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S

The common principal components model for several groups of multivariate obser-
vations assumes equal principal axes but different variances along these axes among the
groups. Influence functions for plug-in and projection-pursuit estimates under a common
principal component model are obtained. Asymptotic variances are derived from them.
Outlier detection is possible using partial influence functions.
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1. I

If in multivariate analysis involving several populations the assumption of equality of
covariance matrices is not adequate, problems may arise because of an excessive number
of parameters if we estimate the covariance matrices separately for each population.
Such problems can often be avoided if the different covariance matrices exhibit some
common structure. The common principal components model, introduced by Flury (1984),
generalises equality by allowing the matrices to have different eigenvalues but identical
eigenvectors; that is

S
i
=bL

i
b∞ (1∏ i∏k), (1)

where the L
i
are diagonal matrices and b is the orthogonal matrix of the common eigen-

vectors. Flury (1984) described how to obtain the maximum likelihood estimators of b
and the L

i
under normality. Their asymptotic distribution was studied by Flury (1986).

As in the one-population setting, one of the aims when performing a common principal
components analysis is to reduce the dimensionality of the data by imposing a common
structure on the k populations and by retaining as much as possible of the variability
present in each set. Even if the principal axes are the same for all populations, the amount
of variability explained by each of them may vary among populations.
In biometric applications, principal components are frequently interpreted as indepen-
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dent factors determining the growth, size or shape of an organism. It seems therefore
reasonable to consider a model in which the same factors arise in different, but related,
species. The common principal components model clearly serves this purpose. Applica-
tions of this and some other hierarchical models are discussed, for instance, in Flury
(1988), Klingerberg & Neuenschwander (1996), Arnold & Phillips (1999) and Phillips &
Arnold (1999).
Let x

i1
, . . . , x

in
i

(1∏ i∏k) be independent observations from k independent samples in
Rp with location parameter m

i
and scatter matrix S

i
. For the sake of technical simplicity

and without changing the final results, when computing the partial influence functions it
will be assumed that m

i
=0
p
, where 0

p
denotes a p-dimensional vector of zeros. Let

N=Wk
i=1

n
i
and t

i
=n
i
/N. As in principal component analysis, classical common principal

components analysis can be affected by outliers in the sample, so it is of interest to study
robust estimators of the common eigenvectors and the related eigenvalues for each sample,
under the common principal components model (1). As in the one-population setting,
robust affine-equivariant estimators of the covariance matrices S

i
, can be considered; see

Novi Inverardi & Flury (1992) and Boente & Orellana (2001). Projection-pursuit esti-
mators, introduced by these last authors, are an alternative whose main advantage is that
they can be computed for datasets with more variables than observations.
Influence functions are measures of robustness with respect to single outliers. When we

deal with several populations, partial influence functions measure resistance towards
pointwise contaminations of each population.
Several authors, such as Critchley (1985), Jaupi & Saporta (1993), Shi (1997), Croux

& Haesbroeck (1999) and C. Croux and A. Ruiz-Gazen, in a Université Libre de Bruxelles
technical report, have suggested statistical diagnostics and graphical displays for detecting
outliers in prinicpal component analysis for one population, such as side-by-side boxplots
of the scores obtained from a robust principal component analysis and index plots based
on empirical influence functions. Under a common principal components model, partial
influence functions can also be used to detect influential observations in a sample.
In § 2, partial influence functions are derived for the estimates obtained by plugging

equivariant scatter matrix estimators, possessing an influence function, into the equations
defining the maximum likelihood estimators, and for those defined through a projection-
pursuit approach by using a scale estimator with differentiable influence function.
Asymptotic variances are then computed for the projection-pursuit approach. In § 3,
outlier detection is discussed, while in § 4 a biological example is analysed. All proofs are
given in the Appendix.

