
Theory of 
Analytical Chemistry 
Every respectable branch of sci­

ence has its own theory—a col­
lection of laws, axioms, corollar­

ies, and rules that guides the scientist in 
using experiments to unravel the secrets 
of nature. As the saying "theory guides, ex­
periment decides" suggests, theory and 
experiment are interwoven and mutually 
supportive in any healthy growing sci­
ence. 

When a budding analytical chemist 
takes his or her first course in analytical 
chemistry, the textbook usually begins by 
placing chemical analysis in the broader 
perspective of chemical sciences, describ­
ing different types of analyses (e.g., qual­
itative, quantitative, environmental, micro­
bial), and implying or stating explicitly 
that "analytical chemistry is what analyti­
cal chemists do." Next, because analytical 
chemistry is a measurement science and 
measurements are uncertain, the student 
is armed with some simple statistics. From 
this point on, the student explores the 
many branches of analytical chemistry 
(e.g., electroanalytical chemistry) and the 
many methods and techniques of each 
(e.g., anodic stripping voltammetry) by ex­
amining the physical or chemical princi­
ples, instrumentation, and data interpreta­
tion methods. 

Although there is plenty of theory to 
learn while studying the physical and 
chemical principles of analytical practices, 
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much of that theory has come to us from 
physics and physical chemistry. This the­
ory does guide the application of individ­
ual analytical methods (e.g., the Nernst 
equation), but it falls short as a theory for 
the whole science. This shortcoming is 
perhaps behind the defensive position 
taken by some analytical chemists in 
conversations with colleagues from other 
areas of chemistry concerning the validity 
of analytical chemistry as a science and 
the debate about whether the subject 
should be expanded in college curricula. 

In this Report we show that there is in­
deed a guiding theory of analytical chemis­
try. This theory can be used to specify ex­
actly what information can be extracted 
from the data produced by any analytical 
instrument or method. It can also be used 
to guide analytical chemists in optimiz­
ing existing analytical tools and to direct 

analytical researchers trying to construct 
more powerful tools. 

Orders of instruments 
Every analytical instrument or method can 
be classified according to the type of data 
it provides. Using existing terminology 
from mathematics, we can say that an in­
strument that generates a single datum 
per sample is a zero-order instrument be­
cause a single number is a zero-order ten­
sor. Zero-order instruments include ion-
selective electrodes and single-filter pho­
tometers. 

First-order instruments include all 
types of spectrometers, chromatographs, 
and even arrays of zero-order sensors. 
These instruments are capable of gener­
ating multiple measurements at one time 
or for one sample. The measurements can 
be put into an ordered array referred to 
as a vector of data (e.g., the digitized spec­
tral intensities measured at multiple 
wavelengths), also known as a first-order 
tensor. It should be obvious that first-
order instruments are potentially more 
powerful analytical tools than zero-order 
instruments. At the very least, when ana­
lyzing first-order data, the analyst can 
search for a unique signal in the spec­
trum or the chromatogram to use for ana-
lyte quantitation. At the other extreme, 
analytical chemists today are busy using 
tools from chemometrics based on linear 
algebra and multivariate statistics to per­
form multianalyte quantitative analysis 
with data from first-order instruments. 

Second-order instruments can gener­
ate a matrix (a second-order tensor) of 

782 A Analytical Chemistry, Vol. 66, No. 15, August 1, 1994 0003-2700/94/0366-782A/$04.50/0 
© 1994 American Chemical Society 

Report 



data per sample. These instruments are 
used in the so-called hyphenated tech­
niques such as GC/MS, MS/MS, 2D 
NMR, and GC/FT-IR. They also include 
new sensors such as flow probes and reac­
tion kinetics-spectroscopy-based sen­
sors. Data generated by these instruments 
can be viewed equivalently, for example, 
as a set of chromatograms, each mea­
sured at a different nominal mass, or as a 
set of mass spectra that change over time 
as determined by the chromatography. 
The instrument in the first order, such as 
the gas chromatograph in GC/MS, modu­
lates the analyte concentration or envi­
ronment such that the net signal from the 
instrument in the second order, the 
mass spectrometer in GC/MS, changes. 

There is no limit to the maximum or­
der of data that can be generated. Excita­
tion-emission-time decay fluorescence 
spectroscopy produces a third-order ten­
sor, or cube, of data per sample. ICR-MS 
techniques now generate cubes and hy-
percubes as well as fourth- and higher or­
der tensors of data per sample. Despite 
instrument complexity, advantages can be 
derived from using higher order instru­
ments. Increased analyte selectivity is the 
most obvious advantage. These instru­

ments also offer a deeper understanding 
of the advantages available at each order, 
along with some mathematical and statisti­
cal methods from analytical chemomet-
rics, which provide the basis for a collec­
tive theory of chemical analysis. 

Table 1 summarizes the major advan­
tages gained by progressing from zero-
order to second-order calibration. As pre­
dicted by theory, analytical chemists can 
use these advantages as a guide in choos­
ing the most appropriate technique for any 
given application. 

Tensorial calibration 
Calibration is the mathematical and statis­
tical process of extracting information, 
usually analyte concentration, from the in­
strument signal. Calibration methods 
can be classified similarly to analytical in­
strumentation. The order of a calibration 
method is given by the order of the re­
quired data tensor to be collected from 
each sample. A collection of «th-order 
data from each of many samples in a cali­
bration set creates a (« + l)th-order ten­
sor that could be used to form an nth-
order calibration model estimated by an 
«th-order calibration method. 

