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Abstract 

Sorting through the large array of calibration methods available for first and second order calibration is often a daunting task 
for initiates into the field of chemometrics. Justifying the selected method as the most appropriate one is even more difficult. 
Presented here is a justification for calibration method selection based on matching the model employed in the calibration 

method with the instrumental response function. This is applied to the disparate types of nonlinearities found in both first and 
second order calibration. Matching the calibration method to the instrumental response function is employed to parse the 
decision making process for choosing between branches in the first order parsimony tree. The different types of nonlinearities 
present in second order data and their implications on calibration model selection are discussed. 
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1. Introduction 

The advent of rapid, inexpensive computers has 
permitted the proliferation of computationally inten- 

sive calibration methods. Calibration by standard 
additions is possible for univariate, multivariate, and 
higher order data. Locally weighted regression 
(LWR), alternating conditional expectations (ACE), 
multivariate adaptive regression splines (MARS) have 

joined multiple linear regression (MLR), principal 

component regression (PCR), and partial least squares 
(PLS) as accepted multivariate calibration algorithms 
in the toolboxes of many practising chemometricians. 
Analysis of cubes and hyper-cubes of chemical data 
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by linear models is commonplace; application of non- 

linear models has just started to emerge. 

Consequently, one must chose between many com- 
peting methods and algorithms for application to any 

particular calibration challenge. Although it is well 
known that certain calibration methods are inapplic- 
able in some situations, and other methods are tailored 
to fill well defined niches, it is often a daunting 

challenge for many calibration method end-users to 
decide with confidence as to which calibration method 

to use in any given situation. The need to develop 

logical rules to aid in calibration method selection is 
imperative since, as technology progresses, technol- 
ogists are moving closer to implementing multivariate 
and higher order sensors capable of self calibration. 
Ideally, these sensors should have access to the whole 
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range of calibration methods and algorithms available 
to expert chemometricians. What remains is to con- 
struct an expert system capable of optimizing the 
decision making process. 

Chemometricians have been moving closer to such 
an expert system. Data collections can be classified 
based on the number of dimensions in the physical 
data structure. For example, in one nomenclature 
system, an instrument that produces a matrix (second 
order tensor) of data per sample, e.g. an LC-UVDAS, 
is nominally considered a “second order” instrument 
and the instrumental output is “second order” data. In 
a competing, but equally valid, nomenclature system 
data are classified based on their structure in a data set 
to be simultaneously analyzed. Here, a data set gar- 
nered from analyzing multiple samples on an LC- 
UVDAS is considered “3-way:” chromatographic by 
spectroscopic by samples. 

Esbensen, Wold, and Geladi employed the concept 
of ways and orders to comment on the relationship 
between data structure and information content [l]. 
This work permits discrimination among application 
of models of different orders for application to a 
particular problem. Gerristen et al. proposed an expert 
system that recommends calibration methods based on 
the knowledge of the system assumed and sought [2]. 
This permits discrimination between, say, the general- 
ized standard addition method (GSAM) and a (non)- 
linear multivariate calibration method, but does not 
permit discrimination among a host of nonlinear 
calibration alternatives. Seasholtz and Kowalski pre- 
sented a hierarchical decision tree for the selection of 
progressively complex multivariate models based on 
the Parsimony Principle [3]. This system is limited in 
the inability to decide between equivalent branches in 
the tree, e.g. LWR vs. ACE. 

The next requirement for an automated expert 
system is to develop a methodology to aid in rapidly 
choosing the best method for calibration. By the 
Parsimony Principle, the best calibration method for 
future prediction accuracy and precision will be the 
one that employs the simplest model that fits the 
calibration data. If otherwise equivalent methods 
are required to model the data to arbitrary precision, 
the method that incorporates a basis set that best 
mimics the data will construct the simplest model. 
This approach has been employed in modified artifi- 
cial neural networks, ChemNets [4]. Hence, many 

calibration method possibilities can be eliminated 
based on the knowledge that their basis models are 
not compatible with the theoretical instrument 
response function of the data collection. Comparison 
of the method basis model and instrumental response 
functions predicts the recommendations of Gerristen 
and Kowalski, help chose between branches in the 
Parsimony Principle decision tree, and can be 
extended to higher order calibration [5]. 

