaction rate constant
estimates is obtained in the case of large shape differences.
However, in the case of large shape differences and
imposing constraint P, the accuracy is improved compared
to unconstrained CCR.

Bias

In the case of a high noise level and perfect a priori
knowledge, imposing the NNLS constraint gives a large
bias for both reaction rate constant estimates owing to
negative absorbances present in the spectral data. If
imperfect a priori knowledge is used (noise or large shape
differences added to imposed pure spectra), a large bias of
reaction rate constant estimates can be obtained. However,
for a high noise level, no bias is obtained in the case of
constraint P and large shape differences. The order of
magnitude of the bias of reaction rate constant estimates is
independent of the two noise levels imposed on the pure
spectra in this study. No bias is obtained in the case of
realistic shape differences introduced in the imposed pure
spectra.

4.2.4. Spectral residuals

For the results of the simulations, spectral residuals have
been inspected. In all cases (perfect and imperfect a priori
knowledge) the spectral residuals represented white noise,
except for imperfect a priori knowledge where large shape

Copyright © 2002 John Wiley & Sons, Ltd.

differences have been introduced in the pure spectra. Hence
it might be claimed that structure in the residuals is an
indication of the quality of the a priori incorporated spectra
with respect to the shape.

In Figure 6 the spectral residuals are shown for one batch
process of the experimental data set in the case of
unconstrained CCR. The two largest spectral residual
spectra are the first two spectral residual spectra of the
batch process. The spectral residuals for other batches were
similar. The residuals show some structure, which can be
caused by spectral characteristics such as drift, non-uniform
errors and colored noise. Hence spectral residuals are not
good indicators of the quality of the a priori imposed pure
spectra, because in the residuals of unconstrained CCR there
is already structure present. In the case of unconstrained
CCR a comparison of pure spectra estimates and measured
pure spectra can serve as a diagnostic tool. If there are large
differences between the pure spectra estimates and the
measured pure spectra, imposing the measured pure spectra
may cause biased reaction rate constant estimates.

4.2.5. Bias of NNLS

For a noise level of 2%, k; and k, were estimated using no
constraints and constraint NNLS for one particular simu-
lated UV-vis data set. Next a grid of k; and k, values was
chosen around the optimal values found. For every
combination of k; and k, grid values the concentration
profiles were reconstructed and the pure spectra involved
were estimated. Finally, the sum of squares of the spectral
residuals was calculated for every combination of k; and k;,
grid values. Now it is possible to make contour plots which
show lines of constant sums of squares. Figure 7 shows the
contour plots obtained in the case of no constraint and in the
case of constraint NNLS. The optimal values found for the
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A: Constraint NNLS
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Figure 7. Contour plots of sum of squares of spectral residuals obtained using a simulated data
set and a grid of ky and k, values. The reaction rate constant estimates found in these particular

cases are indicated by asterisks.

reaction rate constants are also plotted in the same figure as
asterisks. It is obvious that approximately the real minimum
has been found in both cases. The contour lines in Figures 7A
and 7B are different, because in the case of constraint NNLS,
parts of the cross-section of the total error surface are not
accessible. This can lead to a large bias of reaction rate
constant estimates if negative absorbances are present in the
spectral data. This issue will play a more dominant role if the
noise level of the spectral data is increased.

4.2.6. Guidelines for using constraints

From the experiments and simulations, guidelines can be
formulated for using constraints with respect to the accuracy
of reaction rate constant estimates valid for the kinetic
system discussed in this paper. If the measured spectra
contain no local regions in the time direction where only one
species is dominantly present (no selectivity in the time
direction) and the quality of the constraints is high, it is
recommended to use these constraints. This holds especially
if the reacting absorbing species have a poor spectral
selectivity in the wavelength direction. If the measured
spectra contain local regions in the time direction where only
one species is dominantly present (selectivity in the time
direction), it is better to use unconstrained models even in
the case of a low selectivity in the wavelength direction for
this species.

Table IV gives a general overview which may guide the
application of constraints in CCR for a large spectral overlap
of the reactant and product species. The criterion used is the
accuracy of reaction rate constant estimates. For the kinetic

system considered in this paper, the reactant is the dominant
species in the time direction and the product is the non-
dominant species in the time direction. A large overlap is
present between the pure spectra of the reactant and
product. Table IV summarizes the following results.

1. Consider the perfect a priori knowledge case from Table IV
(see also Table I) for the dominant species in the time
direction (reactant). It is useful to apply constraints
concerning this species, because a gain in accuracy of
reaction rate constant estimates is obtained if constraint R
or constraint RP is implemented. In the case of the non-
dominant species in the time direction (product) it is very
useful to implement constraints concerning this species
(constraint P or constraint RP).

2. For the dominant species it is very harmful to apply
constraints for the imperfect a priori knowledge (noise)
case (see also Table II). For the non-dominant species it is
sometimes useful to apply imperfect constraints.

3. For realistic shape differences (see also Table III) it is
useful to apply constraints for both types of species
(constraint R, constraint RP, constraint P), especially for
the non-dominant species (constraint RP and constraint
P).

4. In the case of large shape differences (see also Table III)
present in imposed pure spectra it is not useful to apply
constraints at all. However, for a high noise level and the
non-dominant species it is sometimes useful to apply
constraint P in the case of large shape differences.

In practice, perfect a priori knowledge is never available.