For example, a diode-array spectrome­

ter is a first-order instrument. A vector of 
absorbances at corresponding wave­
lengths is first-order data. A collection of 
spectra from different samples forms a ma­
trix, a second-order tensor. An algorithm 
that uses the correlation of the wave­
lengths of each spectrum to the desired 
quantity for analysis (e.g., multiple linear 
regression) is a first-order calibration 
method. Note that data can always be dis­
carded such that an (« - i)th-order calibra­
tion model is formed by an «th-order cali­
bration method. If only one wavelength 
from a first-order spectrometer is used, 
zero-order calibration can be done by ordi­
nary least squares. However, «th-order 
data cannot be rearranged to form 
(« + 1) th-order data; the visible spectrum 
of a compound cannot be rearranged into a 
matrix and treated in a manner equiva­
lent to true second-order data. 

In the progression from zero- to first-
to second-order calibration and beyond, 
the algorithms become more powerful as 
the information that they can reliably ex­
tract from the data increases. This is a di­
rect result of the power and rigor of the 
model assumed in each order of analy­
sis. Intuitively, a second-order linear 
model contains more information and as-
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Table 1. Advantages and disadvantages of different calibration paradigms 

Calibration 
Required 
selectivity 

Maximum 
analytes 

Minimum 
standards 
(with offset) Interferences 

Signal 
averaging Statistics 

Something 
extra 

Zero order Full 1 1(2) Cannot detect; 
analysis biased 

None Simple, 
well 

defined 

— 

First order 

Second order 

Net analyte 
signal 

Net analyte 
rank 

No. of 
sensors 

min (1, J) 

1 per species 
(1 + 1 per 
species 
present) 

1 (1) 

Can detect; 
analysis biased 

Can detect; 
analysis accurate 

~VJ Complex, 
defined 

Complex, 
not fully 
investi­
gated 

First-order 
profiles 

sumptions than does a first-order linear 
model. 

Zero-order calibration 
For a zero-order instrument, the response, 
r, is a function of the analyte concentra­
tion, c, as shown in Equation 1 (p. 787 A), 
in which f(c) relates the analyte concen­
tration to the instrument response. In prac­
tice, the instrument signal is a voltage or 
a current that is not a direct measure of 
concentration. In many cases, the rela­
tionship between analyte concentration 
and signal, f (c), is approximated by theo­
retical models such as the Beer-Lambert 
law or the Nernst equation. Often, how­
ever, no theoretical model exists, and f (c) 
must be approximated by other means, 
usually by linear regression. Expressing 
the instrument response as a function of 
analyte concentration is commonly 
termed the "classical model," and the esti­
mate of the functional relationship be­
tween c and r is the calibration model. By 
studying the functional relationship be­
tween c and r and the effect of instrumen­
tal errors in the estimation of f (c), one can 
determine the type and amount of work re­
quired for proper calibration and analysis. 

Linear signals. In the simplest case, f(c) 
is a linear function of only c and f (0) = 0. 
This implies that the sensor is uniquely se­
lective to the analyte of interest. Equa­
tion 2 shows the calibration model, where 
b is the regression coefficient and r and c 
are vectors of individual responses, r, and 
corresponding concentrations, c, for a se­
ries of calibration samples. In this case cal­
ibration is possible with only one stan­
dard of known analyte concentration be­
cause two points, (0, 0) and (c, r), define a 
line. Multiple samples can be used to ob­

tain an average estimate of b that is less af­
fected by random instrumental errors. 

Interferences. If another constant sig­
nal is present and f (c) is linear, theory dic­
tates that at least two samples be mea­
sured by the instrument, because the point 
(c = 0, r = 0) is no longer a valid instru­
ment response. The instrument response 
function has the form shown in Equation 3, 
in which q is the instrument response 
from anything other than the analyte of in­
terest. For successful calibration, q must 
be constant for all samples. In general, a 
signal resulting from the instrument or 
the solvent is constant from sample to 
sample and is referred to as an offset. The 
signal from any other species present in 
the sample is considered background. Al­
though offsets and backgrounds are con­
sidered chemically different phenomena, 
their mathematical descriptions are identi­
cal. The sole difference is that an offset is 
constant from sample to sample, whereas 
a background changes in intensity be­
tween samples. 

An offset can be handled by zeroing the 
instrument response (subtracting the re­
sponse of an instrumental blank contain­
ing only the sample matrix) or incorpo­
rating the offset into the calibration model. 
Zeroing the instrument response re­
duces Equation 3 to Equation 1. 

Background must be either removed 
before analysis or held constant such that 
it may be treated as an offset. Obvi­
ously, if background exists but is not con­
sidered in the calibration model, future 
estimates of analyte concentrations will be 
incorrect. With just one measurement it 
is impossible to distinguish the signal of 
the analyte from that of the interferences. 
If varying concentrations of interfer­

ences are present in the calibration set, the 
inability to distinguish the analyte signal 
from the interfering signal prohibits for­
mation of a meaningful model (Figure 
la). If interferences are present in the un­
known mixture but not the calibration 
set, the estimated analyte concentration 
will be biased (Figure lb) because the 
interference signal will be mistaken for an 
analyte signal. Furthermore, in zero-
order calibration, it is impossible even to 
detect the presence of an interference 
based on the instrument data alone! 

Nonlinear signals. Iff(c) is a nonlinear 
function in Equation 1, calibration re­
quires the preparation of additional stan­
dards. A nonlinear transformation can be 
applied to the instrument response to 
make the instrument signal linear with 
changes in concentration (e.g., converting 
transmission to absorbance). Alterna­
tively, a nonlinear model can be used for 
calibration, in which case one calibration 
standard must be measured for each pa­
rameter in the model. For example, a 
quadratic model has three parameters. 

