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SUMMARY

This paper describes the estimation of reaction rate constants and pure species UV-vis spectra of the consecutive
reaction of 3-chlorophenylhydrazonopropane dinitrile with 2-mercaptoethanol. The reaction rate constants were
estimated from the UV-vis measurements of the reacting system using the generalized rank annihilation method
(GRAM) and the Levenberg–Marquardt/PARAFAC (LM-PAR) algorithm. Both algorithms can be applied in
cases where the contribution of different species in the mixture spectra is of exponentially decaying character.
From a single two-way array, two two-way datasets are formed by means of splitting such that there is a constant
time lag between the two two-way datasets. By stacking these two two-way datasets, the reaction rate constants
can be estimated very easily from the third dimension. GRAM, which is fast and non-iterative, decomposes the
trilinear structure using a generalized eigenvalue problem (GEP). The iterative algorithm LM-PAR consists of a
combination of the Levenberg–Marquardt algorithm and alternating least squares steps of the PARAFAC model
using GRAM results as a set of initial starting values. Pure spectra of the absorbing species were estimated and
compared with their measured pure spectra. LM-PAR performed the best, giving the lowest relative fit error.
However, the relative fit error obtained with GRAM was acceptable. Since a lot of measurements are based on
exponentially decaying functions, GRAM and LM-PAR can have many applications in chemistry. Copyright
1999 John Wiley & Sons, Ltd.
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INTRODUCTION

Estimation of reaction rate constants is a necessary procedure for the determination of reaction
mechanisms. In chemical kinetics the course of a reaction is very often monitored at specific
wavelengths where only one reacting species absorbs.1,2 However, this approach is only applicable
for reaction systems where the spectra of the different species involved are not overlapping and hence
a high degree of selectivity is present. Problems arise if spectra of different species are similar or
overlapping. In such a situation it is very hard to find a wavelength where only the non-interesting
species have a very small absorption coefficient. Chemometric methods which can deal with
overlapping spectra of reacting species would be the most convenient solution for such problems.
Nowadays computerized data processing is widely used in scientific research, and complicated data-
processing techniques can be used.
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One of these techniques is curve resolution3 based on the determination of qualitative information
and recovery of response profiles, e.g. time profiles. A large number of curve resolution techniques
have been published.4–6Curve resolution techniques can also be used to deconvolute spectral features
using a model for the kinetic information. Reaction rate constants can be incorporated as unknowns.7–9

An iterative least squares optimization procedure is used to estimate the values of unknown reaction
rate constants from experimental data of the reaction. Also hard-modelling methods such as global
analysis,10–12 can be used to estimate kinetic parameters and equilibrium parameters from
multiwavelength spectral data.

However, time-consuming iterations can be a serious problem if such procedures are used to
estimate parameters on-line from batch processes in industry. An iterative procedure is therefore not
very attractive to use and a fast non-iterative algorithm could be applied to monitor the considered
chemical process. The non-iterative algorithm need not to be very accurate, because a rough estimate
of parameters is very often satisfactory. If the batch time is elapsed, an iterative algorithm can be used
to estimate reaction rate constants more accurately.

In recent work13 a non-iterative algorithm, which is a modification of the generalized rank
annihilation method (GRAM) based on the direct exponential curve resolution algorithm (DECRA)
developed by Windig and Antelek,14,15has been used in order to estimate reaction rate constants from
the short-wavelength near-infrared (SW-NIR)16,17spectra of a reacting system. This modified GRAM
method can only be used in cases where the contribution of different species in the mixture spectra is
of exponentially decaying character. Kinetic equations have an exponentially decaying character13

and hence it is possible to estimate reaction rate constants using GRAM. GRAM can only be used for
(pseudo-)first-order kinetics. In the modified GRAM method a single dataset of a reacting system is
split into two datasets by means of a time shift such that there is a constant time lag between the two
datasets. Owing to the properties of exponentially decaying functions, there exists a special trilinear
structure if the two datasets are stacked. This trilinear structure is decomposed by solving a
generalized eigenvalue problem (GEP).18 From the decomposition, specific parameters, e.g. reaction
rate constants, can be estimated.

Recently a new iterative algorithm has been developed13 for cases where very accurate estimations
of reaction rate constants are needed. The iterative algorithm, called Levenberg–Marquardt/
PARAFAC (LM-PAR), is a combination of the well-known Levenberg–Marquardt algorithm19 and
alternating least squares steps of the PARAFAC model20,21using the GRAM results as a very good
set of initial starting values.

