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Fluorescence videomicroscopy allows the tempo-
ral behavior of biological specimens to be studied at
the cellular level. We describe two types of methods
that can be used for extracting quantitative informa-
tion from image sequences: the modeling approach,
which is mainly local, and multivariate statistical
analysis, which provides a global approach. The
potentials for use of these two methods are illus-
trated through a simulation example and actual
examples dealing with the study of chloride secre-

tion by airway epithelial cells. We define some
guidelines for making a choice between these two
approaches, bearing in mind that a blend of these
two methodologies is also possible. Cytometry 31:
217–228, 1998. r 1998 Wiley-Liss, Inc.
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Today the microscope can be viewed as a dynamic
instrument allowing the study of biological activity of
living cells in real time. Ionic concentrations inside cells
change quickly and dramatically and underlie a wide range
of cellular processes, including development, growth,
secretion, and wound repair. Thus, it is important to
observe and understand them.

Fluorescence videomicroscopy of ionic gradients allows
one to record the evolution of such phenomena as
function of time (18,32). Ionic changes may also occur
differently in different cell phenotypes, rendering neces-
sary the spatial analysis of these changes. The ability to
interface videocameras and computer technology to the
conventional microscope made it possible to derive quan-
titative data from image sequences of cells (6,19,31). This
paper is limited to the study of stationary objects thus, the
problem of tracking moving objects can be ignored.
Therefore, in the following discussion, we assume that
different digitally recorded images represent the evolution
of fluorescent specimens as a function of time, and that
these images are spatially registered. That is, that pixel
number p in one image corresponds to the same location
on the object as pixel number p in any image of the series.
When the different images are not registered, automatic
registration procedures (e.g., based on the cross-correla-
tion coefficient or on mutual information) can be used.

In the large majority of papers dealing with time-
resolved fluorescence microscopy, the analysis of data
consists of displaying only the variation in fluorescence
intensity, as a function of time, for several regions of

interest (ROIs) selected by the experimentalist. We be-
lieve that a more efficient data analysis procedure can be
used. The aim of this paper is thus to review the method-
ologies that can be followed in order to extract qualitative
and quantitative information from such a series of images,
in addition to visual inspection of the images as a gallery or
as a movie. Although these methodologies are not novel,
they have neither been used, nor compared, in the context
of time-resolved fluorescence microscopy.

The various approaches that can be are discussed under
Methods. From our point of view, there are mainly two
approaches: the local approach, in which ROIs are ana-
lyzed independent of the others; and the global approach,
in which the whole data set is analyzed at once. In the
former case, what we can do is to model the evolution of
the fluorescence intensity as a function of time. This
modeling approach is sometimes called the ‘‘parametric
imaging’’ method because, as a result of modeling the
content of each pixel, we can build new images (the
so-called parametric images) with the values(s) of the
model parameter(s) obtained.

In the latter case, the whole data set of images is
analyzed according to multivariate statistics. Multivariate
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statistical analysis (MSA) has already been used in several
fields of image processing: teledetection (26), nuclear
medicine (10), magnetic resonance imaging (MRI) (14),
electron microscopy (30), microanalysis (3,29). To the
best of our knowledge, it has only been used once in the
context of time-dependent fluorescence microscopy (20).

The possibilities and drawbacks of the different ap-
proaches are discussed under Results, first through a
simulated example and then with an actual example
dealing with the quantification of chloride secretions in
cultured respiratory epithelial cells using a fluorescent
probe. Until now, the functional activity of chloride
channels in respiratory epithelial cells has been essentially
assessed without taking into account the cell phenotype.
The culture of airway epithelium explants provides an
opportunity to obtain airway epithelial cells at different
stages of differentiation (8), thereby allowing us to address
the question of whether the efflux of chloride is depen-
dent on a specific airway cell phenotype, with particular
emphasis placed on the ciliated phenotype.

Finally, a discussion of the methods is presented, to-
gether with some guidelines for combining both ap-
proaches.

MATERIALS AND METHODS
This paper is mainly devoted to the description and

comparison of methodologies for analyzing image se-
quences. Consequently, the experimental material pro-
vided is mainly intended to illustrate the procedures.

Experimental

Respiratory epithelial cells were cultured from explants
of human nasal polyps. After 3 days in culture, outgrowths
around the explants contained numerous ciliated cells and
undifferentiated cells. The cultures were loaded with the
chloride-sensitive indicator 6-methoxy-N-(sulfopropyl)-
quinolinium (SPQ) (Molecular Probes, Eugene, OR) and
placed on the heated stage (37°C) of an inverted micro-
scope (Zeiss IM35; Zeiss, Oberkochem, Germany) and
incubated in a chloride-depleted buffer in the presence or
absence of 25 µM forskolin (Sigma, L’Isle d’Abeau, France)
(34). During this incubation period, fluorescence videoim-
ages were recorded every minute for 15 min, using a
low-level SIT camera (Lhesa, Cergy-Pointoise, France) and
a Sparc2 Sun workstation (Sun Microsystems, Mountain
View, CA) equipped with a Parallax video board (Parallax
Graphics, Santa Clara, CA).