Matrix effects. One special case of 
nonlinear signals is a matrix effect, which 
occurs when the sensitivity of the instru­
ment to the analyte is dependent on the 
presence of other species in each sam­
ple. The instrument response for an ana­
lyte experiencing a matrix effect can be 
written as in Equation 4, in which ca is 
the concentration of the analyte of inter­
est; cl,c2, . . . are concentrations for all 
the species in the sample except the ana­
lyte; and f*(c) is a function of the interfer­
ing species. It is assumed that the interfer­
ing species affect only the sensitivity of 
the instrument to the analyte of interest. 
Hence, f '(c) has a multiplicative effect on 
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f(c). Calibration in the presence of matrix 
effects is accomplished by the standard ad­
dition method (SAM), in which multiple 
additions of highly concentrated analyte 
are introduced to the sample during re­
peated analysis. It is assumed that the 
value of f * (c,, c2, ...) is constant through­
out the standard additions, that f (0) = 0, 
that f (c) is linear, and that there are no 
other detectable species. 

At least one standard addition must be 
made to estimate the linear function f(c). 
If f (c) is not linear, quantitation should not 
be attempted because SAM requires ex­
trapolation of the calibration curve to esti­
mate the analyte concentration and non­
linear curves are not robust to extrapola­
tion. 

Figures of merit. Selectivity, sensitivity, 
and precision can be quantitated and used 
as a guide to compare analytical meth­
ods or determine the quality of an analyti­
cal technique. Selectivity is the fraction 
of the signal that is unique to the analyte. 
By defining the portion of the signal, r, that 
is uniquely contributed from the analyte 
as r, selectivity is defined as in Equation 
5. Hence, selectivity is a dimensionless 
value that ranges from 0 to 1. 

Sensitivity is the change in the instru­
ment response induced by a change in the 
analyte concentration (Equation 6). The 
sensitivity is the slope of the regression 
line. The precision of a measurement is 
traditionally defined as S/N, as shown in 
Equation 7, in which er is the standard de­
viation of repeated measurements of r. 
Note that rand er do not necessarily 
change proportionally with analyte con­
centration. Therefore, S/N is defined at an 
arbitrary unit concentration. 

The precision of analysis can be de­
fined as the minimum difference between 
two concentrations that can be distin­
guished from the effect of random instru­
mental errors (1, 2). This is termed the 
limit of determination, defined by the In­
ternational Union of Pure and Applied 
Chemists (IUPAC) as in Equation 8, in 
which k is an integer that defines the num­
ber of standard deviations of separation 
that constitutes "different" (3). Usually k is 
equal to 3, which is nearly 99% probabil­
ity that the two measurements differ. 

Error propagation. The propagation of 
errors in the instrument signal through 
the calibration model to the predicted ana-

lyte concentrations provides the analyst 
with valuable information for experimen­
tal design. The calibration model should 
be constructed such that the error propa­
gation associated with the model is mini­
mized. In general the regression coeffi­
cient, b, found by linear least-squares re­
gression, minimizes e in Equation 2. 

Using statistics presented in introduc­
tory statistics and analytical chemistry 
texts, one can determine the effect on cali­
bration of random instrumental errors in 
r of Equation 2. The standard deviation of 
the calibration data about the regression 
line, σΓ, is given in Equation 9, in which c 
and r are the means of all values in c and r 
respectively, and Ν is the number of sam­
ples used for the calibration. The standard 
deviation of an estimated analyte concen­
tration in a future sample is shown in 
Equation 10, in which fc is the mean 
value of M replicate measurements. 

Equation 10 provides a direct assess­
ment of the precision of analysis based 

(a) 

Concentration 
(b) 

True cA Estimated cA 

Concentration 

Figure 1. The instrumental 
response to interferences. 
(a) Response to an interference, g(c,), in the 
calibration set convolutes the instrumental 
response of the calibration standards, f(c,). 
This results in a calculated calibration line (—) 
that is significantly different from the true 
calibration line ( ). (b) Response to an 
interference, g(c,), in the unknown sample 
convolutes the instrumental response to the 
analyte, f(c,), and results in a biased concen­
tration estimate. 

only on the calibration data. Furthermore, 
the chemist can use Equation 10 to maxi­
mize the precision of analysis (minimizing 
oc). Precision can be improved by in­
creasing M, N, and the slope of the calibra­
tion curve, b. Trivially, this tells the chem­
ist to build a more sensitive instrument 
(with the same linear dynamic range) and 
collect more data. However, it also shows 
the rate of improvement the chemist will 
see. Precision improves approximately 
proportionally to the square root of the 
relative increase in the number of calibra­
tion samples and, at best, proportionally 
to the square root of the relative increase 
in the number of replicate samples. 

The precision of prediction can also be 
improved by reducing the third term un­
der the radical in Equation 10. The numer­
ator is at a minimum when the predicted 
samples are at the center of the calibra­
tion curve. The denominator is large 
when the calibration samples are far from 
their mean concentrations. Therefore, 
the third term under the radical is opti­
mized with a balanced experimental de­
sign when all calibration samples are at the 
extremes of the linear dynamic range. 
This experimental design, however, is dan­
gerous in practice because nonlinearities 
in the instrumental response cannot be de­
tected. 

First-order calibration 
A first-order sensor consists of a series or 
an array of zero-order sensors. Because 
the chemistry reflected by each separate 
zero-order sensor may be different, first-
order sensors can be expressed, in math­
ematical notation, as a vector of zero-order 
sensors as shown in Equation 11, in which 
the superscript Τ is the transpose of the 
vector; clt c2, . . . , cN are the concentra­
tions of all Ν compounds present in the 
sample; and q: is the baseline response of 
the /th sensor. For the / zero-order sen­
sors, fjQ * fj() * fj(). For ease of no­
tation, Equation 11 can be abbreviated as 
shown in Equation 12. 

A matrix of first-order instrument re­
sponses to a number of samples, R (sam­
ples χ variables), can be expressed as in 
Equation 13, in which the r,s are the first-
order instrument responses from the / 
samples. The elements of R in the rth 
row and /th column can be more precisely 
defined as in Equation 14, in which cu, 
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c2i, • .., cNi are the concentrations of all 
compounds in the Λη sample. Implicit in 
this formulation of R is the assumption 
that the functional form of each of the 
/fj( )s is constant for all / samples. By 
studying the functional form and the inter­
relation between the/ fj( )s, the chemist 
can determine exactly what is required to 
build a successful calibration model with 
a particular type of data. 

