Analysis of Nonadditive Multiway Classifications

Robert J. Bolk; Mervyn G. Marasinghe

Journal of the American Satistical Association, Vol. 84, No. 408. (Dec., 1989), pp. 1059-1064.

Stable URL:
http:/links.jstor.org/sici ?sici=0162-1459%28198912%2984%3A 408%3C1059%3AA ONM C%3E2.0.CO%3B2-R

Journal of the American Statistical Association is currently published by American Statistical Association.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal S/astata.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sat Jan 6 10:07:35 2007


http://links.jstor.org/sici?sici=0162-1459%28198912%2984%3A408%3C1059%3AAONMC%3E2.0.CO%3B2-R
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/astata.html

Analysis of Nonadditive Multiway Classifications
ROBERT J. BOIK and MERVYN G. MARASINGHE*

This article considers the problems of testing additivity and estimating ¢ in unreplicated multiway classifications. To model
nonadditivity and jointly estimate o2, the interaction parameter space must be restricted; otherwise the model is saturated.
The parameterization we use is a multiway extension of the two-way multiplicative interaction model of Mandel (1971) and
Johnson and Graybill (1972a). For example, in a three-way classification, we model interaction as ;3 = 16,,0,;0s«. This structure
is a special case of the k-mode principal components model, which has received considerable attention in the psychometric
literature (Kapteyn, Neudecker, and Wansbeek 1986). We construct an exact test of A = 0 and propose an estimator of o>
that can be used when interaction has been detected. Our test is an approximation to the likelihood ratio test (LRT) of H, :
A = 0. The proposed test has essentially the same power as the LRT but is easier to compute, and the exact null distribution
of the test statistic is known. Selected percentiles of the null distribution are given for three-way classifications. For large |4/
g/, a transformation of the test statistic is shown to be approximately distributed as a noncentral F and can be used to compute
the power of the test. The test and estimator are illustrated on a data set having three rows, three columns, and four layers.

KEY WORDS: ANOVA; Interaction; Likelihood ratio test; Multiplicative model; Principal components; Reduced-rank model.

1. INTRODUCTION

This article develops inference procedures for the high-
est-order interaction in unreplicated multiway classifica-
tions. The procedures require that exactly one observation
be made under each treatment combination. The proce-
dures could be extended to equally or proportionally rep-
licated models, but that is not the purpose of this article.
Unfortunately, the procedures do not readily generalize
to incomplete factorial arrangements, even when cells are
empty by design.

To achieve generality with respect to the number of
classifications, we depart, somewhat, from the usual no-
tation. The saturated fixed effects model for a k-way clas-
sification having one observation per treatment combina-
tion can be written as

y=XB+0+e (1.1)

where y is an n-vector of random variables, n = I, m;;
m; is the number of levels of the ith classification; X: n X
p is the usual design matrix coding for all main effects and
all interactions except for the k-way interaction, p =
L. ,(m; + 1) — n; B is the corresponding p-vector of main
effect and interaction parameters; 0 is an n-vector of k-
way interaction parameters; and € ~ N(O, ¢71,). Each
element in y is associated with a unique k-tuple of indices,
the ith index running from 1 to m;. The elements in y are
assumed to be ordered such that m; < --- < m,, the first
index changing slowest, the kth index changing fastest,
ctcetera.

Typically, o ? is estimated by dropping 0 and fitting the
reduced additive model. If k-way interaction exists, how-
ever, the resulting estimator is distributed as a multiple of
a noncentral chi squared and the usual tests of main effects
and lower-order interactions are conservative. To check
for nonadditivity, a test of H, : E(y) = X against H, :
E(y) = XB + 6 would be useful.
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Marasinghe is Associate Professor, Department of Statistics, Iowa State
University, Ames, IA 50011. A portion of the second author’s work was
supported by a grant from the Iowa State University Achievement Foun-
dation.