Figure 1 shows four images (numbers n 5 1, 5, 10, and
15) out of a series of 15 images recorded by fluorescence
videomicroscopy. Figure 1A corresponds to images re-
corded from cells incubated in a chloride-depleted buffer
in the absence of forskolin, whereas the images in Figure
1B were obtained from cells incubated with 25 µM
forskolin in the chloride-depleted buffer. The aim of the
study was to compare the temporal behavior of different
populations of cells (e.g., ciliated and nonciliated) or of
one particular cell phenotype as a function of different
external conditions (stimulation of chloride secretion by
the cAMP or Ca21 pathway).

Figure 2 shows images that correspond to the same
experimental protocol. However, in that specific se-
quence, some cells, located at the periphery of the
outgrowth, move during the image acquisition. In that
situation, we will see that the cell movement precludes an
automatic study of the time fluorescence variation.

Simulation

In order to convince the reader that, on the proviso that
objects are not moving, complicated situations can be
handled by the procedures described in this paper, we
have built an artificial image sequence to help illustrate
some of the more advanced capabilities of these proce-
dures (It should be stressed that the purpose of the
simulation is not to reproduce the experimental situation.
Its only aim is to illustrate the capabilities and the
limitations of the different methods, in a well-controlled
situation, where the expected output is known).

FIG. 1. A: Four of 15 images of a temporal sequence recorded every
minute by fluorescence videomicroscopy. (Respiratory epithelial cells in
culture, loaded with the SPQ probe used for the study of chloride
secretion.) Images displayed are numbers 1, 5, 10, and 15 in the series. B:
Four (of 15) images of a similar series following stimulation with forskolin.

A

B
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The sequence (of 16 images, 1283128 pixels each) was
constructed as follows: the area under investigation was
composed of five regions, with five different temporal
behaviors. The background intensity was set to a constant
level. The temporal behavior of fluorescent objects (‘‘cells’’)
was simulated according to the three-parameter model:

It 5 A 1 B · (1 2 e2C·t)

where t stands for time. For all ‘‘cells,’’ the initial fluores-
cence intensity was set to A 5 30. Cells in the left part of
the field corresponded to B 5 80, while cells in the right
part corresponded to B 5 150. Cells in the top part of the
field corresponded to C 5 0.2, while cells in the bottom
part corresponded to C 5 0.4. Thus, we had four groups of
cells, representing four phenotypes, with different tempo-
ral behavior. Poisson noise was added to the simulated
images. The sixteen images of the sequence are displayed
in Figure 3.

Methods for Analyzing Image Sequences

The different images of the series will be denoted as
It(i,j), where (i,j) denotes an image pixel (p 5 1 . . . P) and
t denotes the image number (t 5 1 . . . N), which is
equivalent to time. (Note that all the procedures described
below can be extended to work in three dimensions
instead of two dimensions, but we will restrict our
discussion to conventional two-dimensional microscopy.)
The question we want to address is how to display and
quantify the useful information contained in the data set.
One thing we have to perform first is the extraction of this
useful information. It is necessary because image se-
quences contain much redundant information that ob-
scures the useful information (mainly the intensity
changes). For instance, displaying the image series as a
gallery may be totally insufficient for a complete percep-
tion of the occurring phenomena. Displaying the se-
quence as a movie is much more efficient but may still be

insufficient for comparing two different sequences. Further-
more, it does not permit quantitative measurement of the
studied phenomena. Therefore, digital analysis of the
image series is often necessary (17).

We believe that most of the methods that have been
empirically devised for extracting information from large
data sets fall within two main categories: modeling and
parametric imaging on one side and MSA on the other side.

Modeling and parametric imaging. Since the basic
entity in images is the pixel, one can first think to extract
information from the evolution of this minimal unit as a
function of time. [Note that a set of spatially equivalent
pixels as a function of an external variable such as time,
wavelength, and energy, is sometimes called a dixel (23)
or a texel, but we will maintain the term pixel throughout
this paper.] This evolution can be described either by a
statistical parameter or by an analytical function of this
variable. In both cases, one can speak of an evolution
model. The identification of the model M(a) and the
computation of its parameter(s) a constitute the modeling
approach (16,24,27). Depending on the nature of the
model, the identification of the model parameter(s) can be
made according to statistical analysis, to linear program-
ming (9), the least-squares method, for instance, or to
nonlinear programming (12,16), such as the Simplex
method for instance. Examples of different possibilities are
given under the heading ‘‘Which Models for the Modeling
Approach?’’