2. Zero-order (univariate) calibration 

Calibration of zero-order, or univariate instrumen- 
tation is well understood and hence, serves as a good 
starting point for the comparison of instrument 
response functions and model bases. The instrumental 
response function, f(), of a univariate sensor can be 
generalized to 

r = f(c,ei,ez,. . .) +E (1) 

where r is the instrumental response to a sample of 
analyte concentration, c. The remaining variables, er 
etc., describe the environment surrounding the sensor, 
be it interfering species or sample temperature. Any 
random errors associated with the collection and 
digitization of recorder data are collected into the 
error term, E. Depending on the function form of 
f () in Eq. (l), one of a number of different calibration 
strategies will be dictated. These calibration strategies 
are not unique to univariate calibration but can be 
generalized and extended to multivariate and multi- 
mode calibration. 

2.1. Linear calibration 

In general, for univariate calibration, the environ- 
mental variables are controlled to remain constant 
among all samples in the calibration set and with 
the future unknown samples. Hence, the instrument 
response is assumed to be a function of only analyte 
concentration, r = f(c). If f (c) is linear with respect to 
changes in analyte concentration, a set of samples with 
analyte concentration c would give rise to a set of 
instrument responses r based on the model 

r=cb+a+e (2) 

where the environmental variables factor into sensi- 
tivity of the instrument, b, or the instrumental signal 
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offset, a. Calibration and prediction can be performed 
by estimating the parameters 4 and b in Eq. (2) after 
analyzing at least two standards of known concentra- 
tion. If the instrument response is actually nonlinear 
with respect to analyte concentration or the unknown 
sample contains added species that produce an instru- 
mental response that is different from the instrumental 
response of the calibration standards’ matrix, predic- 
tion will be inaccurate. 

2.2. Nonlinear calibration 

If f(c) is not linear with respect to changes in 
analyte concentration, that is f(c) cannot be suffi- 
ciently modeled by a first order polynomial, a non- 
linear calibration method must be employed. Here, 
one or more of three different strategies can be 
employed: transformations, curve fitting, and local 
linear models. A logarithmic linearizing transforma- 
tion is common to convert nonlinear transmittance 
signals to linear absorbance data. The concept of 
employing local models is implicit in the notion of 
“linear dynamic range” and local models can be 
employed when global linearizing transformations 
are unavailable. If a linearizing transformation cannot 
be found and employing a series of local linear models 
is not acceptable, fitting a nonlinear function, e.g. a 
high order polynomial or cubic spline, to the instru- 
mental responses from the calibration samples can be 
employed to model f(c) and yield accurate predic- 
tions. As with linear calibration, if the unknown 
sample contains added species that yield an instru- 
mental response different from the instrumental 
response of the calibration standards’ matrix, predic- 
tion will be inaccurate. 

2.3. Calibration by standard additions 

The preceding calibration methods assume that any 
uncontrollable difference in the matrix of the unknown 
samples from that of the calibration standards does not 
change the function f() in Eq. (1). These matrix 
effects prohibit construction of accurate external cali- 
bration models unless the matrix of each unknown 
sample can be reproduced in the external calibration 
set. In most cases, matrix effects prohibit accurate 
univariate calibration. Assuming that the changes in 
the instrumental response with respect to analyte 
concentration is linear, matrix effects will effectively 

change either the instrumental offset, a in IQ. (2), or 
the instrument sensitivity, b in Eq. (2). In the case of 
changing instrument sensitivity, quantitation is possi- 
ble when the instrumental offset is 0, by employing the 
standard addition method (SAM) for calibration [6]. 
Calibration by SAM is inaccurate with any type of 
instrumental offset since it is impossible to distinguish 
the signal related to the instrumental offset from the 
signal derived from the analyte. Furthermore, if f (c) is 
nonlinear and cannot be linearized by a global trans- 
formation, SAM should not be attempted due to the 
lack of robustness of nonlinear methods to 
extrapolation. 