Constructing the model. The first-order 
inverse calibration model is shown in 
Equation 15, in which c is a vector of ana-
lyte concentrations in each of the / sam­
ples in R. The regression vector, b, is the 
part of the rows of R that is unique to the 
analyte of interest and orthogonal to all 
other spectrally active species in R The re­
gression vector is estimated by inverting 
R in Equation 15 to get Equation 16. 

Because R is often a nonsquare, near-
singular matrix, R"1 in truth usually does 
not exist. Instead, a pseudoinverse, R \ 
must be obtained by calculating a gener­
alized inverse of R or using either a singu­
lar value decomposition (SVD) or a par­
tial least-squares (PES) decomposition of 
R. The relationships between PLS, SVD, 
and other methods of inverting R have 
been documented (4). 

The SVD and PLS approaches decom­
pose R into a set of orthogonal basis vec­
tors that can be classified into two groups: 
those that describe the part of R that 
comes from changes in the chemistry and 
those that describe the part of R that 
comes from random noise. The basis vec­
tors that relate to the chemical signal 
and are much larger than the ones that re­
late to the instrumental noise are termed 
"significant." The pseudoinverse, and 
hence the regression vector, is calcu­
lated using only the significant vectors. 

Bilinear data. The simplest case of 
first-order instrument responses form bi­
linear data, which occur when the detec­
tor responds in a linear fashion to each 
detectable species and the signals of these 
species are linearly additive. Therefore 
the signal at each sensor in the array can 
be expressed as in Equation 17, in which 
otj is a vector of sensitivities of the ;th 
channel to the Ν species and c is a vector 
of compound concentrations. An example 
of linear additivity is the Beer-Lambert 
law. For a detector that follows Beer's law, 
ce; would be the molar extinction coeffi­

cient of the η species at the ;'th wave­
length times the pathlength. The instru­
ment response, r, of a mixture can 
therefore be expressed in matrix notation 
as Equations 18a and 18b, in which C is 
a matrix of concentrations where cNi is the 
concentration of the nth compound in the 
ith sample. 

Spectral interferences. Because a re­
gression vector, b, for an analyte must be 
orthogonal to the spectra of all other inter­
ferences, first-order calibration has a limi­
tation. Every spectrally active species in a 
future unknown sample must be included 
in the calibration model. Consider a sam­
ple with one or more species not repre­
sented in the calibration model. Part of one 
species' spectrum in a future unknown 
sample, when projected into the space de­
fined by the calibration set, could easily 

The instrumental 
baseline is the 

augmented offset 
of each of the 

sensors and can 
assume many forms. 

be correlated to the regression vector of 
the analyte. The projection of this interfer­
ing spectrum onto the regression vector 
of the analyte would then be mistaken as 
the analyte of interest, which would re­
sult in a biased estimation of the analyte 
concentration in the sample. 

In first-order calibration, an interfer­
ence can be detected, but analysis is not 
possible. In zero-order calibration, it is not 
possible even to detect an interference. 
Second-order calibration makes it possible 
to detect an interference and perform cal­
ibration and analysis despite the interfer­
ence. In rare cases, the problems associ­
ated with the presence of uncalibrated 
spectral interferences can be circum­
vented by assuming that at least one sen­
sor is unique to the analyte of interest (5), 
that spectra are positive (6, 7), or that the 
spectral peaks of the interfering species 

have particular shapes (8, 9). 
The instrumental baseline. The instru­

mental baseline is the augmented offset of 
each of the sensors and can assume 
many forms. By examining baseline form 
and similarity between the samples, it is 
possible to understand the amount and 
type of effort required to achieve an accu­
rate calibration in the presence of a 
baseline. 

The simplest baseline is constant for all 
samples and could be the spectrum of the 
solvent or an instrumental offset that is 
identical in all samples. This baseline can 
be eliminated from the model by subtract­
ing the mean of each column of R from 
each entry in the column for all rows of R 
This is known as "mean-centering" the 
data. 

The second type of baseline changes in 
intensity from sample to sample and could 
result from temperature changes or in­
strumental drift. Fortunately, for many an­
alytical chemistry applications (such as 
spectroscopy), these baselines are highly 
correlated between adjacent wavelengths. 
That is, the change in baseline intensity 
with respect to wavelength, ôq/ôq^, can be 
approximated by a simple polynomial. 
Therefore, for example, taking the second 
derivative of η with respect to wave­
length, δη/όΧ eliminates all baselines that 
can be approximated by a first-order 
polynomial, a sloping line. Because most 
analyte spectra when expressed as a func­
tion of wavelength have greater com­
plexity than a second-order polynomial, in­
formation related to the analyte concen­
tration is retained after derivatization. 

Alternatively, a model could be con­
structed that incorporates the baseline. 
The baseline would be treated mathemati­
cally as an interfering chemical species 
that is present in every sample. This 
method of treating a constant baseline off­
set has two drawbacks. Because the 
method requires one unit of rank in the 
calibration model, the number of true 
chemical species that can be included in 
the model is decreased by one. Also, it has 
been shown that mean-centering the data 
has statistical properties that are superior 
to those that would exist if a baseline were 
included in the model. 

