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Limit of detection estimator for second-order bilinear calibration
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Abstract

A new approach is developed for estimating the limit of detection in second-order bilinear calibration with the generalized
rank annihilation method (GRAM). The proposed estimator is based on recently derived expressions for prediction variance
and bias. It follows the latest IUPAC recommendations in the sense that it concisely accounts for the probabilities of committing
both types I and II errors, i.e. false positive and false negative declarations, respectively. The estimator has been extensively
validated with simulated data, yielding promising results. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The limit of detection (LOD) is an important figure
of merit in method validation when the determination
is performed at low levels of analyte concentration.
The subject has been extensively studied and several
methodologies have been proposed for its calculation
in both zero-order (univariate) [1–3] and first-order
(multivariate) [4–7] calibration. As any other analyt-
ical determination, second-order calibration methods
must be validated at trace levels. This validation,
however, presents a major problem, because LOD
estimation for second-order data has not been sys-
tematically addressed. Different attempts have been
made, but they all suffer from limitations. Some deal
with the problem by collapsing the second-order
data matrix to a scalar or vector, and then applying
zero- or first-order strategies for the LOD calcula-
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tion [8,9]. Other approaches simply calculate LOD
as three times the standard deviation of the blanks
[10,11]. It is stressed that the previously proposed
LOD estimators do not comply with the latest IUPAC
recommendation [12], formulated for zero-order data.
This recommendation demands the incorporation of
the probabilities of committing both types I and II er-
rors in the LOD calculation. Finally, Faber et al. [13]
propose an LOD estimator that is consistent with the
IUPAC criteria. However, the practical utility of this
estimator is limited, because it is formulated in terms
of signal, rather than analyte concentration.

The aim of this paper is to extend the latest IUPAC
recommendations to the realm of multi-way analy-
sis. To this end, we propose an LOD estimator for
second-order bilinear calibration with the general-
ized rank annihilation method (GRAM). GRAM is
a method for curve resolution and calibration that
requires only a single calibration sample [14]. Unlike
conventional first-order methods such as principal
component regression (PCR) or partial least squares
(PLS), GRAM does not construct a model from data
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obtained for a calibration set. Instead, it works by con-
structing ajoint model for the calibration sample and
prediction sample data matrices. An important con-
sequence of the construction of a joint model is that
correct prediction of the analyte of interest is feasible
without modelling the interferences. This property is
known as the second-order advantage. The practical
value of the second-order advantage is likely to in-
crease with the complexity of the prediction samples.
It is noted that several alternatives have been proposed
to solve this particular calibration problem. They
comprise the relatively old method of alternating least
squares [15], as well as a suite of new methods, i.e.
alternating trilinear decomposition [16], alternating
coupled vector resolution [17], alternating slice-wise
diagonalisation [18], alternating coupled matrices
resolution [19], and self-weighted alternating trilin-
ear decomposition [20]. The reason for focusing on
GRAM is that LOD estimation requires that expres-
sions be available for the expected prediction error.
Unfortunately, the necessary error analysis has not yet
been developed for any of these methods. Restricting
ourselves to GRAM is further motivated by the obser-
vation that GRAM compares well with the alternatives
under standard assumptions for noise [21]. The pro-
posed estimator is built using the expressions for pre-
diction variance recently developed for GRAM [22],
which also take into account the uncertainty due to
correcting for prediction bias [23]. These expressions
are approximate, because they are obtained by truncat-
ing a Taylor series expansion. It is important to note
that truncated Taylor series expansions yield good ap-
proximations only if the noise in the data is relatively
small (say, less than 10%). Otherwise, higher-order
terms must be included. However, working out the
resulting problem may well be mathematically un-
tractable for complicated methods such as GRAM.
The demand of sufficiently low noise level, which is
often met by modern analytical instruments, could
certainly preclude the use of these approximations in
fields where low noise levels are the exception, e.g.
environmental chemistry and the social sciences. It is
important to note that the currently proposed approach
[24] has worked well for LOD estimation in first-order
calibration of near-infrared (NIR) data using PCR [6].

The proposed LOD estimator is extensively val-
idated with simulated excitation-emission fluores-
cence spectroscopy (EEM-FL) data. The reason for

performing simulations is that a thorough validation
amounts to investigating the distribution of predic-
tions. Such an investigation typically requires a very
large number of samples, which is not practical in the
real world. While, according to us, validation of an
approach is best done using simulated data, the prac-
tical utility is only demonstrated using real examples.
We are currently investigating the practical utility of
the proposed LOD estimator in our laboratory.