In previous work,13 GRAM and LM-PAR have been applied in order to estimate the reaction rate
constants from short-wavelength near-infrared (SW-NIR) measurements of the pseudo-first-order
two-step epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone8,22 and from simulated datasets. A
quality assessment of the estimated reaction rate constants was performed using the jackknife
method.23 Both algorithms can deal with strong spectral overlap. The experimental data showed only
a small difference between GRAM and LM-PAR estimations of the reaction rate constants.
Simulations showed that LM-PAR always leads to more precise estimates of the reaction rate
constants compared with GRAM. The choice of the time shift parameter appeared to be very
important. A small time shift results in two datasets which are very similar, and a large time shift
results in two very small datasets. Both cases will result in very bad estimations for the kinetic
parameters. For instance, the reaction rate constants can become very large or even negative or a
complex number.

Goal of the paper

In this paper, GRAM and LM-PAR are applied in order to estimate reaction rate constants from UV-
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vis measurements of the two-step consecutive reaction of 3-chlorophenylhydrazonopropane dinitrile
with 2-mercaptoethanol.2,24 The choice of the time shift parameter is also investigated. The pure
spectra of the reacting species, including an intermediate species, which absorb in the considered UV-
vis region are estimated very easily, without complicated procedures, and compared with their
measured pure spectra. If species are unknown, spectrum library search methods can be used to
identify the estimated pure spectra of these unknown species. Quality assessment of the estimated
reaction rate constants is also performed using the jackknife method.

THEORY

In a previous paper13 the model, algorithms and quality assessment of the estimated reaction
rate constants were explained very extensively. Here those three items will be explained very
briefly.

Notation

Boldface capital characters denote matrices, boldface lower-case characters denote vectors, boldface
underlined capital characters denote a three-way array and the superscript ‘T’ denotes a transpose.
A(j) is the matrixA after thejth iteration andai is theith column ofA. Hencea�j�i is theith column ofA
after thejth iteration. In the Appendix there is a summary of the nomenclature of the most important
scalars, vectors and matrices used in this paper.

The model

Shifting an exponentially decaying function

Let a vector of exponentially decaying numbers, called vector one, be equal to [162 54 18 6
2]T. Next suppose vector one is shifted one position, which results in vector two according to Figure
1. From this figure it is clear that the ratioRbetween two numbers listed in the same row is equal from
row to row. In this case the ratio equals three.

Equation (1) represents an exponentially decaying function describing the reaction kinetics of a

Figure 1. Relation between a vector with exponentially decaying numbers (vector one) and the corresponding
shifted vector (vector two)
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first-order process.

C � eÿk1t �1�

wherek1 is a reaction rate constant andC is the concentration of a certain species at timet. If the
exponent is shifted with a time shiftS, equation (1) becomes equation (2).

Cs � eÿk1�t�S� �2�

whereCs is the ‘shifted concentration’. The ratio of equations (1) and (2), called�, is an indirect
measure fork1 as shown in equation (3).

� � C
Cs
� eÿk1t

eÿk1�t�S� � eÿk1t�k1�t�S� � ek1S , k1 � ln���
S

�3�

Hence, if an exponentially decaying function is time-shifted, the reaction rate constant can be
extracted very easily from the ratio of the non-shifted and the shifted exponentially decaying
function.

The reaction model

Suppose that the following first-order consecutive reaction is considered as the reaction model.

Step 1. A→ B, with reaction rate constantk1.
Step 2. B→ C, with reaction rate constantk2.

Then equations (4)–(6) are the kinetic rate equations describing the concentration profiles of
species A, B and C respectively with initially only A present.

CA;i � CA;0eÿk1ti �4�
CB;i � k1CA;0

k2 ÿ k1
�eÿk1ti ÿ eÿk2ti � �5�

CC;i � CA;0 ÿ CA;i ÿ CB;i �6�

whereCA,i, CB,i andCC,i are the concentrations of species A, B and C at timeti respectively andCA,0

is the initial concentration of species A at the starting point of the reaction.
Let matrix X (M� N) be a collection of spectra taken during a certain time course withM

equidistant time points atN wavelengths of a reacting system in whichK species are involved. In
curve resolution, matrixX can be expressed as equation (7) assuming Lambert–Beer’s law.16

X � FDT � E �7�

The matrices from equation (7) have the following properties.