Since this approach has to be followed for each pixel of
the images independently, we end up with a set of
parameters a(i,j), from which we can build as many
images as there are parameters. This procedure is illus-
trated in Figure 4. The synthesized images are called

FIG. 2. Four images out of a sequence of 19 images similar to those of
Figure 1. The difference is that some of the cells are moving, which makes
the automatic analysis more difficult.

FIG. 3. Simulated image series. The background intensity is set constant;
the initial fluorescence intensity is the same for all cells. Four groups of
cells (top left, top right, bottom left, bottom right) are simulated. Their
temporal behavior differs by (a) the overall intensity increase (left versus
right), and (b) the speed of increase (top versus bottom).
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parametric images because the digital values that consti-
tute them are proportional to the parameters of the model
assumed to describe the temporal evolution, computed
locally.

Philosophy of the method. The aim of the method is to
concentrate the information contained in a large (at least
3, but possibly 10s) number of images into a small
(generally #3) number of parametric images. The visualiza-
tion of these images is assumed to be more convenient
than the visualization of the original image series, because
only the varying information has been retained and the
redundant information has been discarded. Furthermore,
the information contained in these images is directly
quantitative, as they are built from the values of quantita-
tive parameters. Whether this quantitative information can
be used for interpreting the results of the experiment
depends on the choice of the model (pertinent or not).

Drawbacks of the method. Several drawbacks of the
method may be identified. The first drawbacks are of a
technical nature: since the model is identified on a pixel
basis, the statistical significance of the estimated param-
eters is questionable. If the experimental images are
slightly noisy, the uncertainty in the modeling can be very
high and the parametric images themselves are noisy.

The other drawbacks are related more to the philosophy
of the method, which relies on the preexistence of an a
priori model. Since many different models can be presup-
posed, the question arises as to ‘‘how robust are the results
and the conclusions to a change in the assumed model?’’

A variant of the method. Instead of applying the
modeling approach at the pixel level (which raises the
question of the statistical significance), it is possible to
apply it at the level of an ROI. These ROIs are constituted
of basic objects, consisting of cells, nuclei, biological

compartments, and so forth. The first problem is thus to
define these ROIs. This can be attempted by automatic
methods (image segmentation) or, in more difficult situa-
tions, can be done interactively. Then, fluorescence signal
intensities are averaged spatially within the ROI and the
modeling is performed with the averaged intensities. In
this case, no parametric imaging is performed.

Multivariate statistical analysis. At the opposite of
the local modeling approach, a global approach was
devised by the statisticians at the beginning of the twenti-
eth, in order to analyze a data set as a whole. This
approach, which consider data sets as matrices (the
variables versus the individuals), tries to approximate a
complex set as a linear combination of simpler sets. When
efficient computers became available, this method has
been extended to image series, where the pixels play the
role of individuals and the image numbers (i.e., time in
temporal series) play the role of variables. For a data set
composed of 10 images (512 3 512 pixels) for instance,
the initial matrix to process is a 262,144 3 10 matrix. The
mathematical procedure to use for processing this matrix
is given in many textbooks (1,22) and only a brief
description of the different steps will be given here. The
first consists of computing the covariance (or correlation)
matrix of the initial matrix X:

Y 5 Xt ? X. (1)

This small matrix (10 3 10 in our sample case) concen-
trates the main information into image variances (along
the diagonal of Y) and into image covariances (off the
diagonal of Y). Several variants of this preliminary compu-
tation (centering the data or not; performing pixel and/or
image normalization or not) lead to different variants of
MSA, including principal components analysis, PCA;
Karhunen-Loëve analysis, KL; and correspondence analy-
sis, CA.

Then, what one tries to do is to define a new basis for
the description of the data set (the initial basis is the RN

space, where N is the number of images). It was shown (1)
that a useful new space (RN8, N8 , N) is the space spanned
by the first N8 eigenvectors of the variance-covariance
matrix, associated with the highest eigenvalues. This is, in
fact, equivalent to finding in the RN space the directions of
highest variance (see Fig. 5 for an illustration in two
dimensions). Once these new basis vectors, also called
orthogonal factorial axes, are defined, one can compute
the coordinates of pixels and of images on them. The
coordinates of each image of the series on the different
factorial axes can be displayed. Usually, the images coordi-
nates on two factorial axes (e.g., 1 and 2, 1 and 3, 2 and 3)
are displayed simultaneously (two-dimensional plot), which
generally allows to interpret the temporal behavior of the
series (see Fig. 12, for instance). The coordinates of the
pixels on the factorial axes can also be computed and
displayed as factorial images (see figures 7, 11 and 13, for
instance). It is thus possible to visualize which pixels
contribute (positively or negatively) to the different facto-

FIG. 4. Schematic illustration of the modeling approach. For each pixel
of the image series, the intensity variation (as a function of time) is
compared to a predetermined model. The comparison provides the
value(s) of the model parameter(s). This value is used to synthesize a new
image, the parametric image, which concentrates the information con-
tained in the whole original series. For multi-parameters models, several
parametric images can be built.
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rial axes. This second visualization mode helps comple-
ment the interpretation of the data set.