3. First-order (multivariate) calibration 

A first order sensor is an array of zero-order sensors 
where each zero-order sensor responds uniquely to 
changes of its environment. Hence, the instrumental 
response function of an array of J univariate sensors,r, 
can be expressed as 

rr = [fl(c,el,ez,...),f2(c,el,e2 ,...) ,..., 

fdc, el, e2, . . .)I + ET (31 

Assuming that the function fj() is constant for all 
samples, a collection of I standards in a calibration set 
can hence be expressed as I x J matrix R by augment- 
ing the instrument response vectors from the I 
standards, 

R = [q Ir21 . . . IrIIT + E (4) 

The power of first-order sensors lies in the ability to 
perform accurate calibration and prediction in the 
presence of multiple environmental factors (e.g. inter- 
fering chemical species) that elicit an instrumental 
response. By studying the functional form of each fj() 
and the interrelationship among the J fj()s, the appro- 
priate linear or nonlinear calibration methods can be 
determined. With all first order calibration methods, 
accurate calibration is contingent upon the existence 
of variance among each environmental factor in the 
calibration set. 

3.1. Bilinear calibration 

If each fj() that comprises rT can be expressed as 
linear combinations of the input variables c, ei , e2, . . . 
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then Ro is determined by 

Ri = cihoj + eliblj + euby + . + Eq 

= [ci, eli, ezi, , l]I[boj, blj, . . . , LZ]’ + Eq (5) 

where the subscript i andj refers to the ith sample and 

jth sensor. The bold capital I, I, represents an appro- 

priately dimensioned identity matrix. The matrix nota- 

tion for the determination of Rij from two vectors of 
input parameters, a vector of the analyte concentration 

and environmental factors and a vector of instrumental 
sensitivities, is in the “bilinear form” defined in 

mathematics and statistics. 

Eq. (5) relates to multivariate regression as the 

bilinear model, R = CB, employed by multilinear 

regression (MLR) [7]. Eq. (5) is also of the same 
form as the decomposition of a response matrix into 

scores and loadings that is employed by principal 

component regression (PCR) and partial least squares 
regression (PLS), R = UVT [8]. Both PCR and PLS 

assume a relationship between the scores, U, and 

analyte concentration based on the linear model 

c=Ub+& (6) 

where then regression vector b in Eq. (6) has no 

relation with the matrix B in Eq. (5). PCR and PLS 

differ only in the manner in which they determine the 
scores and loadings in the decomposition of R. 

3.2. Nonlinear calibration 

Two strategies for calibration are common with 
nonlinear multivariate data. Global transformations 

or fitting of global models are employed by methods 
such as nonlinear principal components regression 
(NPCR) and nonlinear partial least squares (NPLS) 
[8,9], alternating conditional expectations (ACE) 

[ 10,111, and global linearizing transformation regres- 
sion (GLT) [ 121. Locally weighted regression (LWR) 
[ 13,141, and multivariate adaptive regression splines 
(MARS) [ 15,161 utilize local (non)linear curves to fit 
the data for optimal predictive ability. For comparison 
of the models employed in many of these methods, see 
Sekulic et al. [ 171 and Frank [ 181. The search for the 
calibration method that will provide the best true 
predictive ability can be shortened with the aid of 
the parsimony principle in conjunction with compar- 

ing the form of the model basis function to the form of 
the instrumental response function. 

The parsimony principle states that of two sufficient 
models, the one that is defined by fewer parameters 

will have the better predictive ability [ 131. From this 
postulate, a hierarchy of increasingly complex cali- 

bration methods is constructed that branches at the 
advent of nonlinear calibration. A hierarchy does exist 

along the branches, e.g. LWR is more parsimonious 

than MARS since LWR is MARS constrained to use a 
local linear fit. However, the parsimony principle 

offers no insight as to which branch has the highest 

probability of containing the (most parsimonious) 

model that yields the optimal predictive ability. 