1. Every row inX denotes a spectrum recorded at a certain time.
2. F (M� K) is the matrix of concentration profiles.
3. Every column inF denotes the concentration profile of a species in time. Hence every column in

F represents a rate equation.
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4. D (N� K) is the matrix containing the pure spectra of the species.
5. Every column inD represents the pure spectrum of a species.
6. E (M� N) is the matrix of errors (model errors, experimental errors and instrumental noise).

The trilinear structure

Consider the two reactions from the reaction model described above and matrixX (M� N) with UV-
vis measurements of the reacting system. Suppose for convenience thatCA,0 = 1. Equations (4 and 5)
are already sums of exponentially decaying functions, but equation (6) is not decaying. It is necessary
for a combination of exponentially decaying functions to be modelled with GRAM or LM-PAR that
these functions can be written as a sum of exponentially decaying components.13 Hence, using
equations (4 and 5), equation (6) can be rewritten.

CC;i � 1ÿ eÿk1ti ÿ k�eÿk1ti ÿ eÿk2ti � � e0 ÿ eÿk1ti ÿ keÿk1ti � keÿk2ti �8�

wherek = k1/(k2 7 k1). Now equation (8) is a sum of individual exponentially decaying functions.
Although the term e0 is implicitly present in the dataset, it is advantageous (certainly in the case of
noisy data) to add a column of constants, e.g. (1 … 1)T (a column with ones), to the data matrixX
(M� N) to construct an augmented data matrixX* (M� (N� 1)).25,26

NextX* will be used to build two data matricesX*
1 andX*

2 using a time shiftS. The matricesX*
1

((M 7 S)� (N� 1)) andX*
2 ((M 7 S)� (N� 1)) formed by separatingX* are used to construct the

three-way arrayX* ((M 7 S)� (N� 1)� 2) by stacking and can be modelled with PARAFAC as
shown in Figure 2. From the three-way arrayX* the following three loading matrices can be
constructed:

. A = [a1 a2 a3] ((M 7 S)� 3) with k-rank27 equal to three

. B = [b1 b2 b3] ((N� 1)� 3) with k-rank equal to three

Figure 2. PARAFAC model
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. C = [c1 c2 c3] (2� 3) with k-rank equal to two, assumingk1 = k2.

Because a column of constants is added to matrixX, the third column ofC is forced to be equal to
one even ifX contains a lot of noise.

Thek-rank is defined as follows. Suppose a matrix hasK columns. If any combination ofL columns
of the matrix is independent and this is not valid forL� 1, then thek-rank of the matrix is equal toL.
The three-way rank ofX*, calledR, equals three in this case. For the decomposition of the three-way
array in the matricesA, B andC to be unique, the Kruskal criterion28 has to be fulfilled. According to
the Kruskal criterion, the decomposition is unique if equation (9) is valid.

k-rank�A� � k-rank�B� � k-rank�C� � 2R� 2 �9�

In this case (3� 3� 2)� (2� 3� 2)) 8� 8 and hence the decomposition of the three-way array is
unique.

The algorithms

Non-iterative algorithm: the generalized rank annihilation method (GRAM)

In this subsection, GRAM will be explained very briefly starting from the decomposition of the three-
way arrayX*((M 7 S)� (N� 1)� 2).

Step 1. Start with a GEP. This gives the three loading matricesA, B andC.18 In order to solve the
GEP, the matricesX*

1 andX*
2 need to be transformed into square matrices. This can be

done by using a common space18 on to which both matrices are projected. In this paper the
common space was based onX*

1� X*
2.

Step 2. Recognize the triad which is constant and permute the model such that the third triad
models the constant. The reaction rate constantsk1 andk2 can be estimated directly from
the scaling factors listed in the first two columns of theC matrix, according to equation
(10), if the time shift is known using equation (3).

C � u v 1
1 1 1

� �
�10�

wherek1 andk2 are ln (u)/Sand ln (�)/S respectively.

Iterative algorithm: the Levenberg–Marquardt algorithm and alternating least squares steps of the
PARAFAC model (LM-PAR)

LM-PAR, which is monotonically decreasing, will be explained in this subsection very briefly. For all
the estimates obtained with LM-PAR in this paper, the GRAM results were used as a set of initial
starting values.

Steps 1 and 2 of LM-PAR are equal to GRAM. Let the three matricesA, B andC obtained from the
first step of GRAM beA(0), B(0) andC(0) respectively. Let the estimatedk1 andk2 obtained by the
second step of GRAM be start-k1 and start-k2 respectively. The superscript zero indicates that no
iterations have occurred yet.