Philosophy of the method. The aim of the method is
also to concentrate the information from a large number
(N) of experimental images into a smaller number (N8) of
images (the orthogonal factorial images).

These images are assumed to be more easily interpretable,
as each carries a different ‘‘source of information.’’ There are
two main differences with the previous approach.

1. It is not necessary to provide a model at the begin-
ning of the analysis. The models for the evolution of the
different sources of information (factorial images) as a
function of the external variable (time) are provided by the
analysis itself (not in analytic form, but as the weights of
the different images onto the new orthogonal basis).

2. The whole data set is analyzed simultaneously. This
makes the analysis more robust. Noise, for instance, is
often rejected into high-order (i.e., with the smallest
eigenvalues) factorial components, so that the most impor-
tant (low-order) components are often free of noise.

Drawbacks of the method. The counterparts of the
advantages described above are as follows:

1. The method cannot be directly quantitative. The
reason is that the original data set is decomposed into a
linear combination of orthogonal components. But there is
no specific reason that the ‘‘true’’ underlying components
are orthogonal. Assume that an image series can be
described by two distributions:

It(i ,j) 5 a t A(i ,j) 1 bt B(i ,j)

where at and bt are two underlying models. The series can
be decomposed into:

It(i ,j) 5 o
k51

N

ck,tCk(i ,j) (2)

where ,Ck, Ck8. 5 0 for k8 Þ k and Ck(i,j) are the factorial
images.

We will find that the number of significant components
(the question of the determination of the number of
components is not specifically addressed in this paper but
was studied in a number of papers, found in the references
cited in ref 4) is two, but there is no reason to identify c1,t

to at, nor c2,t to bt. Therefore, the pixel weights Ck(i,j)
cannot be identified with the ‘‘true’’ weights A(i,j) and
B(i,j), and no quantitative conclusions can be drawn. The
only thing we can anticipate (and which is verified in
practice) is that if A(i,j) is of greater variance than B(i,j),
C1(i,j) is ‘‘close’’ to A(i,j) and C2(i,j) is ‘‘close’’ to B(i,j). The
closeness depends on the covariance between A and B. A
number of methods have been suggested for moving
from the first step (abstract analysis) of MSA to the second
step, where the factorial axes are rotated to form an
oblique basis as close as possible to the underlying models
(11,25).

2. When a model is valid only for a small number of
pixels, it can be obscured (or completely hidden) by
models valid for the majority of pixels.

Which Models for the Modeling Approach?

In the previous paragraph, we have discussed the
possibility to model the content of any pixel, and to
synthesize parametric images, without entering the details
of the modeling step. We classify the possibilities into
three categories: statistically based models, analytical mod-
els, and reference models.

Statistically based models. Each pixel (i,j) is de-
scribed by a set of intensity values It, where t stands for
time (or, equivalently, image number). Thus, many statisti-
cal parameters can be extracted from this set of values. In
some situations, these parameters can be sufficient to
characterize the temporal evolution and to extract the
useful information.

Examples of such parameters:

the absolute difference: D 5 Imax 2 Imin

FIG. 5. Schematic illustration of the MSA approach. For a sequence
composed of only two images, the content of one image can be
represented as a function of the content of the other one. Pixels with
similar properties (i.e., with similar couples of values) form clusters in the
two-dimensional data space. The analysis consists in searching for the
direction of maximum variance (I81). When the sequence is composed of
more than two images, the process can be generalized in a N-dimensional
data space. The next step after the main axis (I81) is found consists in
searching for the direction of the maximum residual variance (axis I82),
and so on. When the significant directions are found, the coordinates of
pixels on these new axes can be used to build N8,N new images (the
so-called factorial images), which also concentrate the information con-
tained in the original sequence.
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where Imax and Imin are the maximum values of the pixel as
a function of time, respectively

the relative difference: RD 5 D/IM

where IM is the mean intensity value of the pixel.

the standard deviation: s; pixels whose intensity vary
more than others will be depicted (as bright spots) in the
parametric image

the relative standard deviation, or coefficient of varia-
tion:

CV 5 s/IM.

Relative variations (instead of absolute variations) will be
enhanced

the sum of the absolute value of the differences
(SAVD):

SAVD 5 o
t52

N

0 It 2 It21 0 (3)

the relative SAVD: RSAVD 5 SAVD/IM (4)

Analytical models. Rather often, the physical basis of
the studied phenomena can help to give an idea of the
expected temporal evolution. This knowledge can be put
in the form of an analytical model, where the intensity
variation is expressed as a function of time (or image
number n) and of a parameter vector a:

It 5 f(t, a). (5)

In this case, the modeling strategy consists of estimating
the parameter vector a from the experimental values

a 5 g(It). (6)

Depending on the nature of the model f, this estimation
g can be made by linear programming, nonlinear program-
ming, or stochastic methods (simulated annealing, ref. 21;
genetic algorithms, ref. 13).