The need to search every branch of the parsimony 
tree can be alleviated by recognizing that NPCR, 

NPLS, ACE, and GLT employ global models. If there 
is no, or very little, expectation that a simple global 
transformation would convert the data into a linear 

space, these methods are probably not the best bet. On 

the contrary, LWR, MARS employ local models to 
effect optimal calibration. In general, there are addi- 

tional parameters associated with local models (e.g. 
optimizing the number of local samples or knots) so 

these methods would not be a parsimonious as an 
equivalent global model. Hence, it is predicted that the 

local methods will perform better when no global 
transformation to linearity exists and, based on the 

parsimony principle, the global methods will provide 
better predictive calibration models when either a 

global or local method is appropriate. 
The accuracy of these predictions are supported by 

the results of a comparative study of 8 linear and 
nonlinear calibration methods on 6 different data sets 
[17]. The calibration methods are assessed based on 

cross validation and true prediction. Of the three data 

sets whose models were compared based on cross 
validation, the results are inconclusive. Linear cali- 
bration always failed, but the local or global models 
performed equivalently. With simulated IR emission 
data, where a complex but continuous transformation 
function exists, ACE slightly outperformed LWR and 
MARS on true prediction. LWR and MARS outper- 
formed the other calibration alternatives for benzene 

and toluene prediction with an array of Taguchi gas 
sensors. In a separate study, GLT has difficulty hand- 
ling a sharp discontinuity in the response of the 
sensors in the array [ 121. In the final data set, linear, 
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local nonlinear, and global nonlinear models per- 

formed equivalently on prediction of oil content in 
soybean samples by NIR-reflectance. This data is 
purported to contain only slight nonlinearities. The 

lack of improvement witnessed by the nonlinear 

methods over linear calibration could be explained 
by the nonlinear methods incorporating equivalent 
amounts of noise and nonlinearities into the calibra- 

tion model. 

3.3. Calibration by generalized standard additions 

As with univariate calibration, the presence of 

uncontrolled environmental factors that change the 
functional form of the instrumental response with 

respect to changes in analyte concentration prohibits 

the successful application of external calibration. To 

compensate for these matrix effects, the required 
variance of the contributing variables in fi() must 

be elicited by standard additions of every contributing 
species. This is known as the generalized standard 

addition method (GSAM) [19]. 
GSAM has numerous limitations, although it is 

more powerful than the univariate standard 

addition method. Like SAM, GSAM is an extrapola- 

tive method so linearity is assumed. GSAM also 

assumes the linear model of Eq. (5) with the exception 
that sensitivity of the instrument to the analyte, b,, is a 

function of an environmental parameter that elicits no 

instrumental response on its own and that the instru- 
mental offset, a, is zero. If any of these assumptions 

are violated, the situation is inappropriate for the 
GSAM. 

4. Second-order (multimode) calibration 

A second order instrument is produced from two 
first-order instruments working in tandem to produce a 

second-order tensor, a matrix, of data per sample 
analyzed. With second-order instrumentation, one 
instrument modulates the instrumental response of 
the second instrument. Examples of second-order 
instrumentation are chromatographic-spectroscopic 
systems and excitation-emission matrix spectro- 
meters. The instrumental response for the ith, jth 

digitized channel of an instrumental response matrix, 

Rij is generalized 

Ru = gj(fCi(c, er . e2,. .): frii(C,ei. e2. . . .). .) + Eg 

(7) 

where ei , e2 generally refer to concentrations of other 

chemical species with signal profiles that overlap the 
signal of the analyte. Here, fci() is the instrumental 

response function for the analyte at the ith digitized 
row of R (e.g. f,, () yields apparent analyte concentra- 

tion at the detector on digitized time i with a chro- 

matographic system). The function f,i;() and 
subsequent functions are analogous to fci() except 

that they refer to the interferents. The function gj() 

is the detector response at the jth digitized channel and 
is analogous to fj() in Eq. (3). 

It should be noted that not all second-order data is 

produced by the interaction of two first-order instru- 
ments. One order can be provided by the natural 

progression of a chemical reaction or physical 

process. For example, a chemical engineer might 
consider a batch reactor that is monitored by a multi- 
variate sensor array to provide second-order data 

(the time evolution of temperature, pressure, color, 
etc.). 