Step 3. DefineÃ(0) which is a matrix with the reconstructed exponentially decaying functions using
start-k1 and start-k2 for k1 andk2 respectively. DefineC̃(0) which is equal toC(0). DefineB̃(0)

which is a least squares PARAFAC fit from the three-way arrayX*, C̃(0) andÃ(0).
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Step 4. Subtract the contribution of the column with constants from the three-way arrayX*:

~X��0� � X� ÿ a�0�3 �c�0�T3 
 ~b�0�T3 � �11�

Step 5. Next matrices are partitioned:

~A�0� � �~~A�0�; a�0�3 �
~C�0� � �~~C�0�; c�0�3 � with c�0�3 �

1

1

� �
~B�0� � �~~B�0�; ~b�0�3 �

Step 6. Equation (12) is minimized overk1 and k2 using the Levenberg–Marquardt algorithm,
ensuring that for the properk1 andk2 this minimum will be attained.

min
k1;k2

jj~X��0� ÿ ~~A
�0��~~C�0�

T


 ~~B
�0�T�k2 �12�

Hence ~~A
�0�

and ~~C
�0�

are updated simultaneously using the optimal values fork1 and k2

according to the Levenberg–Marquardt algorithm.
Step 7. UpdateB̃�0� using a least squares PARAFAC step.
Step 8. Repeat Steps 4–7 until the relative change in fit between two iterations is below 1076.

Estimation of the relative fit error

If the reaction rate constants are estimated with GRAM or LM-PAR, the fit error can be estimated. In
this paper this was done in the following way. Unfold the three-way matrixX* and the estimate ofX*,
X̂
�
, according to equation (13), and delete the two columns with constants to constructX

((M 7 S)� 2N) and �̂X((M 7 S)� 2N) respectively.

X̂� � ~A�~CT 
 ~BT� �13�

whereÃ, B̃ andC̃ are obtained with GRAM or LM-PAR.
The relative fit error (RFE) can be estimated according to equation (14).

RFE�

������������������������������Pj
i�1

Pj
j�1
��X ÿ �̂X�2ij

PI
i�1

PJ
j�1

�X2
ij

vuuuuuut �14�

whereI = M 7 S, J = 2N, i = 1, 2, …,I and j = 1,2, …,J. From equation (14) it can be seen that it is
necessary to delete the columns with constants from the two-way arrays, because otherwise the
denominator will dominate.
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Estimation of the pure spectra

For a set of estimated reaction rate constants obtained with GRAM or LM-PAR, the concentration
profiles are reconstructed. From these concentration profiles and the original UV-vis spectra from the
considered batch run, the pure spectra of reactant, intermediate and product can be estimated by
means of a fast non-negativity-constrained least squares algorithm.29 The absorbances of these
estimated pure spectra are relative absorbances and hence have to be scaled for comparison with the
measured pure spectra.

Quality assessment of the estimated reaction rate constants

If the reaction rate constants are estimated, there will be a certain fluctuation between the several
estimated parameters. This can be caused by model errors, experimental errors and instrumental
noise. The model errors can be kept very small if the correct kinetic model is used and the Lambert–
Beer law is valid. Experimental errors are always present and are caused by concentration errors and
errors due to the start of the reaction, for example. Instrumental noise is also always present and is
caused by variations in the instrument. If reaction rate constants are estimated for several repeated
individual batch processes and the individual standard deviation is estimated, this represents the
upper error limit. Note that this is the worst case, because both experimental errors and instrumental
noise are involved.

A lower error limit caused by mainly instrumental noise is estimated using the jackknife method.
The theory of the jackknife method is very well explained in the book by Shao and Tu.23 Consider the
mean batch run obtained from averaging all the repeated individual batch process runs. Hence
experimental errors and also instrumental noise are averaged. In the jackknife procedure a fixed
number of spectra from the three-way arrayX* based on the mean batch run are left out several times
according to a fixed interval, and hence the three-way arrayX* is reduced.13 Finally for the mean
batch process a set of estimates for the reaction rate constants are obtained. The individual standard
deviation of these estimates represents the lower error limit, because mainly instrumental noise is
involved.