2. Theory

2.1. Notation

Boldface uppercase letters represent matrices, e.g.
A, while scalars are indicated by italic uppercase or
lowercase letters, e.g.A anda. Measured quantities are
distinguished from their errorless counterparts (true
values) by adding a ‘tilde’, e.g.̃A. Likewise, estimated
or predicted quantities carry a ‘hat’, e.g.Â.

2.2. Second-order bilinear calibration using GRAM

In the general set-up of GRAM the calibration sam-
ple may contain analytes that are not present in the
prediction sample, and vice versa. In this scenario, the
two data matrices can be expressed as

R̃0 = XC0YT + E0, R̃u = XCuYT + Eu (1)

whereR̃0 andR̃u are measured for the calibration and
prediction sample,X (J1 × K) andY (J2 × K) con-
tain the column and row profiles (K is the number of
constituents present in both samples),C0 andCu are
K ×K diagonal concentration matrices (with zero di-
agonal elements for the analytes that are absent), and
E0 andEu areJ1 × J2 error matrices.

Calibration and prediction with GRAM is a
three-step process.

1. Singular value decomposition (SVD) of the sum

matrix Q̃ = R̃0 + R̃u as Q̃ = ÛŜV̂
T

to get trun-
cated orthogonal factor matriceŝU(J1 × A) and
Ṽ(J2 × A). The number of factorsA is an estimate
of K.

2. Solution of the eigenvalue problem(Ŝ
−1

Û
T

R̃uV̂)

T̂ = T̂Π̂. In this step,R̃u is projected onto the
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factor space defined bỹQ to obtain the eigenvector
matrix T̂ and the matrix of eigenvalueŝΠ.

3. Estimation of the column and row profiles (X and
Y) by applying the transformation matrix̂T on Û
andV̂, respectively. The prediction for the analyte
of interest is obtained by combining the measured
concentration in the calibration sample,c̃0, and the
associated eigenvalue,π̂ , as

ĉu = c̃0π̂

1 − π̂
(2)

This calculation requires̃c0 and π̂ to be matched,
which in practice is achieved by comparing the
estimated profiles (appropriate column ofX̂ and
Ŷ) with reference profiles. Throughout this paper
the number of the analyte is not made explicit to
simplify the notation.

2.3. Standard error of prediction and
prediction bias when using GRAM

Accuracy is defined as the closeness of agree-
ment between a test result and the accepted reference
value and, when applied to a set of test results, in-
volves a combination of random components and a
common systematic error or bias component [25].
In other words, accuracy is the sum of two com-
ponents: so-called trueness and precision (Fig. 1).
Whereas trueness indicates how close the mean of
a set of results is to the true value, precision is a
measure of how close results are to one another.
Trueness and precision are usually expressed in terms
of bias and standard error (square root of variance),
respectively.

Fig. 1. Illustration of the concept of prediction bias. The distribu-
tion of predicted values,̂cu, around the mean or expected value,
E(ĉu), deviates from the true valuecu.

Standard error of prediction can be estimated using
[22]

σ̂ (ĉu) = [ŝ−2(1 + ĥu)V̂ (R̃) + ĥuV̂ (c̃0)]
1/2 (3)

where ŝ is the sensitivity,ĥu the prediction sample
leverage,V̂ (R̃) the variance of the elements ofE0
and Eu (estimated in reproducibility conditions) and
V̂ (c̃0) is the variance of the measurement error in
c̃0, respectively (all quantities are estimated). The
sensitivity in Eq. (3) is the generalisation of Lorber’s
multivariate sensitivity [26] to bilinear second-order
data [13]. It is obtained as the ratio of an appropri-
ately defined net analyte signal (NAS) and the analyte
concentration. The prediction sample leverage is the
same as for a classical zero-order model with a single
calibration sample [13], i.e.hu = (cu/c0)

2. Thus,
from the perspective of standard error of prediction,
GRAM behaves as zero-order ordinary least squares
(OLS). It is noted that a GRAM model does not have
an intercept, since the second-order advantage im-
plies that interferences are handled “mathematically”.
Consequently, a GRAM model can be (exactly) pre-
sented as a zero-intercept zero-order calibration graph
constructed with a single calibration sample. This
observation makes the development of an LOD es-
timator intuitive, because it allows one to visualise
prediction bands in the usual way (see Fig. 2).