Nonlinear signals. Nonlinear signals 
cannot be expressed in the bilinear form 
of Equations 17,18a, and 18b. Sekulic et al. 
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σΓ = 

r = i(c) + e (1) R i , j * fj(Cli>C2i· · · · • CN) + 

r = cb + e (2) %*% (14) 

r = f(c) + q + e (3) c = Rb + e (15) 

r - f(ca)f*(Cj, c2, . . . ) + e (4) 
Λ 1 

b = R-1c (16) 

SEL « r*/V (5) 

(6) 

ψν h cN) = a j c (17) 

SEN = (Ar/Ac) = 6 
(5) 

(6) r = [ctj I ocg I - -. lotfj c = AS (18a) 

S/N = r/er (7) R = (AC)T (18b) 

LOD = te/i (8) rj = ( ( c A lC A ) + gj(CA) 

NAS - (I - R n R > n 

(19) 

Ν Ν 

rj = ( ( c A lC A ) + gj(CA) 

NAS - (I - R n R > n (20) 
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(21) 

V N-2 

b = NAS/||NAS||2 
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(9) 
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r = [fjiCj, c2, . . . , cN) + i i , . . . , 

f j(cvc2, ..., cN) + ?j] + eT (11) 

rT = i(cv c2, ..., cN) + q + e T (12) 

R = [ r i | r2 | . . . | r , f + Q + E (13) 

SEN = — = ||NAS||2 
llbll2 

LOD = 3||e||2||b||2 

(25) 

(26) 

unk-' 

plh2var(ccal) (27) 

ΜΨ = ΝΨΛ 

JV 

'kn 
n-l 

Ν 

» = ι 

• 1 

NAR* 

NASN - ziN Σ «Λ* 
i - l 

S/N = ||NAS||F||E||F 

||NAS||F SEL = i|N||, 

SEN = IINASII 

LOD 
3||E||F 

IINASII, 

(28) 

(29) 

(30) 

(3D 

(32) 

(33) 

NARN = rank(M) - rank(M|N) (34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(10) investigated the use of different non­
linear calibration models and found no 
single best method for calibration with all 
types of nonlinear data. The calibration 
model that most resembles the type of 
nonlinearity occurring in the data will pro­
vide the best predictive results. A chemist 
who knows the theoretical nonlinear be­
havior of the data can wisely choose the 
most appropriate calibration method for 
the analysis. Unfortunately, many of the 
useful statistics and properties described 
in the following sections are not available 
for nonlinear methods. 

Matrix effects. One special case of non­
linear additivity of signal is a matrix effect, 
still defined as an effect that changes the 
sensitivity of the instrument to the ana­
lyte, as shown in Equation 19, in which 
f j(cA|CA) is the instrumental response to 
the analyte in the presence of interacting 

species of concentration CA and gj(CA) is 
the response of the interferences at the/th 
channel. If the instrument response to ana­
lyte A is not dependent on the presence of 
other species, f j(cA|CA) would reduce to 
fj(cA). The term f J(cA|CA) could be any 
function, linear or nonlinear, of species con­
centrations. Therefore, the sensitivity of 
the instrument to the analyte is a function of 
the matrix in which the analyte resides. To 
construct a calibration model, the effect of 
the matrix on the analyte must be con­
stant for all samples, and the concentrations 
of the spectrally active analyte and interfer­
ing species must vary in the calibration set. 
This can be accomplished by using the 
generalized standard addition method 
(GSAM). 

The GSAM requires that the chemist 
spike the sample with the analyte and each 
of the spectrally active species. This ap­

proach is an extension of SAM that as­
sumes that f j (CA|CA) is linear with respect 
to cA and constant with respect to CA for 
all standard additions and that f · (cA = 0) = 
0 for all /. These assumptions are aided 
by the fact that the species that cause the 
change in sensitivity to the analyte often 
are not spectrally active. One limiting fac­
tor in the precision of analysis is the selec­
tivity of the first-order instrument to the 
analyte. The statistical properties of the 
GSAM have been investigated via propaga­
tion of errors in order to guide chemists in 
the optimal application of this method (11). 

Figures of merit. The same figures of 
merit that serve as a guide for zero-order 
calibration are available for first-order lin­
ear calibration methods. The difference 
between zero- and first-order calibration, 
however, is that first-order calibration is 
possible even with nonselective sensors. 
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Therefore, when expressing the figures of 
merit, the part of the signal that relates 
uniquely to the analyte of interest is more 
important than the total signal. This 
unique signal, termed the net analyte sig­
nal (NAS), is defined in Equation 20, in 
which I is the identity matrix, R,, is the 
matrix of pure spectra of all constituents 
except the nth analyte, and rn is the spec­
trum of the analyte. The NAS is a vector 
and is related to the regression vector in 
Equation 15 by Equation 21, in which 
||NAS||2 designates the square root of 
the sum of squares of each element in the 
vector, b (12). Fortunately, to calculate 
the figures of merit, the NAS need not be 
explicitly calculated; only the length, as in 
Equation 22, is needed (23). The figures 
of merit can subsequently be written as 
functions of the regression vector (or 
NAS). 

The S/N of a given sample can be ex­
pressed as in Equation 23, in which c is the 
concentration of analyte in the sample 
and e is the random instrumental error in 
r. Note that S/N associated with a species 
measured on a first-order instrument is 
as much a function of the sensitivity of the 
instrument to the species as it is a func­
tion of the degree of similarity between the 
spectrum of the analyte and those of 
every other species. If more spectrally ac­
tive interferences are added to the sam­
ple, the S/N of the analyte decreases. 

Selectivity is expressed as in Equation 
24. The selectivity, ranging from 0 to 1, is 
a measure of how unique the spectrum of 
the analyte of interest is compared with 
the other species. A value of 0 means that 
analysis is impossible because the ana­
lyte spectrum is equal to a linear combina­
tion of the interference spectra. A value 
of 1 indicates that the interferences do not 
interfere. The values are seldom at these 
extremes, however, which is very impor­
tant because a first-order instrument 
does not require that the analyte's spec­
trum be completely orthogonal (no spec­
tral overlap) to all other species' spectra. 