EXPERIMENTAL

The reaction

The two-step consecutive reaction of 3-chlorophenylhydrazonopropane dinitrile (A), an uncoupler of
oxidative phosphorylation in cells, with 2-mercaptoethanol (B) described by Bisby and Thomas2 and
Chau and Mok24 was used as an example process for experiments. The two chemicals form an
intermediate adduct (C) which is hydrolysed in an apparently intramolecular reaction to the product
3-chlorophenylhydrazonocyanoacetamide (D) and the by-product ethylene sulphide (E). A possible
reaction mechanism is given in Figure 3.

A � Bÿ!k1 Cÿ!k2 D� E

If 2-mercaptoethanol is present in large excess, pseudo-first-order kinetics can be assumed. Hence
the kinetic equations (4)–(6) can be used to describe the concentration profiles of A, C and D
respectively. In this paper, A, C and D will be monitored— the reactant, intermediate and main
product of the considered reaction.
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Sample preparation

All chemicals were used as received without further purification. 0⋅0529 g (0⋅2585 mmol) of species
A (Acros, 99�%) was dissolved in water using a minimum amount of 0⋅1 mol l71 of NaOH (Baker
Chemicals, 98⋅8%) to give a stock solution of 1⋅034 mmol l71. This stock solution was diluted into a
working solution containing 51⋅71�mol l71 of species A, buffered with KH2PO4 (Acros, pro analysis
0⋅2 mol l71, pH 4⋅4). This working solution had to be prepared freshly every day. At this pH, species
A was supersaturated and slowly crystallized from the solution after a couple of days. This was not
observed by Bisby Thomas2 and Chau and Mok.24 The cuvette was filled with 2⋅5 ml of the working
solution. When the temperature inside the cuvette had reached the target temperature of 25°C, data
collection was started upon addition of 10�l of a B solution, which contained 35⋅65�mol of species
B, by means of a pipette. This B solution consisted of 250�l of pure B (Acros, 99%) and 750�L of
KH2PO4 buffer solution. However, if pure B is added, it will take some time to mix with the reaction
mixture. This mixing time can be reduced if B is already in the same buffer solution as the buffer
solution used to create the reaction mixture. The excess of B in moles was 276 times A.

Pure spectra

Seven spectra were recorded of the reaction mixture for the case where no B was added. Hence the
recorded spectra represented the measured pure spectrum of the reactant when the buffer solution was
used as blank. In order to record the pure spectrum of the product, the reaction mixture was allowed to
react for about 8 h. After this reaction period, seven spectra were recorded. Hence the recorded
spectra represented the measured pure spectrum of the product when the buffer solution was used as
blank. After 8 h the concentrations of the reactant and intermediate are negligible. It is not possible to
record the pure spectrum of the intermediate. Bisby and Thomas2 tried to record the pure spectrum of

Figure 3. Proposed reaction mechanism: A, 3-chlorophenylhydrazonopropane dinitrile; B, 2-mercaptoethanol; C,
intermediate adduct; D, 3-chlorophenylhydrazonocyanoacetamide; E, ethylene sulphide
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the intermediate immediately after addition of B. This is not correct, because the reaction will start
directly. Bisby and Thomas mentioned this problem too, but were satisfied with an approximate pure
spectrum of the intermediate. In this paper such an approach will be useless, because ‘the measured
pure spectrum’ cannot be compared with the estimated pure spectrum if the ‘measured pure spectrum’
is not the real pure spectrum.

Experimental set-up

The experimental set-up has been extensively described in an earlier paper.13 A Hewlett Packard
8453 UV-vis spectrophotometer with diode array detection was used to measure spectra of the
reacting system. In this paper a quartz cuvette with 1⋅00 cm path length was used to obtain spectra of
the reaction mixture. A Pt-100 and a constant-temperature bath (Neslab) were used to control the
temperature inside the cuvette. The most important experimental conditions are given in Table 1.

Reproducibility

The reproducibilityRbatchof ten individual batch process runs was obtained using equation (15).9,30

Rbatch�

���������������������������������
1
n

Pn
i�1
jjX i ÿ Xmjj2

s
jjXmjj � 100% �15�

whereX i is the data matrix for process runi and Xm is the averaged data matrix estimated forn
individual batch process runs according to equation (16).

Xm � 1
n

Xn

i�1

X i �16�

The reproducibilityRtime for every recorded spectrum at timet was obtained according to equation
(17).