Previous studies have demonstrated that random
measurement errors cause the GRAM eigenvalues to

Fig. 2. Prediction bands of a zero-intercept zero-order calibration
graph constructed with a single calibration sample. The symbols
are explained in the text.
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be biased [27,28]. This bias directly translates into
prediction bias, which can be estimated using [23]

B̂(ĉu) = c̃0B̂(π̂)

(1 − π̂ + B̂(π̂))(1 − π̂)
(4)

whereB̂(π̂) is the bias in the associated eigenvalue,
see Eq. (17) in [23]. It is worth mentioning that this
bias arises from the non-linear character of the estima-
tion method. GRAM shares this non-linear character
with the alternatives listed in Section 1. Eq. (4) enables
removing most of the prediction bias [23]. Clearly,
one must remove the prediction bias; otherwise a
decision cannot be taken with respect to the presence
or absence of the analyte in the sample. Consequently,
a bias-corrected prediction has to be calculated:

ĉbc
u = ĉu − B̂(ĉu) = c̃0(π̂ − B̂(π̂))

1 − π̂ + B̂(π̂)
(5)

However, when a result is corrected for bias, this
must be included in the uncertainty budget. The rea-
son for this is that correction for bias amounts to
subtracting a number that carries an uncertainty it-
self. Consequently, the standard error of prediction
is increased. The standard error in the bias-corrected
prediction can be estimated using (Eq. (22) in [23]
and neglecting the contribution ofc̃0)

σ̂ (ĉbc
u ) =


( c̃0 + ĉbc

u

1 − π̂ + B̂(π̂)

)2

V̂ (π̂)

+
(

−(c̃0 + ĉbc
u )

1 − π̂ + B̂(π̂)

)2

V̂ (B̂(π̂))




1/2

(6)

where V̂ (π̂)and V̂ (B̂(π̂)) follow from inserting
estimates in Eqs. (14) and (64) in [23].

2.4. LOD estimator

The LOD is commonly defined as the minimum
amount or concentration of substance that can be
reliably detected by a given analytical method. In the
last IUPAC document [12], LOD is considered as a
fundamental performance characteristic of a method
of analysis. Thus, LOD is an a priori defined value,
because it is fixedbeforethe measurements are made.
The LOD is essentially different from a detection

decision, because the latter is taken once the result of
the measurement is known. In other words: a posteri-
ori. The decision of whether a given analyte is present
or not in a sample is based on a comparison with the
critical level,LC, which is defined as

LC ≡ z1−ασ0 (7)

wherez1−α is the upper-α percentage point of a normal
distribution andσ 0 is the standard error of prediction
when the analyte is not present in the sample (zero con-
centration level). The value ofα is the risk one accepts
of committing a false positive decision, i.e. stating that
the analyte is present when in fact it is not. For pre-
dictions belowLC there is no statistical evidence that
the analyte is present. This is illustrated in Fig. 3 that
shows the distribution of results obtained for a sample
where the analyte of interest is not present. Half of
the predictions are above zero and half of them below.
The LC is defined in order to mark a minimum value
for which a prediction is considered as being caused
by the analyte. By doing so, there exists a riskα of
committing a type I error, i.e. a false positive decision.
Then the natural question arises: why not takeLC as
the LOD? This would imply that, with the proposed
method, the presence of analyte could be detected at
concentration levels as low asLC. This reasoning is,
however, naive. Consider, for example, a collection of
samples, all of them containing the analyte at a con-
centration level equal toLC. Approximately half of
the samples would give rise to a prediction belowLC
and the analyte would not be detected. Consequently,
we would run a risk of about 50% of committing a
false negative decision, i.e. stating that the method is
not able to detect the presence of analyte at that level

Fig. 3. Normal distributions at zero concentration level (null hy-
pothesis H0) and at the level of the LOD (alternative hypothesis
H1). Theα andβ represent the probabilities of types I error (false
positive) and II error (false negative), respectively (see text for
more details).
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of concentration, while in fact, it was claimed that the
substance could bereliably detected. To keep the risk
of a false negative decision (calledβ) low, the LOD
of the method,LD, must be higher (Fig. 3) by taking
into account both probabilities of error:

LD ≡ z1−ασ0 + z1−βσD (8)

where z1−β is the upper-β percentage point of a
normal distribution andσD is the standard error of
prediction when the analyte is present in the sample
at the level of the LOD.