2. I 

2·1. Preamble

Partial influence functions were introduced by Pires & Branco (2002) in order to ensure
that the usual properties of the influence function for the one-population case are satisfied
when dealing with several populations. Denote by F the product measure, F=
F1× . . .×F

k
. Partial influence functions of a functional T (F) are then defined as


i
0

(x, T , F )= lim
e�0

T (F
e,x,i
0

)−T (F)

e
,

where F
e,x,i
0

=F
1
× . . .×F

i
0
−1
×F
i
0
,e,x
×F
i
0
+1
× . . .×F

k
and F

i,e,x
= (1−e)F

i
+ed
x
.
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In Pires & Branco (2002), it is shown that the following expansion holds:

ND{T (F
N
)−T (F)}= ∑

k

i=1

1

(t
i
n
i
)D
∑
n
i

j=1

i
(x
ij
, T , F )+o

p
(1),

where F
N
denotes the empirical distribution of the k independent samples x

ij
(1∏ j∏n

i
, 1∏ i∏k). Therefore, the asymptotic variance of the estimators can be evaluated

as

avar (T , F )= ∑
k

i=1
t−1
i

E
F
i

{
i
(x
i1

, T , F ) 
i
(x
i1

, T , F )∞}. (2)

2·2. Influence functions for plug-in estimators

These estimators are obtained by plugging robust scatter matrices into the equations
defining the maximum likelihood estimators for normal data. They are defined as the
solution of

diag (b@ ∞V
i
b@ )=LC

i
,

b@ ∞
m A ∑k
i=1

n
i
l@
im
−l@
ij

l@
im
l@
ij

V
iB b@j=0 (mN j ),

b@ ∞
m
b@
j
=d
mj

,

(3)

where the V
i
are robust consistent scatter matrices and d

mj
=1 is the Kronecker delta. As

with maximum likelihood estimation, a solution for (3) always exists, since the group of
orthogonal matrices is compact. Uniqueness conditions are similar to those given in Flury
(1988, pp. 194–200) for the maximum likelihood estimators.
For a given distribution F=F1× . . .×F

k
, let V

i
=V
i
(F
i
) be a robust scatter functional

evaluated at the distribution of the ith sample. We will thus define the functionals b
V
(F ),

L
V,i

(F ) (1∏ i∏k), related to V= (V1 , . . . , Vk ), as the solution of

diag{b
V
(F )∞V

i
(F
i
)b
V
(F )}=L

V,i
(F ), (4)

b
V,m

(F )∞ q ∑k
i=1
t
i
l
V,im

(F )−l
V,ij

(F )

l
V,im

(F )l
V,ij

(F )
V
i
(F
i
)r bV,j (F )=0 (mN j ), (5)

b
V,m

(F )∞b
V,j

(F )=d
mj

. (6)

When V
i
provides Fisher-consistent estimators, that is V

i
(F
i
)=S

i
, the solutions

(L
V,i

(F ), b
V
(F )) are Fisher-consistent for (L

i
,b).

The following theorem gives the values of the partial influence functions for the plug-in
estimators.

T 1. L et V
i
(F ) be a scatter functional such that V

i
(F
i
)=S

i
. Denote by b1 , . . . , bp ,

l
i1

, . . . , l
ip

the common eigenvectors and the eigenvalues of S
i
. Assume that the influence

function  (x, V
i
, F
i
) exists and that l11> . . .>l

1p
. T hen the partial influence functions of

the solution b
V
(F ), L

V,i
(F ) (1∏ i∏k) of (4) to (6) are given by


i
(x, l
V,lj

, F )=d
li
b∞
j

 (x, V
i
, F
i
)b
j
, (7)


i
(x, b
V,j

, F )=t
i
∑
mNj

l
ij
−l
im

l
im
l
ij
q ∑k
l=1
t
l
(l
lm
−l
lj
)2

l
lm
l
lj
r−1 {b∞j  (x, V

i
, F
i
)b
m
}b
m
. (8)
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Remark 1. Theorem 1 entails that, for the sample covariance matrix, the partial
influence functions are given by


i
(x, l
S,lj

, F )=d
li
b∞
j
(xx∞−S

i
)b
j
=d
li
{(b∞
j
x)2−l

ij
}, (9)


i
(x, b
S,j

, F )=t
i
∑
mNj

l
ij
−l
im

l
im
l
ij
q ∑k
l=1
t
l
(l
lm
−l
lj
)2

l
lm
l
lj
r−1 {b∞j (xx∞−S

i
)b
m
}b
m

=t
i
∑
mNj

l
ij
−l
im

l
im
l
ij
q ∑k
l=1
t
l
(l
lm
−l
lj
)2

l
lm
l
lj
r−1 b∞jxb∞mxbm , (10)

and are therefore unbounded.
On the other hand, the partial influence functions for the eigenvalues given by (7) are