The main difficulty in testing additivity is that, without
restricting the interaction parameter space, the full model
is saturated. No degrees of freedom are available for es-
timating o2, so the usual F test cannot be done. We restrict
the parameter space by adopting a multiplicative model
for k-way interaction. The model is a generalization of the
two-way multiplicative model suggested by Mandel (1971)
and Johnson and Graybill (1972a). The Johnson—Graybill
test of additivity in nonreplicated two-way classifications
is briefly reviewed in Section 2.1. A thorough review was
given by Milliken and Johnson (1989). In Section 2.2, the
k-way generalization is described and the associated like-
lihood ratio test (LRT) is given. The null distribution of
the LRT statistic, however, is unknown.

The new results are presented in Section 3, where we
introduce a statistic that bounds the LRT statistic from
below. The exact null distribution of the bounding statistic
is found, and a table of upper percentiles when k = 3 is
given. Under H,, we show that the LRT and lower bound
statistics are each, approximately, distributed as the same
noncentral F with noncentrality parameter (|0/c|?. Thus
the lower bound statistic is a sensible criterion for testing
additivity. Section 3 also gives an estimator of experimen-
tal error that can be used when k-way interaction is de-
tected. The estimator is based on the distribution of the
residual sum of squares after fitting the multiplicative
model, assuming large (0/¢|. The new methods are illus-
trated in Section 4.

2. CURRENT TESTS FOR INTERACTION IN
MULTIWAY CLASSIFICATIONS

24 The Johnson—-Graybill Test for
Two-Way Interaction

The Johnson—Graybill-Mandel model for nonreplicated
two-way classifications is (1.1) where k = 2,

0 = (5, ® d,)4, 21

A is a scalar constant, and the vectors 8; : m; X 1 and
8, : m, X 1 are each constrained to have unit norm and
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to sum to 0. The elements of @ can also be written as §;
= 1010,;. Johnson and Graybill (1972a) showed that the
maximum likelihood estimator (MLE) of 0 is

é = (Sl ® sZ)j’,

where 8, = v;(E'E); 8, = v;(EE'); 1 = (8; ® 8,)'e; e is
the n-vector qf residuals from the fitted additive model, e
=y - XB, B = (X'’X) X'y, vec(E) = e where E is an
m, X m; matrix; and v;(A) is the unit norm characteristic
vector associated with the maximum characteristic root of
A. The LRT statistic for testing H, : 4 = 0in Model (1.1)
with (2.1) is

w, = 2/e'e, 2.2)

where the subscript on w signals that it is two-way inter-
action being tested. The null distribution of w, was given
by Johnson and Graybill as w, ~ r;(A)/tr(A), where r;(A)
is the maximum characteristic root of A, A ~ W,(q, I),
p = m; — 1,and g = m, — 1. Null percentiles of w, can
be found in Schuurmann, Krishnaiah, and Chattopadhyay
(1973), Krzanowski (1979), and Boik (1989a). Extensions
to more than one multiplicative component in two-way
classifications were described by Krishnaiah and Yoch-
mowitz (1980).

2.2 The Likelihood Ratio Test for
k-Way Interaction

The k-way generalization of the Mandel-Johnson-
Graybill multiplicative structure (2.1) is

0 = Al 2.3)

where A = 8, ® - ® &, each §, : m; X 1is constrained
to have unit norm and to sum to 0, and A is a scalar
constant. Multiplicative structures like (2.3) already have
a sizable literature. For k = 3, (2.3) is a special case of
Carroll and Chang’s (1970) three-way singular value de-
composition, which, in turn, is a special case of Tucker’s
(1966) three-mode principal component model. Tucker’s
model, -extended to k-modes, is (2.3), in which each §;
may have more than one column, each §; is semiorthog-
onal, and A is a vector (see Kapteyn, Neudecker, and
Wansbeek 1986; ten Berge, de Leeuw, and Kroonenberg
1987). Carvalho (1978) and Kettenring (1983) applied
(2.3) to interaction in unreplicated three-way classifica-
tions. Research on the k-mode model has focused on ob-
taining point estimates of the parameters. Construction of
tests and confidence intervals has received little attention.
The MLE’s of ¢? and 6 in Model (1.1) with (2.3) are