In the remainder of this section we will first develop
a simplified approach to LOD estimation by neglecting
prediction bias. Next, we will present the proposed
LOD estimator as a straightforward adaptation of the
simplified approach.

2.4.1. LOD estimator that does not take
account of prediction bias

The two standard deviations,σ 0 and σD, can be
estimated from Eq. (3). Formally, their calculation
requires a sample without analyte (zero concentration
level) and a sample with a concentration equal to the
LOD, respectively. However, these samples may not
be available. Fortunately, the problem can be solved
by performing a GRAM calibration and setting the
prediction to zero (̂cu = 0) and to the LOD (̂cu =
L̂D), respectively, in the prediction sample leverage
in Eq. (3). It is important to note that the resulting
LOD estimate is specific for a certain combination
of analytes. For each sample a different LOD is cal-
culated, which may be similar for groups of samples
with similar composition. Lorber [26] has already em-
phasised the sample-specific character of LOD when
going beyond zero order data. The reason for this is
the incorporation of the interferents in the model.

Assuming that the variance of the measurement
error in the calibration sample concentration,V̂ (c̃0),
is negligible, the critical level and the LOD are
estimated by

L̂C = z1−ασ̂ (ĉu)0 = z1−ασ̂ (R̃)ŝ−1 (9)

L̂D = z1−ασ̂ (ĉu)0 + z1−βσ̂ (ĉu)D

= z1−ασ̂ (R̃)ŝ−1 + z1−βσ̂ (R̃)ŝ−1

√√√√1 +
(

L̂D

c̃0

)2

(10)

whereσ̂ (R̃) = V̂ (R̃)1/2 and the two standard devia-
tions, σ̂ (ĉu)0 andσ̂ (ĉu)D are the analogues ofσ 0 and
σD.

Eq. (10) is a quadratic equation in̂LD. It has an
exact solution, which further simplifies when making
the common choicez1−α = z1−β = z to

L̂D = 2L̂C

1 − (L̂C/c̃0)2
(11)

Eqs. (9)–(11) illustrate that for second-order
bilinear calibration using GRAM, the LOD depends
on:

• the probabilitiesα and β of committing false
positive and false negative decisions;

• the noise level in the response data;
• the sensitivity of the method;
• the analyte concentration in the calibration sample.

For example, for high values ofc̃0, Eq. (11) simpli-
fies toL̂D = 2L̂C.

2.4.2. LOD estimator that takes account
of prediction bias

As we have mentioned above, both standard error
and bias have an influence on detection limits. When
checking the presence or absence of the analyte in
a given sample, a bias-corrected prediction has to
be compared toL̂C. This correction introduces an
uncertainty, which must be included in̂LC and subse-
quently inL̂D. The resulting modifications of Eqs. (9)
and (10) are

L̂C = z1−ασ̂ (ĉbc
u )0 (12)

L̂D = z1−ασ̂ (ĉbc
u )0 + z1−βσ̂ (ĉbc

u )D (13)

where the two standard deviations,σ(ĉbc
u )0 and

σ(ĉbc
u )D, are the analogues ofσ 0 andσD. They can

be estimated by performing a GRAM calibration and
setting thebias-correctedprediction to zero or LOD
in Eq. (6). Since the LOD is unknown, an iterative
procedure must be carried out in the latter case. We
have found it convenient to use twice the critical
value as an initial guess of LOD. This leads to an
initial value of σ(ĉbc

u )D, which can be subsequently
inserted in Eq. (13) to obtain an improved estimate of
LOD, etc.
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Fig. 4. Normalised (a) excitation and (b) emission spectra of tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe).

3. Experimental

3.1. Data and simulations

Simulated data were used to demonstrate the
validity of the approximate expression for the LOD.
Fig. 4 shows the excitation (X) and emission (Y)
fluorescence spectra of the amino acids tryptophan,
tyrosine and phenylalanine that were used to simulate
the data. These spectra were obtained from a three-
factor PARAFAC model applied to the five samples
contained in the datasetclaus.mat, which is available
in the N-way toolbox for Matlab [29]. Noise-free
calibration and prediction sample response matrices,
R0 andRu, were simulated according to Eq. (1) with
the concentrations indicated in Table 1. Next, the
following three steps were repeated 200 times.