analogous to the influence function obtained by Croux & Haesbroeck (2000) in the one-
population setting. Plots for the classical and the S-estimates are given therein. The partial
influence functions for the eigenvectors include weights depending on the eigenvalues of
the k populations. The behaviour of the partial influence function will be analogous to
that described by Croux & Haesbroeck (2000).
From the expressions given for the partial influence functions and using (2), one obtains

the expressions for the asymptotic variance of the plug-in estimators solution of (3), which
were derived in Theorems 2 and 3 of Boente & Orellana (2001), when the estimators of
the scatter matrix S

i
are asymptotically normally distributed and spherically invariant.

2·3. Influence functions for projection-pursuit estimators

Let x
i
be independent vectors such that x

i
~F
i
, where F

i
has location parameter m

i
and

scatter matrix S
i
=C
i
C∞
i
satisfying (1). Denote by F

i
[b] the distribution of b∞x

i
and write

F[b]=F1[b]× . . .×F
k
[b].

Let z(b)=z(F[b])=Wk
i=1
t
i
s2(F
i
[b]), where s( . ) is a univariate scale estimator which is

equivariant under scale transformations.
The projection-pursuit functional for the common directions, b

s
(F ), with columns

b
s,1

(F ), . . . , b
s,p

(F ), is the solution of

z{b
s,1

(F )}= sup
dbd=1

z(b), z{b
s,j

(F )}= sup
bµB
j

z(b) (2∏ j∏p),

where B
j
={b : dbd=1, b∞b

s,m
(F )=0 for 1∏m∏ j−1}, while the functionals related to

the estimators of the eigenvalues and of the covariance matrix are defined as

l
s,ij

(F )=s2{F
i
[b
s,j

(F )]}, V
s,i

(F )= ∑
p

j=1
l
s,ij

(F )b
s,j

(F )b
s,j

(F )∞.

A different definition arises if we take infimum instead of supremum, but both will have
the same partial influence functions. When S=Wk

i=1
t
i
S
i
has no multiple root, Boente &

Orellana (2001) have shown that the functionals b
s
(F ) and l

s,ij
(F )will be Fisher-consistent

at any distribution F such that z
i
=C−1
i

x
i
has the same spherical distribution G for all

1∏ i∏k, if s(G
0
)=1, where G0 is the distribution of z11 ; that is, bs (F )=b and

l
s,ij

(F )=l
ij
.

The following theorem gives the values of the partial influence functions for the
projection estimators.

T 2. L et x
i
be independent random vectors with ellipsoidal distribution F

i
, with

location parameters m
i
=0
p

and scatter matrices S
i
=C
i
C∞
i

satisfying (1) and such
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that C−1
i

x
i
=z
i

has the same spherical distribution G for all 1∏ i∏k. Assume that
s(G
0
)=1, where G0 is the distribution of z11 , and that S=b diag (n

1
, . . . , n

p
)b∞, where

n1>n2> . . .>n
p
.

T hen, if the function (e, y)�s{(1−e)G0+edy} is twice continuously diVerentiable at (0, y),
we have that for any x


i
(x, l
s,lj

, F )=2d
li
l
ij

 Ax∞bjl1/2
ij

, s, G
0B , (11)


i
(x, b
s,j

, F )=t
i
l1/2
ij

 Ax∞bjl1/2
ij

, s, G
0B ∑p
s=j+1

1

n
j
−n
s
b
s
(x∞b
s
)

+t
i
∑
j−1

s=1

1

n
j
−n
s
b
s
l1/2
is

 Ax∞bsl1/2
is

, s, G
0B (x∞bj ), (12)


i
(x, V
s,l

, F )=2d
li
∑
p

j=1
l
ij

 Ax∞bjl1/2
ij

, s, G
0B bjb∞j

+ ∑
p

j=2
∑
j−1

s=1

l
lj
−l
ls

n
j
−n
s
t
i
l1/2
is

 Ax∞bsl1/2
is

, s, G
0B (x∞bj ) (bsb∞j+bjb∞s ), (13)

where  (y, s, G) denotes the derivative of  (y, s, G) with respect to y.

Remark 2. As in the one-population setting note that, if we use a scale estimator with
bounded influence, the eigenvalues will have bounded influence. However, the influence
function for the eigenvectors may be unbounded, since the term x∞b

j
will remain

unbounded.