Rtime�t� �

�����������������������������������
1
n

Pn
i�1
jjxi;t ÿ xm;tk2

s
jjxm;tjj � 100% �17�

Table 1. Most important experimental conditions

Reaction temperature 25°C
Integration timea 1 s
Sampling time 10 s
Total run time 2700 s
Wavelength range 200–600 nm
Wavelength interval 1⋅0 nm
Number of recorded spectra 271

a It took 1 s to measure ten spectra from 200 to 600 nm. These spectra were averaged.
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wherexi,t is the spectrum for process runi at time t andxm,t is the averaged spectrumm at time t
estimated forn individual batch process runs according to expression (18).

xm;t � 1
n

Xn

i�1

xi;t �18�

Data processing

A spectrum of the KH2PO4 buffer solution was used as blank solution. The reproducibility of each
recorded spectrum was calculated in order to decide whether some spectra had to be deleted because
of bad reproducibility caused by mixing of the B solution at the start of the reaction. Only a selection
of the wavelength range was used for data processing. At� < 300 nm, species B absorbs and by-
product E shows an increasing absorbance. At� > 500 nm there is no significant contribution of the
reacting species to the absorbance. If the wavelength range 300–500 nm is considered, the spectral
features are caused by A, C and D.

Data processing was performed in the Matlab environment (Version 4⋅2C, The Mathworks Inc.) on
a Pentium 133 MHz computer with 64 MB RAM and a 1⋅2 GB hard disk.

RESULTS AND DISCUSSION

Reproducibility

The blank-corrected spectra of one arbitrary individual batch process run are shown in Figure 4. The
reproducibility of the batch process runs was 0⋅54%, which is very good for spectroscopic
measurements. The reproducibility for every spectrum in time is shown in Figure 5. From this figure it
is clear that the first spectrum had to be deleted because of the poor reproducibility compared with the
other reproducibility numbers.

Figure 4. Blank-corrected UV-vis spectra recorded during one individual batch process run for wavelength range
300–500 nm
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Effect of the time shift on the reaction rate constant estimates

In order to investigate the effect of different time shifts, the kinetic parameters were estimated for ten
repeated individual batch processes with GRAM for different time shifts. A time shift ofS= 1 or one
datapoint means a time shift of one spectrum. The results are listed in Table 2. From this table the
following aspects can be observed.

1. A small time shift results in large individual standard deviations for bothk1 andk2. A large time

Figure 5. Reproducibility versus spectrum number

Table 2. Mean estimated reaction rate constants and individual standard deviations (STDs) obtained with
GRAM and different time shifts for ten repeated individual batch process runs

Time Meank1 STD k1 Meank2 STD k2

Shift (min71) (min71) (min71) (min71)

1 0⋅3129 0⋅0239 0⋅0267 0⋅0075
2 0⋅3083 0⋅0159 0⋅0280 0⋅0048
3 0⋅3062 0⋅0129 0⋅0287 0⋅0036
4 0⋅3052 0⋅0112 0⋅0290 0⋅0028
5 0⋅3050 0⋅0104 0⋅0291 0⋅0023
6 0⋅3048 0⋅0098 0⋅0291 0⋅0020
7 0⋅3047 0⋅0094 0⋅0291 0⋅0018
8 0⋅3046 0⋅0091 0⋅0291 0⋅0017
9 0⋅3047 0⋅0089 0⋅0291 0⋅0015

10 0⋅3047 0⋅0087 0⋅0291 0⋅0015
20 0⋅3052 0⋅0083 0⋅0286 0⋅0011
30 0⋅3040 0⋅0083 0⋅0284 0⋅0010
40 0⋅3019 0⋅0091 0⋅0282 0⋅0010
50 0⋅3006 0⋅0093 0⋅0280 0⋅0009
60 0⋅2995 0⋅0099 0⋅0280 0⋅0008
70 0⋅2971 0⋅0096 0⋅0279 0⋅0008
80 0⋅2945 0⋅0096 0⋅0279 0⋅0008
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shift results in a large individual standard deviation fork1 and a small individual standard
deviation fork2.

2. A moderate time shift of 30 datapoints is a compromise, because this gives the lowest standard
deviation fork1 and a compromise in standard deviation fork2.

An important feature is the computation time of reaction rate constants using GRAM or LM-PAR.
In this case, GRAM takes only a few seconds but LM-PAR takes a few hours to perform the necessary
iterations, approximately 4000–5000. Hence GRAM is very fast.

Estimation of the upper error limit

The individual estimates of the kinetic parameters for each repeated individual batch process and the
mean batch process are listed in Table 3 for a time shift of 30 datapoints. The mean batch process was
obtained by averaging ten repeated individual batch process runs. GRAM and LM-PAR were both
used. The individual standard deviations represent the upper error limit. From Table 3 the following
aspects can be observed.