1. Measured calibration and prediction sample
response matrices,̃R0 and R̃u, were simulated by
adding noise sampled from a normal distribution
with mean zero and standard deviationσ(R̃) = 3
to R0 and Ru. This noise level (approximately
0.6% in terms of relative standard deviation at the
maximum ofRu) is realistic for EEM-FL data.

Table 1
Analyte concentrations

Analyte Calibration (mol/l) Prediction (mol/l)

Tryptophan 8.79× 10−7 1.58 × 10−6

Tyrosine 4.40× 10−6 5.44 × 10−6

Phenylalanin 2.97× 10−4 3.55 × 10−4

2. GRAM was performed to obtain the estimated
profiles and the predictions. The sensitivity was
calculated as explained in [13].

3. The critical level and LOD were calculated using
Eqs. (9), (10), (12) and (13) withα = β = 0.10.

Once the critical level and LOD for each of the
analytes had been calculated, the following three
steps were repeated 200 times for each amino
acid.

1. Three noise-free prediction data matrices were sim-
ulated. Each prediction sample contained the amino
acid in study at three different concentrations: (1)
almost no analyte present (10−15 M); (2) analyte
with a concentration equal to the critical level (from
step 3); and (3) analyte with a concentration equal
to the LOD (from step 3). The concentrations of
the other two analytes in the samples were kept
fixed. For each situation, measured calibration and
prediction sample data matricesR̃0 and R̃u were
simulated by adding noise sampled from a normal
distribution with mean zero and standard deviation
σ(R̃) = 3 to R0 andRu.

2. For each pairR̃0 and R̃u, predictions were cal-
culated in three ways: (1) bias-corrected using
Eq. (5); (2) bias-corrected using the mean value
from all simulations (correction for ‘true bias’);
and (3) without bias correction. The purpose of
the latter two calculations is to enable a bet-
ter assessment of the merit of the proposed bias
correction using Eq. (5).
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3. The percentage predictions below the critical level
and LOD (from step 3) were calculated.

It is essential to construct a large number of inde-
pendent models and associated estimates for critical
level and LOD by repeating steps 1–3. This can be
understood as follows. Repeating steps 1–3 many
times enables one to calculate an accurateaverage
valueof the percentage predictions below the critical
level and compare it to the nominal values: 90% when
cu = 10−15, 50% whencu = LC and 10% when
cu = LD. It is critical to calculate such an average
value, because some models are better than others are,
simply by chance alone. A ‘relatively good’ model
would systematically result in ‘better’ predictions than
a ‘relatively bad’ model. Consequently, both models
would not yield the target values mentioned above,
but the average of many randomly generated (hence
independent) models would approach the target values
if the approximate expressions were adequate.

Finally, it is noted that the procedure described in
steps 1–3 to calculate the LOD is the one to be used
in a real application, the only difference being the
estimation ofσ (R). A good way to estimate the noise
level on real data is from replicated analysis or from
the residuals of SVD [30].

3.2. Software

Calculations were performed using in-house
Matlab 6.0 (Mathworks Inc., Natick, MA) functions
on a 500 MHz Pentium computer.

4. Results and discussion

4.1. Analytical figures of merit

Before turning attention to the quantitative results,
the analytical figures of merit are summarised

Table 2
Analytical figures of merit for the errorless calibration samplea

Analyte NAS (×103 FI) SEN (×109 FI l/mol) SEL L̂C (×10−7 mol/l) L̂D (×10−7 mol/l)

Tryptophan 2.29 2.61 0.25 0.015 0.029
Tyrosine 1.49 0.34 0.22 0.11 0.23
Phenylalanin 3.51 0.012 0.58 3.25 6.50

a The symbols are explained in the text.

(Table 2). These numbers have been calculated for
the errorless calibration sample. Eq. (3) shows how
standard error of prediction depends on the sensitivity
(SEN) and the level of noise present in the data. As
expected,L̂C and L̂D are (approximately) inversely
proportional to sensitivity. The selectivity (SEL) quan-
tifies the amount of analyte signal that is overlapped
with the interferences [26]. It is calculated as the ratio
of the NAS, which is constructed to be free of over-
lap, and the total signal. Consequently, SEL ranges
between zero (complete overlap) and unity (no over-
lap). Dividing the SEN values by the associated SEL
values yields the maximum sensitivity that would be
obtained in absence of interferents. Such a calculation
also yields the ideal values for critical level and LOD
achievable when using this specific instrumentation.