Remark 3. As in Croux and Ruiz-Gazen’s technical report, one can consider the case
when s2 (F )=var (F ). In our situation, this choice will not lead to the maximum likelihood
estimators but to the eigenvalues and eigenvectors of the pooled matrix.

Since  (y, s, G)=D{y2−var (G)}, and if we assume that var (G0 )=1, Theorem 2 yields


i
(x, lvar,lj , F )=d

li
{(x∞b

j
)2−l

ij
}, (14)


i
(x, bvar,j , F )=t

i
∑
sNj

1

n
j
−n
s
x∞b
s
x∞b
j
b
s
. (15)

Plots for the influence functions of the eigenvalues and eigenvectors based on this scale
estimator can be seen in Croux and Ruiz-Gazen’s technical report. Moreover, the plots
corresponding to the Q-dispersion measure are analogous to those shown therein.
The asymptotic variance of the projection-pursuit estimators of the common eigen-

vectors and of the eigenvalues can be obtained heuristically using (2).

C 1. L et x
i1

, . . . , x
in
i

(1∏ i∏k) be independent observations from k indepen-
dent samples with distributions F

i
, location parameters m

i
=0
p

and scatter matrices
S
i
=L
i
; that is S

i
satisfies (1) with b=I

p
. Assume that n

i
=t
i
N, with 0<t

i
<1 and

Wk
i=1
t
i
=1. Moreover, assume that L−1/2

i
x
i1
=z
i
has the same spherical distribution G for

all 1∏ i∏k. Assume that s(G0 )=1, where G0 is the distribution of z11 , and that S=
diag (n1 , . . . , np ), where n1>n2> . . .>n

p
. L et s( . ) be the univariate robust scale statistic

related to the scale functional s( . ) and let X
i
= (x
i1

, . . . , x
in
i

) and t
i
=n
i
/N for 1∏ i∏k.
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Define the common principal axes by solving iteratively

r(b@
1
)= sup
dbd=1

∑
k

i=1
t
i
s2(X∞
i
b), r(b@

j
)= sup
bµB
j

∑
k

i=1
t
i
s2(X∞
i
b) (2∏ j∏p), (16)

where B
j
={b : dbd=1, b∞b@

m
=0 for 1∏m∏ j−1}.

T he estimators of the eigenvalues and the covariance matrix of the ith population are
computed as

l@
ij
=s2(X∞

i
b@
j
) (1∏ j∏p), V

i
= ∑
p

j=1
l@
ij
b@
j
b@ ∞
j
. (17)

T hen, if the function (e, y)�s{(1−e)G0+edy} is twice continuously diVerentiable at (0, y),
the asymptotic variances of the projection-pursuit estimators solution of (16) are given by

avar (l@
lj
)=4l2

lj
1

t
l
avar (s, G

0
),

avar (b@
jm

)= ∑
k

i=1
t
i
l
ij
l
im

(n
j
−n
m
)2

E
G
{ (z

1j
, s, G

0
)z
1m

}2 (mN j ).

In particular, when G=N(0
p
, I
p
), we have that

avar (l@
lj
)=4l2

lj
1

t
l
avar (s, W),

avar (b@
jm

)= ∑
k

i=1

l
ij
l
im

(n
j
−n
m
)2

E
W
{ (Y , s, W)}2 (mN j ),

acov (b@
jm

, b@
jr
)=0 (mN j, mNr, rN j ).

Remark 4. Note that the asymptotic variances of the projection-pursuit estimators of
the eigenvalues obtained using s2 (F )=var (F ) equal those of the maximum likelihood
estimators. On the other hand, the asymptotic variances of the projection-pursuit esti-
mators of the eigenvectors will not be those of the maximum likelihood estimators, but
as expected they are those of the eigenvectors of the pooled matrix obtained in Boente &
Orellana (2001).