Often, second-order data is broadly classified 

as either bilinear or nonbilinear. This classification 
is based on the interrelationship between the 

instrument response functions that create the data 

for each sample analyzed. This binary classification 
applied to second-order data is insufficient as it 

does not allow for accurate prediction of the best 

model to employ for calibration and prediction. To 
accurately predict the most appropriate calibration 

model, the relationship of the instrument response 
functions between samples and the linearity of the 
instrument response function in each order must be 

considered. 

4.1. Trilinear calibration 

In the instance that each f,i() is a linear function of 
only the respective chemical species where, for exam- 
ple, fci() = xoic and there is linear additivity of signal 
at the detector, Eq. (7) can be specified to 

Rij = [X(),X, % . .];D[yo, y,, .]’ + Eij @aI 
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or 

R=2 xnzny: + E 
n=l 

@b) 

Here, [~a, x1, . . .li specify the fraction of analyte that is 
present at the detector during instrumental state 
i, Iys, yi, . . .lj specify the sensitivity of the detector’s 
jth digitized channel to the chemical species. The 
concentrations of the chemical species present, 

k,el,...l, comprise the diagonal matrix, D. The 
vectors x,, and yn present the instrumental profiles 
with respect to each of the two conjugated instruments 
for the nth chemical species. For a collection of K 
samples, the instrument response of the kth sample is 

Rik = [x~,xl,...]iDk~o,~lr...]~ +f$ (94 

where D is a diagonal matrix of the species’ concen- 
trations in the kth sample, or 

Rk = 2 x&,,y,T + Rk (9b) 
IL=1 

Eq. (8a) presents the construction of R in terms of 
the bilinear model familiar in mathematics and sta- 
tistics, while Eq. (Sb) presents the construction of R in 
terms of the bilinear parallel factor analysis (PAR- 
AFAC) model familiar in chemistry [20]. Of note is 
the fact that if a collection of second-order spectra 
have been constructed following the model of 
Eqs. (9a) and (9b), the data can be uniquely decon- 
volved into a set of arbitrarily scaled instrumental 
profiles for the N constituent species, x,s and yns, and 
a set of relative concentrations among the K samples, 
the N columns of Z. Since the bilinear model is a valid 
description of the data and the integrated spectral 
intensity of the analyte increases linearly with respect 
to increases in analyte concentration, the collection of 
data is said to be trilinear. 

The trilinear model is implicit in early rank anni- 
hilation methods where quantitation is based on ratio- 
ing the resolved spectral intensity from two samples, 
one standard and one unknown [21,22]. Modem meth- 
ods based on the generalized eigenvalue-eigenvector 
problem [23,24] and iterative least squares [25] have 
employed the trilinear assumption. With trilinear data 
calibration can be accomplished with only one impure 
standard of known analyze concentration. Also, the 

instrument response functions in each order can be 
recovered. 

4.2. Non-trilinear bilinear calibration 

If the I f,-i()s are nonlinear functions of just analyte 
concentration, the instrument response of each sample 
follows a bilinear model. However, the data is not 
trilinear as there is no linear relationship among the 
resolved spectral intensities for the analyte in each 
sample. There are two types of bilinear, but not tri- 
linear, data that are encountered in analytical chem- 
istry, one is interpretable with minor modifications to 
the calibration methods applied to trilinear data. With 
the other, calibration is more difficult. 

4.2.1. Global non-trilinearities 

When the concentration dependence for all chan- 
nels in the collection of samples is a single monotonic 
function of analyte concentration, Eq. (7) can be 
specified to 

Rik = [x0,X1, .. .]iDk[YO>Yl> “‘17 +Eck (10) 

where Dk is a diagonal matrix with nonlinear functions 
of the analyte’s and interferent’s concentrations in the 
kth sample, [fJc>, f,l(el), . . .lk, along the diagonal. 
Note that Eq. (10) still is in the bilinear form with 
same instrumental profiles, x, and yn for all samples. 
This type of non&linear data differs from trilinear 
data only in the fact that there is no linear relationship 
between the analyte concentration in each sample and 
the relative resolved spectral intensity of the analyte in 
each sample, z,. 