4.2. Distribution of GRAM predictions

LOD estimation based on Fig. 3 assumes that the
distributions are sufficiently normal. Fig. 5 shows a
normal probability plot of the predictions for tryp-
tophan at the level of the LOD. The predictions are
bias-corrected using Eq. (5). It is observed that the dis-
tribution deviates only slightly from normality when
α < 0.02. Consequently, for the common values ofα

chosen here, the results are considered to be excellent.
Similar results were obtained for the other analytes at
the concentration levels studied (not shown).

4.3. Validation of the LOD estimator

The LOD estimator is validated by counting the
occurrences where the predicted concentration is
smaller than the critical level and LOD, respectively
(Table 3). The numbers listed in columns three and six
are obtained for the predictions that are bias-corrected
using Eq. (5). The adequacy of this bias correction
follows from the comparison with the results obtained
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Fig. 5. Normal probability plot of bias-corrected GRAM predictions for tryptophan at the level of the LOD.

by correcting for the ‘true’ bias, which is calculated
as the difference between the true concentration and
the mean value (see columns four and seven). Owing
to the relatively large number of predictions (200) that
determine the mean value, the estimate of ‘true’ bias
is very precise. It is seen that, in average (steps 1–3
are repeated 200 times and numbers in Table 3 are

Table 3
Percentage of predictions beloŵLC and L̂D

Analyte Level BelowL̂C Below L̂D

Ib II c III d Ia II b III c

Tryptophan 0 89.71 89.91 81.47 99.44 99.47 98.55
LC 49.07 49.88 34.47 89.90 90.36 81.10
LD 9.55 9.83 4.71 49.27 50.03 34.73

Tyrosine 0 89.70 90.05 77.74 99.50 99.53 98.08
LC 49.53 49.94 30.15 90.06 90.36 77.74
LD 9.85 10.13 3.52 49.21 50.07 30.13

Phenylalanin 0 89.77 90.03 87.12 99.47 99.51 99.14
LC 49.59 49.93 43.26 89.96 90.08 86.97
LD 9.77 9.84 7.28 50.07 50.13 43.37

a The symbols are explained in the text.
b Corrected for bias using Eq. (5).
c Corrected for bias using true bias.
d Not corrected for bias.

average values), this ‘ideal’ procedure yields slightly
better results than Eq. (5). However, it is clear that
in a real case, in which the true concentration of the
analyte is unknown, bias correction using Eq. (5) is
feasible. In general, the results agree well with what
can be expected for theα and β values used in the
simulations (10%), namely:
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• when the analyte is absent, 90% of the predictions
should be belowL̂C;

• when the analyte is present at a concentration equal
to L̂C, 50% of the predictions should be beloŵLC
and 90% belowL̂D;

• when the analyte is present at a concentration equal
to L̂D, 90% of the predictions should be beloŵLC
and 50% belowL̂D.

It is important to note that part of the deviations
from the nominal probabilities can be explained from
the fact thatL̂C and L̂D are estimated. Clearly, the
true values are unknown so that the analytes are not
present at the true postulated levels. It is expected that
the results would have been better if the analytes were
present at the true postulated levels.

Finally, Table 3 also shows the results that are
obtained without correcting for bias (see columns
five and eight). The large deviation from the target
values mentioned above illustrates the necessity of
the proposed bias-correction procedure.

5. Conclusions and future research

We have presented an LOD estimator for second-
order bilinear data when GRAM is used as a calibra-
tion method. To obtain consistent results, predictions
must be bias-corrected. Simulations have confirmed
the approximate normality of the distribution of the
bias-corrected predictions, which is essential for the
derivation of the LOD expressions. Since the bilin-
ear model is very rigorous, data that really follow this
model are not particularly abundant. EEM-FL has been
shown to be a technique that provides second-order
data that do not deviate seriously from bilinearity. The
current work is part of ongoing research with respect
to LOD estimation in our laboratory. The validation
and application of the developed estimator to real flu-
orescence data is currently in progress.
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