62 = [e'e — /n (2.4a)
and
0 = Al (2.4b)

where A = 8, ® - ® 8;; e = y — XB; B is the ordinary
least squares (OLS) estimator of @ in the additive model;

6, = Ale x (e'AAle)~17, i=1,...,k (2.4c)
Ai = 81 ® - ® Si—1 ® Im,~® Si+1 ® - ® 8/:?
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and
A= Ae. (2.4d)

Note that A, is not a partition of A : Aisn x 1and A, is
n X m;. Equation (2.4c) can be solved by following Kap-
teyn et al. (1986).

Under H, : 4 = 0, the MLE of ¢? is e¢’e/n. Thus the
LRT can be given as follows: Reject H, for large values
of

we = A2le'e. 2.5)

The numerator of (2.5) is the maximal sum of squares of
a residual contrast having a coefficient vector structured
as A in (2.3). Thus the LRT statistic is the proportion of
the residual sum of squares attributable to the maximal k-
way product contrast.

If n = 2% %m,_,my, then w;, ~ r;(A)/tr(A), where A ~
Wy(q, L, Q),p = m_; — 1,9 = m — 1, and the single
nonzero root of  is /2/a2. Otherwise, the distribution of
wy is unknown. Farmer (1987) used simulation to estimate
the null moments and approximated the distribution of w;
by a beta distribution.

2.3 A Score Test for k-Way Interaction

A score test for interaction in three-way classifications
was proposed by Harter and Lum (1962). Their test is a
three-way extension of Tukey’s (1949) 1 df for nonaddi-
tivity. The k-way extension is straightforward. The un-
derlying model assumes that @ can be written as in (2.3),
in which §, is proportional to the m;-vector of main effects
for the ith classification. To test H, : A = 0, main effects
and lower-order interactions are estimated assuming an
additive model and imposing the usual sum to 0 restric-
tions. Estimates of A and A are then obtained by setting
each §; equal to the corresponding vector of estimated
main effects and employing OLS to estimate A. Using a
conditional argument (Milliken and Graybill 1970), it is
readily shown that, under H,, F = [SS,/(e'e — SS;)]v has
a central F distribution with 1 and v = 1T ,(m; — 1) -1
df, where SS; is a 1 df sum of squares for nonadditivity:

SS, = (A’e)*/A’A,

A =5, ® ‘- ® b, and §; is the vector of estimated main
effects for the ith classification. When k = 2, the score
test reduces to Tukey’s test.

3. A NEW TEST FOR INTERACTION IN
MULTIWAY CLASSIFICATIONS

This section introduces an easily computed statistic, i,
having a known null distribution. We argue that the test
based on u, approximates the LRT, and we give an as-
sociated estimator of ¢? that can be used when 4 # 0. The
test statistic is based on estimators of {8;}, which are ob-
tained sequentially. In the first step, the k-way classifi-
cation is cast as a two-way n/m; X my classification and
8, is estimated as in the Johnson—Graybill test of Section
2.1. In the second step, §; is set equal to its estimate and
the dimension of the classification is reduced from & to k
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— 1. The first step is then repeated and §, is estimated, Define I by
etcetera. The resulting test statistic is

h
w = 2le'e, (3.1a) b = JI_I b

Table 1. Upper Percentiles of the Null Distribution of u,

8i = vl(EilEi), i=1,...,k (31b)