Table IV. Overview of the use of constraints with respect to the accuracy of reaction rate constant estimates in the case of the presence of
a dominant or a non-dominant species in the time direction and a large spectral overlap of this species with another species present: very
useful (++), useful (+), sometimes useful (+/—), harmful (), very harmful (——)

Type of a priori knowledge

Dominant species in time direction

Non-dominant species
in time direction

Perfect a priori knowledge

Imperfect a priori knowledge (noise)

Imperfect a priori knowledge (realistic shape differences)
Imperfect a priori knowledge (large shape differences)

+ ++
R +/,
+ ++
J— +/,

Copyright © 2002 John Wiley & Sons, Ltd.
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Hence imposed pure spectra will suffer from realistic shape
differences and noise. From the simulations it is obvious that
the presence of realistic shape differences will not affect the
precision and accuracy. However, imposing noisy spectra
may lead to a poor precision and accuracy of reaction rate
constant estimates. Also biased estimates can be obtained.
Therefore in practice it is useful to measure the imposed
pure spectra often in order to reduce the noise level. The
alternative is to apply unconstrained CCR.

4.3. Comparison between experimental and
simulation results

As mentioned earlier, a noise level of 0.2% in the simulated
data is comparable to the level of instrumental noise present
in the experiments. If the simulation results for this noise
level and the precision of the reaction rate constant estimates
for the experimental data are considered, the following can
be observed.

1. Imposing constraint R on the experimental data leads to a
poorer precision of the k, estimates compared to the
results obtained for no constraints. The precision of the k;
estimates is similar for constraint R and unconstrained
CCR. It is assumed that unconstrained CCR gives
unbiased estimates as was concluded from the simula-
tions. Therefore biased estimates are obtained in the case
of constraint R for k,. A poorer precision of k, in the case of
constraint R can be caused by the presence of noise on the
imposed pure spectra. The k; estimates are similar in the
case of constrained CCR and unconstrained CCR, suggest-
ing that the main error sources that possibly affect the
estimates are the temperature fluctuations at the start of
the reaction and initial concentration errors.

2. The use of constraint RP or constraint P gives a clear gain
in precision of k, estimates for the experimental data.
However, probably biased estimates are obtained as can
be seen from the results of the simulated data. The
precision of the k; estimates is similar for constrained and
unconstrained CCR. It is also obvious from the simulated
data that applying constraint RP or constraint P improves
the accuracy of reaction rate constant estimates, especially
for k».

5. CONCLUSION

In this paper the usefulness of constraints for improving the
accuracy of rate constant estimates from kinetic data has
been investigated. From the UV-vis measurements of a two-
step consecutive biochemical reaction performed under
pseudo-first-order conditions, it can be concluded that the
precision of the reaction rate constant estimates is best if the a
priori known pure spectra of the reactant and product or the a
priori known pure spectrum of the product are implemented
as constraints in classical curve resolution (CCR). A large
overlap is present between the pure spectra of the reactant
and product. The presence of biased estimates of reaction
rate constants could not be checked, but was suspected to be
present assuming that no biased estimates are obtained in
the case of unconstrained CCR.

In order to investigate whether biased reaction rate
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constant estimates are obtained using CCR with and without
constraints implemented, simulations have been set up so
that the simulated UV-vis spectra look very similar to the
experimental spectra. Using perfect a priori knowledge
improved the precisions and accuracies of reaction rate
constant estimates. However, imposing noisy pure spectra
(imperfect a priori knowledge) resulted in poor precisions
and accuracies of reaction rate constant estimates. Moreover,
a large bias of reaction rate constant estimates is obtained.
However, in the case of imposing only a noisy pure spectrum
of the product, the accuracy of reaction rate constants is
improved compared to unconstrained CCR, despite the
presence of biased estimates. In the case of imposing
imperfect a priori knowledge by means of introducing large
shape differences in the pure spectra, a large bias of reaction
rate constants is obtained, but the precision is not affected.
However, in the case of imposing only the pure spectrum of
the product, the accuracy is improved compared to
unconstrained CCR.

From the results of the simulated data, guidelines have
been formulated for the use of constraints with respect to the
accuracy of reaction rate constants valid for the kinetic
system discussed in this paper. If the measured spectra
contain no local regions in the time direction where only one
species is dominantly present (low selectivity in the time
direction) and the quality of the constraints is high, and there
is no selectivity for this species in the wavelength direction, it
is useful to impose the constraints. If the measured spectra
contain local regions in the time direction where only one
species is dominantly present (high selectivity in the time
direction), it is better to use unconstrained models for this
species.

In practice, a better precision obtained by imposing
constraints is no good reason to use constraints. The true
values of the reaction rate constants of interest are always
unknown. This makes it difficult to check whether biased
reaction rate constant estimates have been obtained. Some
diagnostic tools are proposed.

APPENDIX CCR ALGORITHM

Initialization
Construct the estimate of F, F, using Equations (2)-(4) from
Section 2.2 and the starting values for k; and k..

Minimization of SSQ
Repeat step 1 to step 5 until SSQ has been minimized.

1. Minimize Equation (12) with respect to D, where D is
obtained using Equation (13) by means of an ordinary
least squares step:

min||A — DET|® (12)
D

D = AF(F'F)! (13)

2. Update the reaction rate constants using the Levenberg-
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Marquardt [28] algorithm by solving
min||A — DE"|? (14)
ka,k2

3. Calculate A according to
A — DET (15)
4. Calculate matrix E by applying
E=A-A (16)
5. Calculate SSQ.

It is important to stress that all concentration profiles of F are
updated simultaneously in every iteration.
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