The sensitivity, given by Equation 25, 
is proportional to the regression vector be­
cause the inverse calibration model is 
used. The units of sensitivity are signal/ 
concentration. One definition of the limit 
of determination is shown in Equation 26, 
although many other definitions exist 
(14-18). It does not make sense to use the 

term "limit of detection" for first-order in­
struments because the amount of analyte 
that can be detected is a function of the 
concentration of each interference. 

These figures of merit can serve as a 
guide for instrument design and character­
ization. In one application, 8 out of a pos­
sible 27 GC stationary phases were sought 
to coat quartz crystals in the construc­
tion of an array of piezoelectric sensors 
(19). Two sensor arrays were con­
structed. Coatings for the first sensor ar­
ray were selected to maximize the sensitiv­
ity of each individual coating to the three 
analytes of interest. Coatings for the sec­
ond sensor array were selected as a 
group for maximum selectivity to the three 
analytes. The sensor array chosen for 
maximum selectivity (Equation 24) had a 
lower limit of determination and was also 
more sensitive than the set of sensors 

Figures of merit 
can serve as a 

guide for 
instrument design 

and characterization. 
chosen for individual sensitivity. The sen­
sitivity for the sensitivity-based sensor ar­
ray is less than that of the sensor array 
chosen for maximized selectivity because 
of the high degree of redundancy in the 
signals from the sensors in the first array. 

Error propagation. Compared with 
zero-order calibration, propagation of er­
rors in first-order calibration has received 
little attention, partly because of the diffi­
culty of explicitly propagating random, in­
strumental errors through the calcula­
tion of a pseudoinverse of R. However, 
there are still useful contributions to the 
theory of analytical chemistry in this area. 
The work of Malinowski and Howery 
provides a firm foundation for this field 
(20). 

Lorber and Kowalski (21) have devel­
oped an equation to predict the concentra­
tion error associated with a first-order ar­
ray of sensors (Equation 27). Here, α and 
β are 95% confidence intervals based on 

the inverse r-test and h2 = runkR* is the 
leverage (uniqueness) of the unknown 
sample signal relative to the calibration 
set. The variance terms reflect the preci­
sion of the unknown sample response, 
runk, and the calibration samples' ana­
lyte concentrations, ccal. 

Theory, based on Equation 27, guides 
the analytical chemist toward optimizing 
precision by minimizing var(cunk). Trivi­
ally, var(cunk) is minimized by reducing 
the variance of runk and ccal. However, 
var(cunk) can also be reduced by mini­
mizing ||b||2 and ||h||2. Equation 22 states 
that the length of the regression vector, 
||b||2, is inversely proportional to the size 
of the net analyte signal, which is the part 
of the instrument response to the pure 
analyte that is orthogonal to the instru­
mental response of all other species. This 
says that the more unique the analyte 
spectrum, the shorter the regression vec­
tor and hence the lower the predicted con­
centration error. The leverage, ||h2||2, can 
be viewed as the Mahalanobis distance 
between the unknown sample and the 
center of the calibration set. Thus, var-
(cunk) is minimized in part when the un­
known sample is at the center of the cali­
bration set spectra in the vector space 
(21). 

Equation 27 presents further insights 
into optimizing calibration. Individual mea­
surements and samples do not have equal 
weights in determining calibration preci­
sion. A measurement corresponding to a 
large value in the regression vector has a 
much greater effect on precision than a 
measurement corresponding to a very 
small value on the regression vector. Simi­
larly, the error in a highly leveraged 
(unique) calibration sample has a larger ef­
fect on calibration error than the error of 
a calibration sample that is near the cen­
ter of the calibration set. 

Note from Equations 20 and 21 that the 
NAS and hence b are functions of every 
detectable species in the calibration set. 
Therefore, it is seen in Equations 22 and 
23 that the limit of determination and the 
precision of quantitation are defined only 
for a particular set of interferences. Add­
ing or removing an interfering species 
from the calibration set will change the 
NAS and associated figures of merit. 

Lorber and Kowalski have proved 
mathematically that adding sensors to a 
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first-order array will improve the predic­
tion error (13). By adding extra sensors to 
a first-order instrument, provided the re­
sponse of each additional sensor contains 
relevant information, the chemist can not 
only calibrate the instrument for the pres­
ence of.more chemical species, but also 
obtain a more precise calibration model. 

Second-order calibration 
Second-order instrumentation is analyti­
cally more powerful than zero- and first-
order instrumentation. Second-order in­
strumentation allows for analysis in the 
presence of any component in the sam­
ple that is not included in the calibration 
model. This is termed the second-order 
advantage and can be achieved with just 
one calibration sample. The pure second-
order spectra of each linearly independent 
compound can be estimated with second-
order data. Also, in many cases, the pure 
first-order spectra of each compound 
(e.g., the pure chromatograms and mass 
spectra in GC/MS) on both parts of a hy­
phenated instrument can be determined. 

A second-order instrument is con­
structed as a combination of two distinct 
first-order instruments, such as a chro­
matographic column and a multichan­
nel detector. Figure 2 shows a simulated 
instrument response of a liquid chromato-
graph with a diode-array detector. With 
second-order instrumentation, a second-
order tensor of data is collected for each 
sample, such as a matrix-dimensioned 
number of spectra measured at the end 
of the column by the number of channels 
in the detector. Note that the diode-array 
spectra rise and fall with the chromato­
graphic profile. The first instrument, the 
chromatographic column, modulates the 
response of the second instrument, the de­
tector, such that the final instrumental 
signal in each channel of the second-order 
spectrum is a function of both instru­
ments. 

Constructing the model. Conceptually, 
the second-order calibration model is quite 
different from the first-order calibration 
model because the decomposition of a 
cube of data (Figure 3) is often unique, 
whereas the decomposition of a matrix is 
never unique. The cube can be decom­
posed into a set of basis vectors in a man­
ner analogous to a second-order tensor. 
However, the cube is decomposed into a 

Figure 2. Second-order instru­
mental response. 

nonorthogonal set of basis vectors by way 
of an alternating least-squares (22), 
eigenproblem (23), or generalized eigen-
problem-based algorithm (24). These ba­
sis vectors of the cube relate directly to 
pure second-order spectra of every linearly 
independent compound present in the 
samples. 