1—-a
E;iss; X m;, vec(E;) = e
vis s X m, vec(Ey) e m, m, m, 90 95 .99
vec(E;)) = E;_;0;_ i=2,...,k 3.1c
(E) b ’ ok (310) 3 3 3 .88906 92342 96673
and 3 3 4 .78987 .83249 .89848
3 3 5 72123 76426 .83660
i ) 3 3 6 67162 71312 .78600
s;=n+1Im i=1,...,k. (31d) 3 3 7 63399 67353 74485
j=1 3 3 8 60433 64191 71093
_ . 3 3 9 .58025 .61600 .68251
Ifn = 2A" fmk_lmk, t.hen Uy = Wy Otherw1se,‘ We < Wi, 3 3 10 56022 '50432 65835
because A is the maximal sum of squares associated with 3 4 4 67356 71699 79266
a k-way product residual contrast. In particular, u, = w,, 3 4 5 59992 64042 71447
the Johnson—-Graybill statistic. A listing of the SAS IML g 2 f75 .gﬁgg .ggggg .g??gg
codf: (SAS 1985) for computing u, is available from the 3 4 8 48219 ‘51431 ‘57617
senior author. 3 4 9 45889 48895 54726
By reordering the k indices, k!/2 lower bound statistics 3 4 10 43974 .46803 52319
can be obtained. The order m; < --- = m,isrecommended, 3 5 5 52607 56252 63150
because, given steps 1, . . ., (i — 1), it minimizes the 3 5 6 47601 50890 57232
. . \ 3 5 7 43955 46952 52795
number of parameters estimated during the ith step. The 3 5 8 41171 143921 149335
result is a statistic that is closer, on average, to the LRT 3 5 9 .38992 41508 .46553
statistic than one obtained from an alternative order. For 3 5 10 37274 .39548 44260
factors having the same number of levels, we suggest 3 6 6 42724 45651 51381
. > . . . 3 6 7 .39255 41849 .47061
ordering the indices according to the magnitude of the 5 6 8 ‘36797 '38997 43728
corresponding main effect sums of squares (largest to 3 6 9 35114 .36902 41075
smallest). 3 6 10 33964 35430 38942
) ) 4 4 4 55439 59384 66733
3.4 Null Distribution 4 4 5 48308 51807 58509
L o ) 4 4 6 43516 46650 52740
From the definitions in (3.1), it is readily shown that u, 4 4 7 40047 42889 48459
can be written as 4 4 8 37403 140009 45145
-1 4 4 9 35312 37723 42494
4 4 10 .33609 .35857 40318
we = 1 [n(BE)/tr(EED)]. 4 5 5 41518 44546 50461
i=1 4 5 6 37028 .39699 44969
Furthermore, when H, is true, theorem 8.1 in James (1954) : g g g?ggg -gggéé .ggggg
can be used to show (a) 4 5 9 29481 31482 35480
_ 4 5 10 .27938 .29792 .33506
vec(E) x [tr(EE[)]™" 4 6 6 32786 35118 39755
k k -2 4 6 7 29774 .31850 .35997
~ @A -mT) |z, x 12| @A - miJ) |z 4 6 8 27512 29387 33147
j=i j=i 4 6 9 .25743 27457 .30903
) o . 4 6 10 24316 25899 29085
fori = 1,..., (k — 1) where z has an invariant distri- 5 5 5 35158 37745 42853
bution on the Stiefel manifold V(1, s;_1), s, = n,and J;: 5 5 6 31050 33307 37790
m; X m; is a matrix of ones; and (b) the characteristic 5 5 7 28142 .30148 34153
roots of EE/ are distributed independently of the char- 3 5 8 25963 27775 31401
.. , . 5 5 9 .24262 .25918 .29239
acteristic vectors of E;E;. Together, these results give the 5 5 10 22893 24421 27490
null distribution of u, summarized in Theorem 1. 5 6 6 27240 29190 33086
5 6 7 .24562 .26284 .29738
Theorem 1. Under H, : 4 = 0, 5 6 8 22567 24113 27222
-1 5 6 9 21016 22422 25256
~ H A 5 6 10 19771 .21064 .23673
Uy i

i=1 6 6 6 .23660 .25348 28727
. o 6 6 7 21217 .22701 25679
where {/} are independently distributed as ; ~ r(A;)/ 6 6 8 .19407 20734 .23403
. L~ ; L= m. — .= [Ik. . 6 6 9 .18006 .19209 .21634
t_r(A')’ Ai~ W@ D, pi = mi = 1, and ¢; = Hioii(my ¢ 6 10 16887 17990 20214