1. If the individual standard deviations are considered, there is no gain in standard deviation when
LM-PAR is used instead of GRAM. Both methods perform approximately the same. The mean
value fork1 is higher for LM-PAR than for GRAM. For thek2 estimates the opposite is valid.
Because there is a correlation between the two reaction rate constants, higherk1 values tend to
occur with lowerk2 values.

2. The spread of thek1 estimates is larger than the spread of thek2 estimates. Figure 6 shows the
reconstructed concentration profiles for species. A, C and D whenk1 andk2 obtained with LM-
PAR for the mean batch process run were used.

For the reaction rate constant estimates of the mean batch process run obtained with both GRAM
and LM-PAR, the relative fit error was estimated as described in the Theory section. The relative fit
error was 1⋅9� 1073 for GRAM and 2⋅8� 1074 for LM-PAR, indicating that the reaction model
proposed fits very well. The relative fit error is reduced when LM-PAR is used instead of GRAM.

Table 3. Individual estimated reaction rate constants for ten repeated individual batch process runs and mean
batch process run. The values were obtained with GRAM. The values in parentheses were obtained with LM-
PAR. The mean values (k1 and k2) and individual standard deviations (STDs) based on the ten individual

estimated kinetic parameters from batch numbers 1–10 are also given

Number of batch run Estimatedk1 (min71) Estimatedk2 (min71)

1 0⋅3006 (0⋅3106) 0⋅0287 (0⋅0263)
2 0⋅3009 (0⋅3117) 0⋅0288 (0⋅0261)
3 0⋅3040 (0⋅3117) 0⋅0285 (0⋅0264)
4 0⋅3137 (0⋅3192) 0⋅0280 (0⋅0262)
5 0⋅3069 (0⋅3093) 0⋅0265 (0⋅0263)
6 0⋅2932 (0⋅3070) 0⋅0298 (0⋅0262)
7 0⋅2985 (0⋅3230) 0⋅0297 (0⋅0246)
8 0⋅3180 (0⋅3244) 0⋅0275 (0⋅0260)
9 0⋅3109 (0⋅3304) 0⋅0277 (0⋅0232)

10 0⋅2936 (0⋅3002) 0⋅0285 (0⋅0265)
GRAM k1 = 0⋅3040, STD = 0⋅0083 k2 = 0⋅0284, STD = 0⋅0010
LM-PAR k1 = 0⋅3147, STD = 0⋅0092 k2 = 0⋅0258, STD = 0⋅0011
Mean batch run 0⋅3038 (0⋅3146) 0⋅0284 (0⋅0258)
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Despite the larger relative fit error for GRAM compared with LM-PAR, GRAM can be used to
estimate reaction rate constants very fast.

Estimation of the lower error limit

The jackknife procedure described briefly in the Theory section was used to estimate the lower error
limit. The jackknife interval was chosen equal to 25. Finally this resulted in ten jackknife estimations
for k1 andk2 for the mean batch process run. The jackknife procedure was applied for both algorithms.
The time shift was again equal to 30 datapoints. The mean estimated kinetic parameters based on ten
jackknife estimations and the corresponding standard deviations (lower error limits) obtained with
both algorithms are listed in Table 4. From Table 4 it is clear that the use of LM-PAR leads to a
decrease in the influence of instrumental error for bothk1 andk2 estimates.

Estimation of the pure spectra

For thek1 andk2 estimation by both algorithms for the mean batch process run, the pure spectra of the
species were estimated. Figure 7 shows the estimated pure spectrum for the reactant, using GRAM
and LM-PAR results for the reaction rate constants to construct the concentration profiles, and the
measured pure spectrum. Figures 8 and 9 show the same situation as in Figure 7 for the intermediate
and product respectively. In Figure 8 the measured pure spectrum for the intermediate is not shown,

Figure 6. Concentration profiles of reactant (&), intermediate (.) and product (~) for k1 = 0⋅3146 min71 and
k2 = 0⋅0258 min71 obtained with LM-PAR for mean batch process run

Table 4. Results from jackknife procedure of mean batch process run. The mean kinetic parameters are the mean
values over ten jackknife estimations. The individual standard deviations (STDs) represent the lower error limit.
A time shift of 30 datapoints was used. The values were obtained with GRAM. The values in parentheses were

obtained with LM-PAR

Meank1 (min71) STD k1 (min71) Meank2 (min71) STD k2 (min71)

0⋅3037 1⋅5425� 1074 0⋅0284 4⋅1912� 1075

(0⋅3146) (9⋅8398� 1075) (0⋅0258) (1⋅0852� 1075)
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because this spectrum was not available. From Figures 7 and 9 it is clear that the estimated pure
spectra, using LM-PAR results for the reaction rate constants, show very small differences from the
measured pure spectra. Because the estimated pure spectra of the reactant and product show very
small differences from the measured pure spectra and the fits of the models are very good, it can be
assumed that the estimated pure spectrum of the intermediate will be very close to the real pure
spectrum of the intermediate.