For example, if two compounds occur 
in the same relative concentrations in ev­
ery sample, they are not linearly indepen­
dent. Because the true spectrum of each 
compound in the mixture can be esti­
mated, a regression vector—the part of the 
analyte signal that is orthogonal to all 
other compounds—is not required to esti­
mate the analyte concentration in the 
mixture. 

In the generalized rank annihilation 
method (GRAM), the generalized eigen­
problem (Equation 28) is used for direct 
comparison of a standard of known ana­
lyte concentration to a mixture sample in 
order to estimate analyte concentration in 
the mixture. In Equation 28, M and Ν are 
the mixture and standard matrices pro­
jected into a joint N-dimensional space 
where Ν is the number of species in the 
two samples combined. The Ν eigenval­
ues, L, are the relative concentrations of 
the Ν species in M compared with N. 
The eigenvectors, columns of Y, are re­
lated to the instrument responses of each 
of the two instruments in the hyphenated 
pair. 

For a calibration matrix (first-order cal­
ibration) , the decomposition is unique 
only if the basis vectors are constrained to 
be orthogonal. Orthogonal basis vectors 
seldom represent the real spectra of the 
compounds in the sample; thus, a re­
gression vector is required to relate the ba­
sis vectors to the analyte of interest. 

Trilinear data. The simplest type of 
second-order data follows the trilinear 
model as shown in Equation 29, in which, 
for example, Xin is the value in the ith 
row «th column of a matrix X and Rljk is 
the value in the ith row/th column Mi 
slice of a cube R. The columns of X and Y 
are the profiles of each of the Ν pure 
compounds as if they were analyzed by the 
first and second instrumental part of the 
second-order instrument, and the col­
umns of Ζ are the concentrations of each 
of the Ν compounds in the Κ samples. 
This type of data occurs if, for each sam­
ple, the instrument response of the first in­
strument, f(c), can be expressed as linear 
combinations of each species concentra­
tion in the sample, c, as shown in Equa­
tion 30. The response of the second instru­
ment (e.g., a multivariate detector), g(c), 
can be expressed as linear combinations of 
c, as in Equation 31. Obviously, Equa­
tions 29 and 31 are equivalent. 

Spectral interferences. Any compounds 
present in the unknown sample but not in 
the calibration sample that contribute to 
the instrumental signal are spectral inter­
ferences. This is consistent with first-
order calibration. However, because of 
the second-order advantage, calibration is 
still possible when multiple spectral in­
terferences are present. 

One potential problem is that the de­
composition of R is no longer unique when 
multiple interferences are present. The 
colinearity between the concentrations of 
the samples and the interference result in 
a loss of information when decomposing 
the cube. The columns of the estimated in­
strumental profiles, Xj and y„ no longer 
correspond to just one species, and only 
the sum of the interferences' second-order 
spectra can be determined. However, the 
instrumental profiles of the compounds 
that do not have colinear concentrations 
can still be estimated, and analysis in the 
presence of the multiple interfering spe­
cies is still possible. 

The presence of spectral interferences 
has no real detrimental effect on second-
order calibration aside from decreased sig­
nal averaging. In the case of trilinear data, 
the NAS and hence the regression vector 
for second-order calibration are not af­
fected by spectrally active interfering com­
pounds. The existence of each interfer­
ing compound mandates the inclusion of 
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Figure 3. Decomposition of a calibration set formed with second-order 
data (a third-order tensor). 

an additional basis vector in the decompo­
sition, which reduces the amount of sig­
nal averaging that occurs during calibra­
tion. When the number of basis vectors 
equals the maximum possible rank of the 
tensor, no signal averaging occurs during 
calibration. The shortest basis vectors 
are most affected by random noise. Conse­
quently, although the theoretical limit to 
the number of compounds allowed in the 
data for successful calibration is the maxi­
mum rank possible for the cube, the prac­
tical limit to the number of compounds is 
dictated by the noise level in the data. 

The instrumental baseline. An instru­
mental baseline is treated by second-order 
calibration algorithms in a manner identi­
cal to that for spectral interference. A num­
ber of basis vectors are used to represent 
the instrumental baseline, and each basis 
vector required to model the baseline in­
creases the complexity of the calibration 
model. As with first-order data, it is pref­
erable, but not necessary, to eliminate the 
baseline before calibration. This could 
be accomplished by hardware (such as sta­
bilizing the instrumental baseline) or 
software (such as taking the second deriv­
ative of each spectrum). Theory indi­
cates that removal of the instrumental 
baseline before calibration improves preci­
sion by increasing signal averaging during 
calibration as fewer basis vectors need to 
be determined. 

Matrix effects. Matrix effects occurring 
with second-order instrumentation are 
analogous to those that occur with first-
order instruments. This disrupts the tri-
linear nature of the data because the in­
strument response to a pure analyte is dif­
ferent from the response to that same 
analyte when another compound is 
present, as shown in Equation 32, in which 
g [fj (ca) ] is the instrument response to the 
pure analyte and g ] [ζ (ca | cm) ] is the in­

strument response to the analyte when an 
interference of concentration cm is present 
in the sample. Theory dictates that cali­
bration is still possible by a second-order 
standard addition method, and such a 
method will no doubt appear in the chemi­
cal literature in the near future. 