1).
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Denote the cdf of /;, by G(¢; i, h) and the pdf by g(; i, h).
The distribution function for u, is G(t; 1, k —1) and, by
Theorem 1, can be computed recursively from

Gt i, k- 1)
19:/ pr . ..
= G(tlz;i+ 1,k — 1) X g(z;i,i)dz (3.2)
1/p;
if pi/(piq) =t < pilq;,
Gt i, k- 1)

=" Gizi+1,k-1) xgzi,i)dz

1/p;

ifpk/q, <t= 1/Pi, and
Gt i, k- 1)
=1- f1[1 - G(tlz;i + 1,k — 1)] x g(z; i, i) dz
t

ifl/p;<t=1.

Table 1 gives percentiles of u; when m;, < m, < 6. The
table was constructed by integrating (3.2) using the IMSL
(1987) double precision subroutine DQDAPG on a VAX
8550. The functions G(-; i, i) and g(-; i, i) were obtained
by the method in appendix 2 of Boik (1989a). For p; < 3,
expressions for G(-; i, i) and g(-; i, i) are given, explicitly,
in Davis (1972).

3.2 Nonnull Distributions

To motivate u, as a statistic for testing H, : 1 = 0, we
compare the nonnull distributions of u;, and the LRT sta-
tistic, w,. The distribution of w, is obtained by writing the
residual sum of squares after fitting p and A4 as a quadratic
form in e: SSE(w;) = e'(I — M)e. The structure of M
follows from the normal Equations (2.4c):

A minor modification of lemma 1 in Boik (1989b, p. 83)
can be made to show that

65 — 83]| = O,(27")
fori =1, ..., k. Suitably rearranging the terms in (I —
M) reveals that (I — M)e = (I — M)e + O,(47"). The
distribution of wy, up to O,(17!), follows from the idem-

potency of M. The distribution of u, is obtained similarly.
The results are summarized in Theorem 2.

In Model (1.1) with (2.3),

[we/ (1 = wll(v = £)/f]
~ F(f,v — f, 2la?) + O,(A7),

SSE(wy)/a? ~ x*(v — £, 0) + O,(A7Y),

[/ A = u)ll(w ~ f)/f]
~ F(f,v — f, 2la?) + O,(A7"),

Theorem 2.

Joumal of the American Statistical Association, December 1989

and
SSE(ug)/a® ~ x*(v — f,0) + Oy(A7")
for w, of (2.5), u, of (3.1a), SSE(x) = e'e(1 — x),

k

v=T[](m -1,

i=1

and
k
f= 1 - 2k + 2 m,'.
i=1

Theorem 2 reveals that the nonnull distributions of u,
and the LRT statistic are identical to within O,(4~'). Con-
sequently, the test based on u, can be recommended as
an approximation to the LRT. The noncentrality param-
eter in Theorem 2 is the best we could hope for, because
it is the noncentrality parameter of the LRT statistic ob-
tained assuming that A is known. Theorem 2 also says that
the nuisance parameters, A, play, at most, a minor role
in the distributions of 4, and w,. In fact, it can be shown
that the distributions of the LRT and u, statistics depend
on o2 and A/ solely through the noncentrality parameter
2la?.

In a small simulation study with k = 3, the estimated
power (at @ = .05 and @ = .01) agreed with the noncentral
F computation to within one or two percentage points
whenever power exceeded .10. This occurs, for example,
when |A/g| = 3 and m; = 2 for all i. For m; = m, = 4
and m; = 10, |1/c| = 4 is necessary.

3.3 Estimating o2

A variety of estimators of 42 in nonadditive two-way
classifications have been proposed (Carter and Srivastava
1980; Hegemann and Johnson 1976; Johnson and Graybill
1972b; Mandel 1971; Marasinghe and Johnson 1982). In
particular, Marasinghe (1985) and Schott (1986) showed
that for large |A/a|, SSE(w,)/a? is approximately distrib-
uted as y(m, — 2)(m, — 2), 0]. Marasinghe suggested
6% = SSE(w,)/[(m; — 2)(m, — 2)] as an estimator of o2
if H, : A = 0is rejected.