3. O 

An immediate application of the influence functions is in the detection of influential/
outlying observations. For the one-population case, Croux & Haesbroeck (1999) discussed
the use of the empirical influence functions based on the sample covariance matrix con-
sidered by Critchley (1985) and Shi (1997) and that based on the one-step reweighted
minimum covariance determinant estimator (Rousseeuw, 1985). As expected, the empirical
influence function of the robust estimator hardly changes when contaminated data points
are included in the sample, because outliers usually have small influence on robust esti-
mators, while, if we consider the empirical influence of the classical estimators, a masking
effect may appear and so outlying observations are not detected. An alternative approach
is to consider a robust empirical influence function for the classical estimators, where the
parameters are estimated through a robust procedure in order to avoid masking; see also
Pison et al. (2000). This procedure is analogous to the use of the robustified version of
Mahalanobis distance introduced by Rousseeuw & van Zomeren (1990).
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Since there are a large number of influence functions, one for each parameter, a smaller
number of aggregate measures is more suitable for analysis. We consider just two measures,
one for the eigenvalues and one for the eigenvectors. We consider standardised robust
empirical functions to avoid the problem of the different sizes of the eigenvalues and to
be able to measure the absolute influence of each observation. For the case of the eigen-
vectors, the diagnostics must be invariant through orthogonal transformations. This can
be achieved by transforming the problem to the diagonal case and by noting that, from
equivariance, 

i
{x, b(F ), F}=b 

i
{b∞x, b(F ), F0}, where F0=F1,0× . . .×F

k,0
, F
i,0
is

the distribution of b∞y when y~F
i
and b(F ) is an equivariant eigenvector functional, such

as b
V
(F ) or b

s
(F ). These considerations lead to the following definition.

Given an observation x from the ith population, define


i
(x, b, l)=q ∑p

r=1


i
(x, l
S,ir

, F )2

v
ir
(b, l) rD,


i
(x, b, l)=C ∑p

r=1
{
i
(b∞x, b(r)

S,r
, F
0
)}∞A−1
ir

(b, l){
i
(b∞x, b(r)

S,r
, F
0
)}DD,

where l
s,il
and b

S,r
denote the classical functional estimators, z(r) the vector z without the

rth component, b and l= (l
11

, . . . , l
1p

, . . . , l
k1

, . . . , l
kp
)∞ are the unknown parameters

and

A
ir
(b, l)=E

F
i

{
i
(u, b(r)
S,r

, F
0
) 
i
(u, b(r)
S,r

, F
0
)∞},

v
ir
(b, l)=E

F
i

{
i
(u, l
S,ir

, F )}2.

The rth coordinate is not included in the expressions for 
i
(x, b, l), since both its partial

influence function and its asymptotic variance are equal to zero when transforming the
data to the diagonal case.
The outlier detection measures are now defined as 

i
(x, b@ , l@ ) and 

i
(x, b@ , l@ ), where

the ‘hat’ denotes replacement of the unknown parameters by their robust estimators. Our
proposal is analogous to the one considered by Pison et al. (2000) for principal factor
analysis in order to avoid the masking effect. As those authors mentioned, if one computes

i
(x, b, l) and 

i
(x, b, l) using the partial influence function of a robust functional

and then the diagnostic measures 
i
(x, b@ , l@ ) and 

i
(x, b@ , l@ ) at robust estimators, one

will not achieve the desired property of detecting influential points.
Another approach could be to consider the partial influence functions of the projection-

pursuit estimators obtained by using the sample variance. However, from (9) and (10),
and (14) and (15), we see that both expressions are equivalent.
When F

i,0
=N(0

p
, L
i
) from (9) and (10) the expressions for the diagnostics simplify to


i
(x, b@ , l@ )=C ∑p

r=1

{(b@ ∞
r
x)2−l@

ir
}2

2l@2
ir
DD,


i
(x, b@ , l@ )=C ∑p

r=1
∑
sNr

{(b@ ∞
r
x)(b@ ∞
s
x)}2

l@
ir
l@
is
DD,

where b@ and l@
ij
are the estimators derived from (3) for the plug-in proposal or through

(16) and (17) for the projection-pursuit approach. Note that both  and  are simple
functions of the standardised robust scores. The advantage of  and  with respect
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to the separate influence plots for each parameter is that the number of plots is reduced
from {p+Dp( p−1)}k to 2k.
In order to detect influential observations, we must compare the observed values of 
and  with the high percentiles of

G
l
=q ∑p
r=1

(z2
r
−1)2

2 rD, G
b
=A ∑p
r=1
∑
sNr

z2
r
z2
sBD=qA ∑p

r=1
z2
rB2− ∑p

r=1
z4
rrD,

respectively, where z1 , . . . , zp are independent and identically distributed N(0, 1) random
variables.
Table 1 gives estimates for the 95%, 97·5% and 99% points of G

l
and G

b
, denoted by

0·95 , 0·975 , 0·99 , 0·95 , 0·975 and 0·99 , respectively, and obtained through
a simulation study. For each dimension p, we have performed 100 replications generating
samples of size m=10 000. The values tabulated are the medians over the 100 replications
of the corresponding empirical percentiles for G

l,1
, . . . , G

l,m
and G

b,1
, . . . , G

b,m
with

m=10 000.