A nonexhaustive list of analytical models includes:

the linear model:

It5 a(0) 1 a(1) ? t, with 2 parameters (7)

the Mth-order polynomial model:

It 5 o
m50

M

a(m) ? tm, with (M11) parameters (8)

the g function:

It 5 a(0) ? t a(1) exp(2a(2) ? t), with 3 parameters, (9)

the b function:

It5 a(0) ? ta(1) (k 2 t)a(2)), with 3 parameters, (10)

the power law model:

It 5 a(0) ? ta(1), with 2 parameters, a special case

of the two previous more general functions (11)

the monosinusoidal model:

It 5 a(0) sin [a(1) ? t 1 a(2)], with 3 parameters (12)

Reference models. In addition to modeling the data
according to their statistical content or to an analytical
model, it is also possible to do it with reference to one or
several ‘‘external’’ models, i.e., to sets of intensity values
(corresponding to the same time sets) to which the
experimental data set is compared. Within this category,
probably the best known approach is the least-squares
fitting technique. But some other techniques are also
available that are less demanding in terms of a priori
knowledge.

Least-squares fitting technique. Here we assume that
the experimental data are a linear combination of models
that are known by advance (e.g., after measurements made
on ‘‘pure’’ specimens):

It 5 o
m51

M

a(m) ? Amt (13)

where Amt is the tth value of the model Am.
In this case, the modeling consists in evaluating locally

the weighting coefficients a, thus producing the M paramet-
ric images a(i,j). Techniques for performing least-squares
fitting are described in textbooks (2).

Correlation technique. Sometimes, the data set is still a
linear combination of several models, but only one (A0) is
known. In this situation, the best one has to do is to
compute the correlation coefficient between the experi-
mental set I and the known model A0:

r 5
E[It ? A0] 2 E[It] ? E[A0]

sIt ? aA0

. (14)

The parametric image r(i,j) displays parts of the image
sequence that are correlated with the model A0 and those
that are not.

Alternatively, the angle between the two vectors:

(It, A0) 5 Acos [,It, A0./( 0 It 0 ? 0A0 0)] (15)

where ,,. stands for the scalar product and |·| for the
vector norm, can also be used as a measure of resem-
blance.

An intermediate situation (between the situation where
only one model in known and the situation where all the
underlying models are known) is the following. Assume
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the experimental series is the superimposition of (at least)
two models: the ‘‘useful’’ model A0, which is the object of
the study, and an ‘‘unuseful’’ model A1 (e.g., due to the
presence of an unavoidable fluorescent species), which
disturbs the study. The question arises as ‘‘how to reject
most of the unuseful contribution while keeping the
maximum of the useful contribution?’’ For this, we have to
project the original data (represented by the vector In)
onto an optimal vector (e) defined as:

e 5 A0 2
,A0 ? A1.

,A1 ? A1.
A1 (16)

so that ,e ? A1. 5 0 (28,33).
In summary, many models are available for applying the

modeling technique. No general rule can be given for
choosing among them. When the physical basis of the
experimental process is known, it is certainly better to
choose the corresponding analytical model or a reference
model procedure. But when no such model is available,
one must rely on a statistical model.

RESULTS
Simulation

Several examples of parametric images obtained from
the simulated image sequence displayed in Figure 3 are
shown in Figure 6. Figure 6a,b is the parametric image
corresponding to the statistical parameters (max 2 min)
and (max 2 min)/mean. Figure 6c,d displays the paramet-
ric images of the standard deviation (s) and the sum of the
absolute value of the differences (SAVD). Clearly, the
problem at hand is too complicated (with four different
types of cells) for a simple interpretation only based on

these simple parametric images. Figure 6e–h shows results
of parametric imaging according to a third-order polyno-
mial model:

It 5 o
m50

3

a(m) ? tm.

The different parametric images display the parameters
a(m), for m 5 0 to 3, obtained for each pixel. Although
some properties of the different groups of cells can be
inferred from these parametric images, the interpretation
is made difficult, because the model used for modeling was
not the underlying (true) model. Figure 6i–k displays the
parameters of the model

It 5 A 1 B ? (1 2 e2C?t) (17)

which was the model used for the simulation. In that case,
the parametric images can be used directly for the interpre-
tation. The first parametric image corresponds to the
initial (t 5 0) fluorescence intensity: it is the same for all
cells in this case. The second parametric image corre-
sponds to the total variation of fluorescence intensity
(parameter B); it permits distinction of two groups of cells
(left and right parts of the field). The third parametric
image corresponds to the rate of intensity variation (param-
eter C): it also permits distinction of two groups of cells
(top and bottom parts). Altogether, four groups of cells
can be recognized. But this has only been made possible
because the underlying model was known.