Theorem 2 suggests a k-way generalization of Mara-
singhe’s estimator:

SSE(w)/(v — f) or &%= SSE(w)/(v — f)
(3.3)

for SSE(*), v, and f of Theorem 2 depending on whether
the LRT or the u, test is employed. The estimators in (3.3)
are identical to Marasinghe’s estimator when k = 2.

In the limiting case, |A| — o, the estimators in (3.3) are
unbiased. For finite 4, the expected values of 6%/¢? and
6%/ o? will be somewhat smaller than unity, with the bias
of 62 being smaller than that of 2. When 4 = 0, percent
bias is a function of the null expectations of {/} in Theorem
1. For selected {m;}, {E(l;)} can be obtained from the tables
in Boik (1985). For the {m;} in Table 1 when A = 0, percent
bias of 2 ranges from —42% at (3, 3, 3) to —7% at (6,

4% =
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6, 10). In a small simulation study of the three-way esti-
mator, bias did not exceed +5% provided that |A/g| = 4.

4. |LLUSTRATION

To illustrate the new methods, we will use the data
collected by Batchelder, Rogers, and Walker (1966). The
data also appear in John (1971, p. 85). Tobacco was grown
in four soils, each treated with one of three mulches, over
a period of three years. The response is yield in 100 pounds
per acre. A comparison of the three mulches (no mulich,
straw mulch, and straw mulch plus straw incorporated into
the soil) was of primary interest. Batchelder et al. consid-
ered soil to be a blocking factor and analyzed the data
according to a randomized block design. That is, they
assumed that all interactions involving soil are 0. Table 2
gives the sums of squares required for such an analysis.

The computed value of u, for the tobacco data is .9237.
The p value, from (3.2), is Pr(u; = .9237 | 4 = 0) = .0040
and thus, for a = .01, H, : A = 0 is rejected. The com-
puted value of the LRT statistic is w; = .9238. The exact
p value for the LRT is unknown but obviously small. Thus
both statistics suggest a nonadditive model. For compar-
ison, the score test in Section 2.3 does not find evidence
of three-way nonadditivity (F = .44, df = 1, 11). Ap-
parently, three-way interaction is not simply related to the
main effects.

From Theorem 2 and Equation (3.3), 62 = .74 with v
— f = 7 df. Estimable functions of B can be tested using
? as the denominator in the F statistics. A comparison
of 62 to the mean squared residual in Table 2 (MSR =
5.62) suggests that tests performed assuming an additive
model are strongly biased in favor of their respective null
hypotheses.

Some experimenters might take rejection of H, : 1 =
0 as evidence that a transformation is needed. There is,
however, no guarantee that a transformation to additivity
can be found. In the Box—-Cox (1964) power family, a
power of .69 maximizes the likelihood function of the ad-
ditive model. The 95% confidence interval for the power
extends from .14 to 1.34, so the evidence that a transfor-
mation is needed is not very strong. Nevertheless, a square
root transformation is suggested by the maximization. On
square root transformed data, u; = .81 (p value = .07).
Although not in the confidence interval, the log transfor-
mation does even better: u; = .62 (p value = .49). Thus,
in this data set, transformable nonadditivity was detected
by the proposed test. In data sets having nontransformable

Table 2. Analysis of Variance on Tobacco Yield

Source df SS MS

Year 2 330.76 165.38
Muich 2 167.70 83.85
Soil 3 57.74 19.25
Y*M 4 86.76 21.69
Y*S 6 21.26 3.54
M+*S 6 28.03 4.67
Y*M*S 12 67.44 5.62
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nonadditivity, inferences can be made on the original scale
using &2.
[Received April 1988. Revised February 1989.]
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