Table 1. Estimates for the 95%, 97·5% and 99% points of G
l

and G
b

p=2 p=3 p=5 p=10 p=2 p=3 p=5 p=10

0·95 2·927 3·514 4·316 5·604 0·95 3·088 5·058 8·463 15·910
0·975 3·788 4·381 5·215 6·494 0·975 3·933 6·131 9·846 17·190
0·99 4·974 5·558 6·375 7·637 0·99 5·088 7·535 11·630 20·190

Note that, since the principal components model is a special case of the common
principal components model with k=1, the diagnostic measures proposed here can be
used in the usual one-population setting and deserve to be compared with other measures
appearing in the literature, but this is beyond the scope of the paper. To illustrate the
different influential observations that are detected by the three measures, Fig. 1 shows for
p=2 the outlier detection regions defined using the Mahalanobis distance with S=
diag(4, 1), 1 (x, b, l) and 1 (x, b, l) with b=I

2
and l= (4, 1), together with 500

normally distributed observations with mean (0, 0)∞ and S=diag(4, 1). Ninety-five percent
detection limits are plotted as solid curves while, for 1 and 1 , 97·5% detection limits
are shown dashed. Note that a fairer comparison, using Bonferroni, should use the 97·5%
quantile for 1 and 1 and the 95% quantile for the Mahalanobis distance.

4. A 

We consider a dataset, with k=2 and five variables, which is part of a larger dataset
described in a 1995 Master’s thesis from the University of Lisbon by I. Oliveira, who
performed a principal component analysis. The data correspond to two varieties, lada and
longal, of chestnut tree leaves of the genus Castanea. The sample sizes were n1=100 and
n2=47 and the variables were x1 , the petiole length in mm, x2 , the number of nervures
from the right-hand side of the leaf, x3 , the number of nervures from the left-hand side of
the leaf, x4 , the number of teeth from the right-hand side of the leaf and x5 , the number
of teeth from the left-hand side of the leaf.
The robust principal component analysis of each variety showed similar principal axes

with different amounts of variability. Therefore, a common principal components model
was judged adequate. This conclusion does not hold with the classical principal component
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Fig. 1. Detection regions obtained with Mahalanobis distance
(ellipse), 1 (closed curves) and 1 (open curves). The 95%
detection limits are the solid curves and the 97·5% detection limits

are the dashed curves.

analysis, which is not surprising, since several outliers were detected in the boxplots for
each variable.
The robust common principal components obtained using plug-in estimates with the

reweighted minimum covariance determinant scatter matrices, with h=[0·75n], are given
in Table 2 together with the classical ones and the projection-pursuit estimates, based on
two different scale estimates, the median of the absolute deviations and an M-estimate,
and calculated using an algorithm similar to that considered by Croux & Ruiz-Gazen
(1996).
As expected there are differences between the classical and the robust estimates, the

most noticeable being in the eigenvalues of the second group. Note that the projection-
pursuit estimates are quite different from the robust plug-in ones, because there are inliers
in the projected observations. On the other hand, the projection-pursuit estimates obtained
by minimising the scale measure give similar results to those of the robust plug-in, and
are therefore not reported here.
Influence plots with the two proposed measures show that there are several influential

observations in each group, but some differences appear among estimation procedures.
The labels of the observations detected as possible outliers by  and  for the plug-in
and the two projection-pursuit methods are given in Table 3, at the 95%, 97·5% and 99%
points. In Table 3 we also report the labels of the influential observations obtained by
three other methods, the robustified Mahalanobis distance (Rousseeuw & van Zomeren,
1990), classical versions of  and  and classical Mahalanobis distance. The labels
are ordered by increasing values of the corresponding measure and we separated by | |
those between the percentiles mentioned above.
The masking effect in the classical methods is confirmed by the above results; only six
observations are detected in the first group and one in the second, and this does not have
the highest robust Mahalanobis distance value. When comparing the proposed measures
 and  using a plug-in procedure with the robust Mahalanobis distance, we see that
the highest influential observations are detected by both methods. There are however
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Table 2. Plug-in, , and projection-pursuit, , eigenvalues and eigenvectors estimates for
the chestnut trees, Castanea lada and longal, leaves data