The factorial images corresponding to the first four
eigenvalues are displayed in Figure 7a–d. Note that besides
the ‘‘trivial’’ factorial image (Fig. 7a) representing the
average value of the pixel intensities, only two factorial
images (Fig. 7b,c) contain structural information. This can
be explained by the fact that there are only two sources of
information. The first source of information is explained
by the factorial axis number 1: it opposes cells in the left
part to cells in the right part. A careful look at the temporal
behavior of these cells tells us that the meaning of this
source of information is the amplitude of intensity varia-
tion (parameter B). The second source of information is
carried by the factorial axis number 2. It opposes cells in
the top region to cells in the bottom region. It represents
the speed of fluorescence intensity increase. The weights
(scores) of the 16 original images on the factorial axes 1
and 2 are displayed in graphical form in Figure 7e. The data
set can be interpreted on the basis of Figure 7a–c and 7e.

From these factorial images, the number of classes (i.e.,
groups of pixels with similar temporal behavior) can be
estimated, without reference to any model. Figure 7f
displays the scatterplot (or two-dimensional histogram:
the content of one image versus the content of another
one) built from the two factorial images (Fig. 7b,c). Here,
we obtain five clusters, which correspond to the five
different regions, i.e., the five different temporal behav-
iors. Automatic clustering (5,15) allows to obtain the
localization of these different regions: the result of an

FIG. 6. Modeling analysis of the simulated image sequence (Fig. 3). a–d:
Parametric image of the statistical parameters (Max 2 Min), (Max 2 Min)/
Mean, s, and SAVD. e–h: Parametric images of the four parameters [a(m),
m 5 0 to 3] of a third-order polynomial model. i–k: Parametric images of
the three parameters (A, B, and C) of the model: I(t) 5 A 1 B · (1 2 e2C · t)
These three images can be used for interpreting the image series. All cells
are characterized by the same initial fluorescence intensity (parameter A,
i); cells in the left and right parts differ by the overall fluorescence increase
(parameter B, j); cells in the top and bottom parts differ by the speed of the
fluorescence increase (parameter C, k).
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automatic classification procedure is displayed in Figure
7g (the four groups of cells, and the background, are
labelled differently).

Experimental Situation

The temporal fluorescence variations measured in re-
gions of interest located on either ciliated or nonciliated
cells are shown in Figure 8, expressed as a percentage of
the initial fluorescence in each cell. In control situations,
without forskolin stimulation (Fig. 8A), we observed a
progressive increase in fluorescence that reached a pla-
teau value within 5 min. The fluorescence increase mea-
sured in ciliated cells was significantly higher (117%,
P , 0.001) than the fluorescence increase measured in
nonciliated cells (17%). After forskolin stimulation (Fig.
8B), the fluorescence increase observed in both noncili-
ated cells and ciliated cells was significantly higher (118%
and 136%, respectively, P , 0.001) than that observed in
the absence of forskolin stimulation. Furthermore, forsko-
lin stimulation induced a significantly higher fluorescence
increase in ciliated cells compared with nonciliated cells.
The increase in SPQ fluorescence, representative of a
decrease in intracellular chloride concentration, demon-

strated that well-differentiated airway cells such as ciliated
cells had a higher cAMP-dependent activation of chloride
conductance compared with nonciliated cells.

The modeling process can be performed for a single
pixel or for a group of pixels (also called ROI). When each
pixel is modeled in turn, parametric images can be
produced. Figure 9A,B shows examples of statistical para-
metric images computed for the control series (Fig. 9A)
and the forskolin series (Fig. 9B). The absolute standard
deviation (a) and the relative standard deviation (b) were
used as statistical parameters. Figure 10a–c presents the
images of the parameters A, B, and C, respectively, for the
three-parameter model described above. Figure 10d dis-
plays the x2 values, that measure the quality of the
modeling for each pixel. This was done for the control
series (Fig. 10A) and for the forskolin series (Fig. 10B).

All parametric images (and many others that can be
constructed) concentrate and display a part of the useful
information. The main problem is to choose which para-
metric image(s) is really representative of the information
of interest (or, in other words, which model must be
applied). As stated above, a variant of this procedure
consists of considering regions of interest (here, cells)
instead of single pixels. As a result of the averaging
process, statistics become improved but, on the other
hand, displaying the results as images is no longer feasible.

One way to avoid having to choose a model is to perform
MSA. Figures 11 and 12 display the results of a principal
component analysis (PCA), which is one of the variants of MSA
available. Figure 11 displays the first four factorial images, with
Figure 11a showing the so-called ‘‘trivial’’ factorial image,
which represents the average of the whole series. The other
factorial images (Fig. 11b–d) represent 11%, 8%, and 7% of the
total variance, respectively, for the control series (Fig. 11A) and
18%, 9%, and 7% for the forskolin series (Fig. 11B). Figure 12
shows the weighting of the different images of the experimen-
tal sequence on the first factorial axis, which represents most
of the useful information (axis 2 represents second-order
variations together with experimental artifacts such as dust on
the camera lens; axis 3 contains mainly noise). Altogether,
these two types of representation permit interpretation of the
temporal behavior of the different classes of pixels, with an
increase in the fluorescence signal as a function of time and a
spatial differentiation according to the cell phenotypes. The
ciliated cells, which were easily identified due to the beating of
their cilia, exhibited the highest fluorescence variation, even in
nonstimulated conditions.