Figure 10 shows differences between estimated pure spectra and measured pure spectra. Figure 10a
shows the difference between the estimated pure spectrum and the measured pure spectrum for the
reactant, where the estimated pure spectrum was obtained using the results from GRAM to

Figure 7. Estimated pure spectra of reactant using GRAM (—) and LM-PAR (*** ) and measured pure spectrum
(sss)

Figure 8. Estimated pure spectra of intermediate using GRAM (—) and LM-PAR (*** )
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reconstruct the concentration profiles. Figure 10b shows the same situation as in Figure 10a for LM-
PAR. Figures 10c and 10d show the same situation as in Figures 10a and 10b respectively for the
product. From Figure 10 it is clear that LM-PAR estimation of the reaction rate constants leads to
estimates of pure spectra which are closer to the measured pure spectra compared with the GRAM
results.

Figure 9. Estimated pure spectra of product using GRAM (—) and LM-PAR (*** ) and measured pure spectrum
(sss)

Figure 10. Differences between estimated and measured pure spectra of reactant using GRAM (a), reactant using
LM-PAR (b), product using GRAM (c) and product using LM-PAR (d)
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Summary of results

A time shift of 30 datapoints appeared to give the lowest individual standard deviation fork1 and a
compromise in individual standard deviation fork2 when GRAM was used. For all the different batch
process runs the reaction rate constants were obtained with both GRAM and LM-PAR for this time
shift of 30 datapoints. The individual standard deviations showed that there is hardly any difference in
performance between GRAM and LM-PAR. For the mean batch process run the reaction rate
constants were estimated with both algorithms. The relative fit errors were 1⋅9� 1073 and
2⋅8� 1074 for GRAM and LM-PAR respectively. These values indicate that the kinetic model
proposed fitted the best using LM-PAR. However, the fit error value for GRAM is still acceptable.
The jackknife procedure showed that the influence of the instrumental error for both reaction rate
constants with LM-PAR is lower compared with GRAM and the estimates are reliable.

Finally the pure spectra were estimated for LM-PAR and GRAM results of the reaction rate
constants obtained from the mean batch process run. The pure spectra of the reactant and product
showed very good agreement with the measured pure spectra. The estimated pure spectrum of the
intermediate could not be compared with the measured pure spectrum, because a measured pure
spectrum of the intermediate was not available. The difference between estimated pure spectra and
measured pure spectra is smaller for reaction rate constants obtained by LM-PAR compared with
those obtained by GRAM.

CONCLUSION

In this paper it is shown that GRAM can be used as a very fast non-iterative algorithm in order to
estimate reaction rate constants from the UV-vis spectra of the two-step consecutive reaction of 3-
chlorophenylhydrazonopropane dinitrile with 2-mercaptoethanol. GRAM takes only a few seconds.
The individual standard deviations for the reaction rate constants are comparable with those obtained
by LM-PAR, but GRAM gives a larger fit error. LM-PAR can be used in situations where an accurate
estimation of reaction rate constants is desirable and there is enough time available to perform the
tedious iterations (approximately 4000–5000) which characterize the LM-PAR algorithm. A time
shift of 30 datapoints appeared to be optimal for this application. This has to be established in practice
again for other kinetic model systems.

When the estimated pure spectra of the absorbing species involved in the reaction model are
compared with the measured pure spectra, the difference is very small. LM-PAR gives better
estimates for the pure spectra than GRAM. However, GRAM can be used in practice to obtain
estimates of reaction rate constants very fast. Using these estimates, the pure spectra can be estimated
very easily, without complex procedures.
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APPENDIX: NOMENCLATURE

In general, boldface capital characters denote matrices and boldface lower-case characters denote
vectors. Table 5 summarizes the nomenclature of some important scalars, vectors and matrices used
in this paper.
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