(a) Plug-in estimates

1 2 3 4 5 1 2 3 4 5
Eigenvalues by  ( matrices) Eigenvalues by  (Classical matrices)

lada 26·904 7·392 1·993 1·949 0·637 26·968 11·138 2·047 2·362 0·876
longal 65·318 20·391 2·734 0·588 0·496 54·673 47·508 3·665 1·548 0·552

Eigenvectors by  ( matrices) Eigenvectors by  (Classical matrices)
x1 0·661 0·750 0·022 0·012 −0·002 0·579 0·812 −0·039 −0·051 −0·032
x2 −0·463 0·429 −0·444 −0·409 0·488 −0·497 0·329 −0·492 −0·348 0·530
x3 −0·417 0·355 0·585 −0·359 −0·478 −0·454 0·293 0·442 −0·493 −0·520
x4 −0·325 0·290 −0·469 0·576 −0·508 −0·355 0·250 −0·441 0·607 −0·499
x5 −0·262 0·208 0·491 0·610 0·525 −0·295 0·288 0·606 0·515 0·445

(b) Projection-pursuit estimates

1 2 3 4 5 1 2 3 4 5
Eigenvalues by  () Eigenvalues by  (M-estimates)

lada 33·405 12·673 2·584 2·357 2·066 32·547 10·358 2·416 2·351 0·966
longal 102·388 29·096 7·969 3·844 1·145 88·693 21·916 3·307 1·832 1·019

Eigenvectors by  () Eigenvectors by  (M-estimates)
x1 0·903 0·269 0·332 0·033 −0·019 0·886 0·451 0·085 −0·061 −0·027
x2 −0·177 0·701 −0·012 −0·686 0·083 −0·299 0·612 0·344 0·457 0·458
x3 −0·189 0·453 0·064 0·418 −0·762 −0·289 0·381 0·385 −0·754 −0·235
x4 −0·341 0·114 0·833 0·233 0·351 −0·182 0·425 −0·366 0·328 −0·739
x5 0·013 0·468 −0·438 0·547 0·538 −0·095 0·311 −0·769 −0·335 0·435

, reweighted minimum covariance determinant; , median of the absolute deviations; 
j
, jth

common principal direction.

Table 3. L abels of the observations detected as possible outliers in the
chestnut trees, Castanea lada and longal, leaves data

Method lada longal

- 29 | 94 79 77 | 24 12 87 88 30 29 33 | 14 | 34 42 39 44 32 22 1 6 24
- 98 72 45 85 94 12 | 88 | 30 1 | 32 | 42 14 34 44 39 6 22 24 1
- () 45 | 30 87 | 88 6 | 1 | 44 22 1 24
- () 85 100 72 93 45 | 94 88 87 | 30 1 | 1 | 22 6 1 24
- (M-est) 18 79 77 45 12 | 1 | 87 88 30 10 21 | 7 | 24 14 22 1
- (M-est) 99 93 88 | 85 | 30 45 39 42 | 24 | 14 22 1
 79 45 98 | 94 | 12 87 88 30 1 | 1 | 42 14 34 32 44 39 6 22 24 1
Classical  24 79 | 12 | 87 88 30 32 | 1 | 1
Classical  1 | 1 | 30 24 | 1 | 1
 87 | 88 | 30 24 | 1 | 1

, plug-in estimates; , projection-pursuit estimates; , median of the absolute
deviations; , robust Mahalanobis distance; , Mahalanobis distance.
1 no observation in the relevant range.
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some discrepancies for the observations near the detection limit, which is to be expected
since (, ) and the robust Mahalanobis distance are measuring different effects. The
influence measures  and  using projection-pursuit estimates show some differences
in outlier detection because of the presence of inliers as mentioned above. However, most
of the observations with higher values of the robust Mahalanobis distance, and of the
influence measures  and  computed with the plug-in estimates, are also detected
with the projection-pursuit procedure.