In this experimental situation, the interpretation was
fairly easy: the temporal evolution was globally monoto-
nous, with an increase in the fluorescence signal as a
function of time and spatial differentiation (Fig. 11b). One
can see that the fluorescence increase is proportional to
the initial fluorescence signal (nuclei that displayed a
strong fluorescence also displayed a large fluorescence
increase). This was confirmed by parametric images display-
ing the relative standard deviation or the relative SAVD
(not shown). Of course, our interest was not to interpret
just one image series, but to compare different image
sequences, corresponding to different situations (several

FIG. 7. Multivariate statistical analysis of the simulated image series (Fig.
3). a–d: The first four factorial images. a: The first (trivial) image is simply
the average of the eight original images. b: First ‘‘true’’ factorial image:
cells in the left part are opposed to cells in the right part. This is the main
source of information (displayed as black/white contrast) differentiating
the different underlying models. c: Second factorial image: here, the main
opposition is between cells in the top part and cells in the bottom part.
This is the second source of information. d: Mainly noise, and no structural
information. e: Display of the scores of the different images on the factorial
axes 1 (horizontal) and 2 (vertical). f: Scatterplot (or two-dimensional
histogram) corresponding to the two factorial images (b,c). Here, the five
clusters correspond to the five different regions present in the original
data set. g: By automatic clustering, the five regions can be obtained. The
gray levels represent the index of classification of the pixels into five
classes (four classes of cells and background), after automatic classifica-
tion.
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‘‘factorial curves’’ analogous to the curve in figure 4 were
superimposed). The interpretation of such curves and
their usefulness for studying the chloride secretion capac-
ity of respiratory epithelial cells will be reported in a
companion paper (Zahm et al., in preparation).

Another Experimental Situation

From the fluorescence image sequence partly displayed
in Figure 2, we obtain the four factorial images displayed in

Figure 13. Figure 13a is the trivial factorial image (average
of the series). The first factorial image (Fig. 13b) is
dominated by the moving cells (arrowed). The black and
white contrast on the two opposite sides of an object is
characteristic of a small object displacement. This type of
artifact in the factorial images is accompanied by ‘‘false’’
factorial curves (not shown).

DISCUSSION AND CONCLUSION
The availability of optical probes for biological activity

associated with powerful image acquisition and analysis
technology is becoming of major importance in the study
of physiological parameters in living cells. Furthermore,
the development of culture techniques now allows for the
in vitro production of a diverse range of cell phenotypes
within a cell population that were previously only encoun-
tered in vivo. It is obvious that different phenotypes within
a cell population manifest different physiological behav-
iors. The main result of the experimental data analyzed in
the present work (in order to illustrate the methodology
described) concerns differences in chloride efflux ob-
served in ciliated and in non-ciliated cells. It is noteworthy
that this difference was observed even in the absence of
any stimulation of the cAMP pathway, i.e., as occurs when
cells are exposed to a hypotonic medium. The activation
of a conductance pathway for chloride originates from the
initial cell swelling induced by an hypotonic environment.
The propensity for ciliated cells to be stimulated by the
cAMP pathway as compared with nonciliated cells is
related to the expression of the cystic fibrosis transmem-
brane regulator (CFTR) protein, which is exclusively
located at the apical membrane domain of well-differenti-

FIG. 8. Temporal fluorescence variations in regions of interest located on nonciliated cells and ciliated cells
incubated or not with 25 µM forskolin. The fluorescence variations are expressed as the percentage of the initial
fluorescence in each cell. Each point represents the mean 6 S.E. of 30–40 different cells. The differences in
fluorescence variations were tested using the Student’s t-test.

FIG. 9. Examples of statistical parametric images obtained from the
experimental image series (Fig. 1). a: Standard deviation. b: Sum of the
absolute values of the differences (SAVD). A: Results computed from
Figure 1A. B: Results computed from Figure 1B.

A

B
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ated cells (7). The methods investigated in the present
work are of interest in order to analyze the abnormal
functional expression of the CFTR protein, which may not
only be caused by CFTR gene mutations, but can also be
associated with airway surface epithelium dedifferentia-
tion and remodeling.

It appears that two types of methodology are available
for extracting qualitative and quantitative information
from fluorescence videomicroscopy, i.e., from sequences
of fluorescence images recorded as a function of time.