This type of concentration dependent nonlinearity 
has been observed in a chemically facilitated Donnan 
dialysis-spectroscopic based sensor for analysis of 
Cd(I1) and Pb(I1) [26]. Here, accurate calibration is 
possible if enough standards are collected to model 
f,() as a function of resolved spectral intensity. The 
instrumental profiles are also recoverable. 

4.2.2. Local non-trilinearities 

In the previous example, the concentration depen- 
dent nonlinearity g,() was constant among all I rows 
in each data matrix Rk. Eq. (7) can be specified to 

(11) 
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where Dk is a diagonal matrix with nonlinear functions 
of the analyte’s and interferent’s concentrations in the 
kth sample, [fic(c),fiei(ei), . . .lk, along the diagonal 
and fic() is a different function of analyte concentra- 
tion for each of the I samples. If the concentration 
dependent nonlinearity differs among the I rows in 
each Rk calibration is much more difficult. 

The detrimental effects of this nonlinearity can best 
be illustrated with an example. Consider two 3 x 3 
second-order instrument response matrices for the 
analyte where the first row is proportional to the 
analyte concentration, ftJc) = c, the second row is 
proportional to the square of analyte concentration, 

f2c(c) = c2, and the third row is proportional to the 
cube of analyte concentration, fsc(c) = c3. The sec- 
ond instrumental profile, y, is defined by y = [ 1,2,3]r. 
Two samples, one of unit and the other of twice unit 
concentration, would have instrumental response 
matrices of 

l*l 2*1 3*1 1 2 3 
R1 = l* l2 2* l2 3* l2 

[ 

=123 
1 * 13 2 * 13 3 * 13 I[ 1 1 2 3 

(12a) 

and 

Note that the second instrumental profile, y, is 
identical for both samples, [l, 2,3]r; however the 
concentration dependent nonlinearity causes the 
effective first instrumental profile, x, to differ from 
Ri to R2. With Rt x is effectively [l, 1, l]r, while 
with R2 x is effectively [l, 2,4]r. Consequently, the 
trilinear model cannot be applied to such collection 
of data. 

When the analyte (and interferents) exhibits this 
type of nonlinearity quantitative calibration is not 
possible but self modeling curve resolution techniques 
such as evolving factor analysis (EFA) can be used to 
extract the spectral profiles of the analyte in each 
sample [27,28]. When just the interferents exhibit 
local concentration dependent nonlinearities, quanti- 
tative calibration is possible by way of the second- 
order standard addition method (see below). Such 

nonlinearities have been observed in, for example, 
pH-spectroscopic titrations with competing ligands. 

4.3. Non-trilinear non-bilinear calibration 

The bilinear model assumes that the instrument 
response is consistent, except for a scaling 
factor, throughout each order. That is, 
gj(f,i(c)) = ajgj+l(fci(c)) for constant j all i and 
gj(fci(c)) = Qigj(fci+i (c)) for constant i and all j. If 
this condition does not hold, the bilinear model cannot 
be directly employed to extract the pure species 
profiles. There are two types of this nonlinearity that 
are often encountered in analytical chemistry. The first 
allows accurate calibration under special conditions 
with the bilinear model, the second requires that a data 
transformation be determined before the bilinear 
model be applied. 

4.3.1. Apparent nonbilinearities 

With instrumentation such as tandem-mass spectro- 
meters and reaction kinetics-spectroscopic sensors, 
each species in the sample can form multiple distinct 
products upon interrogation by the first instrument in 
the hyphenated pair. Each of the distinct products has a 
unique instrumental profile in each of the two orders. 
This is the type of data that is traditionally considered 
“nonbilinear.” 

However, the bilinear model of Eqs. (8a) and (8b) 
and often the trilinear model of Eqs. (9a) and (9b) are 
applicable for calibration if allowance are made that 
consider the model linear with respect to the each 
subspecies formed not the initial species. Here, there 
will be an fi(c) for each subspecies formed. The 
number of subspecies formed per initial species ranges 
from 2 to 3 for reaction-kinetics based sensors to close 
to I for tandem-MS data. 