5. D

Detecting outlying observations is an important step in any analysis, even when robust
estimates are used. The classical diagnostic measure based on the Mahalanobis distance
focuses on detecting outlying data with respect to the confidence ellipsoid, while our
proposal tends to discover anomalous data with respect to the estimation of the principal
axes and their sizes, that is, for the spectral decomposition of the scatter matrices, instead
of the matrices themselves. It is worth noticing that the proposed summary diagnostic
measures can also be applied when dealing with just one multivariate population which
will lead to a reduced number of comparisons.
For theoretical reasons and based on previous studies, we recommend the diagnostic

measures based on projection-pursuit estimators obtained through an M-estimator of
scale with a differentiable score function. This can be justified by the fact that estimates
based on the median of the absolute deviations would be expected to have a lower conver-
gence rate just as least median of squares does in regression. The use of an M-estimator
of scale such as the one considered combines reasonable efficiency with a good breakdown
point. As noted by Boente & Orellana (2001), plug-in estimators are quite sensitive to
contamination in the direction of the lower eigenvalues. For this reason, projection-pursuit
procedures should be preferred. Also, as is well known, projection-pursuit methods can
be applied even when dealing with more variables than observations. In this situation,
plug-in estimators cannot be applied. Another advantage of projection-pursuit is that the
common directions are obtained consecutively, and thus, if the goal is to obtain dimension-
reduction with just a few components, computation time can be saved.
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A

Proofs

Proof of T heorem 1. The proof follows the same steps as those given in the proof of Lemma 3
in Croux & Haesbroeck (2000), which can be found in a Université Libre de Bruxelles technical
report by those authors.
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Proof of T heorem 2. The proof follows the ideas given in C. Croux and A. Ruiz-Gazen’s technical
report. Let F
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Again from the equivariance of the scale estimator, we have that
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when x~F

i
, we obtain

avar (l@
lj
)= ∑
k

i=1

1

t
i
E
F
i Cqdli2lij  Ax∞bjl1/2ij , s, G

0Br2D=4l2
lj

1

t
l
avar (s, G

0
).
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From (12) and since b=I
p
, we obtain

avar (b@
jm

)=d
m>j
∑
k

i=1
t
i
l
ij
l
im

(n
j
−n
m
)2

E
G
{ (z

1j
, s, G

0
)z
1m

}2

+d
m<j
∑
k

i=1
t
i
l
ij
l
im

(n
j
−n
m
)2

E
G
{ (z

1m
, s, G

0
)z
1j

}2

= ∑
k

i=1
t
i
l
ij
l
im

(n
j
−n
m
)2

E
G
{ (z

1j
, s, G

0
)z
1m

}2,

where d
m>j
=0 if m∏ j, and d

m>j
=1 if m> j.

Moreover, when G=N(0
p
, I
p
), since z

1j
, z
1m
and z

1r
are independent for jNr, jNm and mNr

and E
W
{ (Y , s, W)}=0, after straightforward calculations, we have that

acov (b@
jm

, b@
jr
)=d
m>j
d
r>j
∑
k

i=1
t
i
l
ij
(l
im
l
ir
)D

(n
j
−n
m
) (n
j
−n
r
)
E
G
[{ (z

1j
, s, G

0
)}2z
1m

z
1r

]

+d
m<j
d
r<j
∑
k

i=1
t
i
l
ij
(l
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l
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)D

(n
j
−n
m
) (n
j
−n
r
)
E
G
{ (z

1m
, s, G

0
)  (z

1r
, s, G

0
) (z
1j

)2}

+d
m>j
d
r<j
∑
k

i=1
t
i
l
ij
(l
im
l
ir
)D

(n
j
−n
m
) (n
j
−n
r
)
E
G
{ (z

1j
, s, G

0
)  (z

1r
, s, G

0
)z
1m

z
1j

}

+d
m<j
d
r>j
∑
k

i=1
t
i
l
ij
(l
im
l
ir
)D

(n
j
−n
m
) (n
j
−n
r
)
E
G
{ (z

1j
, s, G

0
)  (z

1m
, s, G

0
)z
1r

z
1j

},

and thus acov (b@
jm

, b@
jr
)=0, which concludes the proof. %
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