In the first methodology, the different intensity values at
one pixel site (or the average of intensity values within a
region of interest, a cell, for instance) are combined with a
model of the intensity variation in order to get one (or a
few) quantitative parameter(s) describing the behavior of
this pixel or ROI. When this procedure is repeated for
every pixel, new (synthesized) images can be obtained

(parametric images). These new images can be displayed,
processed (segmented into different regions for instance)
and analyzed in order to obtain a global result for the
whole field of view. The statistical significance of the
results is improved when this procedure is applied to
ROIs. However, the main drawback of the modeling
approach remains, i.e., which model should be used?
Moreover, it is difficult to compare the results of modeling
obtained for different objects, because a model (especially

FIG. 10. Examples of parametric images obtained after modeling by an
analytical model (here: the three-parameter model: In 5 a(0) 1 a(1) ·
[1 2 exp(2 a(2) · n]). a–c: Parametric images: a(0), a(1), and a(2). d:
Chi-square. A: Results computed from Figure 1A. B: Results computed
from Figure 1B.

A

B

FIG. 11. Factorial images resulting from the application of multivariate
statistical analysis (in fact, principal components analysis) to the experimen-
tal series of Figure 1. a: The ‘‘trivial’’ factorial image is the average of the 15
experimental images. b: This factorial image, corresponding to axis 1,
contains most of the information relevant to the temporal behavior. c: This
factorial image, corresponding to axis 2, contains the residue of the
information. d: The factorial image corresponding to axis 3 contains only
noise. A: Results computed from Figure 1A. B: Results computed from
Figure 1B.

A

B
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an analytical model) cannot generally be described by a
single parameter.

Alternatively, the whole image sequence can be ana-
lyzed at once by multivariate statistical methods. In this
case, the factorial images permit the visualization of
different ‘‘sources of information’’ present in the dataset,
without the need to choose a model to describe the
temporal evolution. Moreover, the underlying models are
provided by the analysis itself, within the limits that the

original data be considered as the linear combination of
several orthogonal components.

However, this interesting ability of MSA to analyze the
whole dataset at once is also its weakness. Since the whole
image is considered, results can be obscured, or even
completely disturbed, by some ‘‘imperfections’’ (or arti-
facts) of the experimental data. Suppose for instance that
we are studying weak temporal fluorescence variations in
stationary cells (let us recall that, in this paper, we are
not considering the problem of moving objects). Now, if
one or several cells move during the image sequence
acquisition, the main source of information (i.e., of inten-
sity variance) that will be detected is the cell movement,
and the useful information (fluorescence variation) will be
obscured by this artifact. This problem was illustrated in
Figure 13.

Thus, one must be very careful when using results
obtained by MSA. Only those results that can be inter-
preted (in terms of factorial images and factorial curves) as
being almost free of artifacts can be significant. On the
other hand, we can say that this ability of MSA to display
the different sources of information (including experimen-
tal artifacts) can be considered as an important property of
MSA, compared to other methods in which the quantita-
tive results are obtained blindly, i.e., without the opportu-
nity to visualize and interpret intermediate results.

Finally, it is difficult to make a definitive choice between
the two types of approaches: the modeling approach and
the multivariate analysis approach. We suggest the follow-
ing:

1. Apply MSA in order to get a rough idea of the content
of the experimental series, in terms of number of sources

FIG. 12. First factorial curve (corresponding to factorial axis 1), resulting from the application of principal
component analysis. This curve displays the overall shape of the model that describes the temporal behavior. A:
Results computed from Figure 1A. B: Results computed from Figure 1B.

FIG. 13. Illustration of the need to interpret the results of MSA carefully.
Here, the four factorial images (a–d) obtained after analyzing the series of
Figure 2 are displayed. The factorial image corresponding to axis 1 (b)
displays a strong contrast for the left part and the right part of some cells.
This contrast is mainly due to a displacement of these cells during the
experiment, and not to a variation of the fluorescence intensity.
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of information (number of high eigenvalues), of spatial
contrast (factorial images), and of temporal models (facto-
rial curves). At this stage, experimental artifacts can be
detected and eventually be compensated for (a drift of the
microscope stage or of the specimen, for instance, can be
corrected).

2. If one of the ‘‘factors’’ obtained during the decompo-
sition can be identified (after interpretation) as the phenom-
enon one wants to analyze, quantification can be done
within the framework of MSA.

3. MSA can also be considered as a prescreening tech-
nique allowing for the detection of artifacts and/or the
visualization of the type of underlying model, which aids
in the choice of an analytical model. The factorial images
(and especially the first one) can also be used to segment
the field of view into homogeneous regions of interest, i.e.,
into zones with a similar temporal behavior. When this is
done, it is then possible to return to modeling techniques
in order to obtain quantitative results in terms of the model
parameters, for the different regions of interest.

In conclusion, the use of the former strategy should
result in new approach to precisely analyze physiological
parameters within a cell population or in different compart-
ments within a cell.
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