Other nontrilinear signals. Other devia­
tions from the trilinear model are com­
mon in analytical chemistry. The most 
general instrumental response of a second-
order instrument can be expressed as 
Equation 33, in which fj( ) is the function 
that relates the effect of the first instru­
ment on each compound in the sample 
(e.g., concentration present at the detec­
tor at a time i) and gj( ) relates each com­
pound to the final instrumental signal 
(e.g., molar absorbtivity at the/th wave­
length). For some methods, such as tan­
dem MS and heteronuclear NMR, the data 
from each sample are inherently nonbilin-
ear—each pure analyte cannot be approxi­
mated by a rank 1 tensor. Wang et al. (25) 
have shown that with nonbilinear rank 
annihilation (NBRA), each sample can be 
decomposed analogously to a Taylor se­
ries decomposition. Some terms in this 
decomposition are unique to the analyte; 
others are common with other species. 
Therefore, the second-order advantage 
is maintained. The number of unique 
terms in the decomposition and the associ­
ated signal are called the net analyte rank 
and the net analyte signal. However, the 
qualitative advantages of second-order cal­
ibration are lost because there is no 
means of calculating pure profiles in each 
order. 

Many intrinsically trilinear methods be­
come nontrilinear when the detector be­
haves in a nonlinear fashion. Theoreti­
cally, there are three solutions to this con­
centration-dependent effect: Work in the 
linear dynamic range, find local areas of 

trilinearity for data analysis, or transform 
the data to fit the trilinear model. Practical 
solutions to this problem have not been 
widely discussed in the chemical litera­
ture. 

Figures of merit. Figures of merit for 
second-order methods are analogous to 
those for first-order methods. The excep­
tion is the definition of the second-order 
NAS. With first-order analysis, the NAS 
is defined as being signal-related to the an­
alyte that is orthogonal to all other sig­
nals. This orthogonality constraint is re­
laxed in the second order; the NAS is 
defined by the net analyte rank (NAR), as 
shown in Equation 34, in which Ν and M 
are second-order pure component and 
mixture spectra, respectively, and the 
term (M|N) is read "M without N." The 
rank of a tensor is defined as the number 
of principal components in the decomposi­
tion of the tensor. Hence the NARN is the 
rank of the samples unique to N, the ana­
lyte; and the NAS is consequently ex­
pressed as in Equation 35, in which Xj, yt, 
and ziN are obtained by decomposing the 
calibration set based on the model in 
Equation 29. When the data are bilinear, 
the NASN is equal to the pure analyte data, 
N, the NAR is unity, and the interfer­
ences do not interfere with calibration. 
However, as with first-order calibration, 
when the data are nonbilinear the NAS de­
pends on the other components in the 
mixture. 

The remaining figures of merit can be 
defined as unit concentration by the NAS, 
as in Equations 36-39, in which || ° ||F 
represents the Frobenius norm, which is 
the square root of the sum of squares of 
the elements, and Ε is the matrix of er­
rors associated with the measurement. 
Again, for bilinear data SEL (selectivity) 
equals unity. 

Error propagation. The effects of model 
errors (e.g., chromatographic peak shifts 
in LC-UV) and random errors (e.g., detec­
tor noise) on eigenproblem-based sec­
ond-order calibration algorithms have 
been investigated. As with first-order cali­
bration algorithms, second-order calibra­
tion algorithms differ in the manner in 
which they handle errors. Model errors 
primarily affect the concentration esti­
mates, whereas random errors have a 
greater effect on the estimated intrinsic 
spectral profiles. Simulations show that 
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the second-order advantage is not lost un­
til the first-order NAS in either order 
drops below the instrumental noise level. 

These results can be used for bilinear 
second-order experimental design to 
guide analytical chemists in the optimiza­
tion of second-order instrumentation. For 
example, to achieve maximum quantita­
tive ability, the first instrument of the hy­
phenated combination should be as pre­
cise as possible. The degree of analyte 
discrimination in either order is not essen­
tial, provided that the first-order NAS in 
both orders is greater than the instrumen­
tal noise. Conversely, if species identifi­
cation is important, the chemist gets "the 
most bang per buck" by improving the sec­
ond instrument in the hyphenated combi­
nation; this is generally where random, 
uncorrected errors are introduced. 

Third- (and higher) order 
calibration 
Calibration methods and instrumentation 
are not limited to the second order. Excita­
tion-emission-time decay fluorescence 
generates a third-order tensor per sample. 
Other third- and higher order instrumen­
tal techniques are possible but not abun­
dant in chemistry, perhaps because we 
lack universal understanding of the theo­
retical advantages associated with these 
methods. 

One advantage of third-order calibra­
tion is known: With trilinear data from one 
sample, the intrinsic profiles in each or­
der can be determined uniquely for each 
species in the sample. This approach has 
been applied for the resolution of UV spec­
tra of plant pigments {26) and deconvolu-
tion of excitation-emission-time decay flu­
orescence spectroscopy (27). However, 
the complete third-order advantage, or the 
Mh-order advantage for that matter, is 
unknown. 

Model diagnostics and 
experimental design 
Model diagnostics include determination 
of the model quality (predictive ability), ap­
plicability of the data to the model (out­
lier detection), and the possibility of ex­
tracting information from the model 
parameters. The fit of the model to the 
calibration set is not a good indication of 
its predictive ability. Experimental design 
is important for ensuring the maximum 

effectiveness of the calibration. Both sub­
jects are well covered in general chemo-
metrics-oriented texts for zero- and first-
order calibrations. With second-order 
data, these fields of research are still in 
their infancy (28). 

The theory of analytical chemistry 
must not merely keep pace as new sec­
ond- and higher order instrumental meth­
ods are developed. It can be used to aid 
chemists in developing new measurement 
techniques. The theory behind analytical 
chemistry is never static; there is still 
much to be learned about variable sen­
sor selection and second-order experimen­
tal design. The limits to the advantages of 
third- and higher order analysis are un­
known. One thing is certain, however— 
analytical chemists did not inherit the the­
ory presented herein from another branch 
of science. 
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