The best calibration strategy to employ depends on 
the number of species formed per initial compound 
present in the calibration and unknown samples. With 
reaction-kinetics sensors, where the number of sub- 
species is small, variants of the trilinear model such as 
constrained Tuckers models [29,30] (relaxed PAR- 
AFAC models) and self modeling curve resolution 
based methods [31] have been successfully employed 
for calibration and spectral resolution. When the 
number of subspecies is large, as with tandem-MS, 
the non-bilinear rank annihilation method can be 
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employed for quantitation [32]. However, calibration 
by this method requires a pure standard of 
known concentration. Spectral resolution is not pos- 
sible. 

4.3.2. Inherent nonlinearities 
If the instrumental response of the second instru- 

ment, the detector, is nonlinear the bilinear model of 
Eqs. (8a) and (8b) is not applicable. For most non- 
linear detectors, three simplifying assumptions can be 
applied: 

The non-linearity of the detector is a function of 
the total power impinging on the detector. 
There is no interaction between the compounds at 
the detector. 
The power a compound imparts on the detector is a 
monotonic function of the compound’s concentra- 
tion. 

Assuming that the instrumental profiles of each 
species from the first of the two conjugated instru- 
ments is linear and additive with respect to changes in 
concentration, Eq. (7) can be specified to include a 
nonlinear detector response in the jth channel, 

Rijk = gj([xo,xt,. . .]iDk[Yo,Y1,. . .]f, + Eijk (13) 

where Dk is a diagonal matrix of the analyte’s and 
interferent’s concentrations in the kth sample and Yjn 
relates the concentration of the nth compound to the 
power imparted onto the detector. For spectroscopic 
applications Yj” would be Ejb, where ej is the molar 
absorbtivity at wavelength j and b is the optical 
pathlength. 

Unfortunately, nonlinear data that is described by 
Eq. (13) cannot directly be used for calibration. 
Eq. (13) does not follow a bilinear model. This type 
of nonlinearity convolutes the intrinsic profiles of the 
compounds in each instrumental order and quantita- 
tive information is obscured as the instrumental 
response does not increase uniformly over all rows 
and columns with increasing analyte concentration. 
However, there is a bilinear model imbedded inside 
the function gj(). If the inverse function to transform 
the Jgj()S could be determined, Eqs. (9a) and (9b) 
would be applicable. Currently no calibration method 
has been published that explicitly tackles this problem, 
but an extension of global linearizing transformations 

to second-order data may provide an effective cali- 
bration strategy for unspecified nonlinearities. 

4.4. Calibration by second-order standard additions 

When the instrumental profiles of the analyte, the 
sensitivity of the instrument to the analyte, or the 
instrumental profiles of the interferents are dependent 
on the concentration of nonanalyte species in the 
samples, the trilinear model of Eqs. (9a) and (9b) 
are inappropriate to describe the instrumental 
response function for an arbitrary collection of sam- 
ples and hence accurate calibration with an external 
calibration set is not possible. However, each sample 
does follow the bilinear model of Eqs. (8a) and (8b). 
The trilinear model is applicable if the samples in the 
calibration set and unknown samples are constrained 
to have the same concentrations of interfering species. 
Therefore, analyte quantitation is possible with a 
standard addition method. 

The second-order standard addition method 
(SOSAM) has the advantage over GSAM that only 
standard additions of the analyte are required. 
SOSAM is applicable with both trilinear and multiple 
product second-order calibration where it has been 
applied to calibration of reaction kinetics-spectro- 
scopic sensors [33]. Naturally, since standard addi- 
tions are extrapolative, SOSAM is inappropriate for 
use with nonlinearities stemming from analyte con- 
centration based nonlinearities. 

5. Conclusions 

Presented here has been a mathematical basis for 
choosing calibration models with first- and second- 
order chemical data. The next logical step would be to 
incorporate these results into a set of heuristic algo- 
rithms to aid users in model selection. For such an 
expert system to be of maximum value, what is needed 
is a set of diagnostic tools that automatically evaluates 
any set of data for nonlinearities and suggests the 
appropriate experimental design for the proper cali- 
bration model. 
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