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Multivariate detection limits with fixed probabilities of error
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Abstract

Ž .In this paper, a new approach to calculate multivariate detection limits MDL for the commonly used inverse calibration
model is discussed. The derived estimator follows the latest recommendations of the International Union of Pure and Ap-

Ž . Ž .plied Chemistry IUPAC concerning the detection capabilities of analytical methods. Consequently, the new approach: a is
based on the theory of hypothesis testing and takes into account the probabilities of false positive and false negative deci-

Ž .sions, and b takes into account all the different sources of error, both in calibration and prediction steps, which affect the
final result. The MDL is affected by the presence of other analytes in the sample to be analysed; therefore, it has a different
value for each sample to be tested and so the proposed approach attempts to find whether the concentration derived from a
given response can be detected or not at the fixed probabilities of error. The estimator has been validated with and applied to
real samples analysed by NIR spectroscopy. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

As instrumental techniques get more and more so-
phisticated and capable of generating multivariate
data, the study of different figures of merit, among
which are detection limits, has become very impor-
tant, not only to characterise the different associated
analytical methods, but also to serve as a guide for
the design of new instruments. The study of detec-
tion limits in multivariate regression only dates back

w xa few years and has been reviewed recently 1 . The
approaches described and the derived estimators are

w xvery varied; Lorber 2 was one of the first to calcu-
Ž .late a multivariate detection limit MDL , starting

from the definition of net analyte signal. Subse-
w xquently, Lorber and Kowalski 3 defined this estima-

tor as a function of the confidence intervals associ-
w xated with the predicted concentration. Bauer et al. 4

obtained an estimator that is a function of the error
in the predicted concentration with the theory of er-
ror propagation.

For multivariate inverse calibration models, little
has been done. The first approach, by Lorber and

w xKowalski 3 , presented the problem of detection as
checking if the predicted concentration and its confi-
dence intervals for a given test sample included or not
the zero concentration value. However, the main
drawback of their work was the reduced mathemati-
cal and statistical support for the derived expression
of the variance of the predicted concentration. Subse-

w xquently, Faber and Kowalski 5 dealt with the prob-
lem of detection in a similar way, but using expres-
sions for the variance of prediction based on the so-

Ž .called errors-in-variables EIV models. Finally, Lor-
w xber et al. 6 developed some figures of merit for in-

verse models based on the concept of net analyte
signal. In this latter paper, the authors developed an
expression for the MDL on the signal domain, fol-
lowing the basis set up in a work by Boque and Rius´

w x7 on classical models. However, the fact that the es-
w xtimator by Lorber et al. 6 takes only into account the

uncertainty in the signal measurements makes its real
application to be rather limited. In analytical meth-
ods that use inverse calibration models, it is empha-
sised that one of the main sources of uncertainty is
given by the concentrations of the reference method,
from which the former method has been calibrated.
Moreover, as it has also been pointed out by the IU-
PAC, ‘‘detection limits cannot be specified in the ab-

w xsence of a fully defined measurement process’’ 8 .
Consequently, every source of uncertainty from the
whole method contributing to the final predicted
value should be included in the derivation of MDLs.

Finally, protection against both false positive
Ž .probability of type I error, a and false negative
Ž .probability of type II error, b decisions has to be
achieved when establishing whether the analyte in
study can be detected or not, as it has been suggested
in the definition of limit of detection proposed for in-

Ž .dividual signals zero-order calibration in Clayton et
w x w xal. 9 and the latest IUPAC recommendations 8 . It

seems therefore that a more complete approach to
w xMDL calculation is needed. Boque and Rius 7 have´

applied very recently the principle of testing both hy-
potheses for the classical multivariate calibration

w xmodel. Similarly, Faber and Kowalski 10 have de-
rived a simplified expression for classical calibration,
which is a modification of the original expression

w xfrom Bauer et al. 4 .
In this paper, we propose a new method for calcu-

lating MDL in the concentration domain for the
commonly used inverse calibration models, cccccsR b
q´ . The approach presented is based on the work on
classical univariate regression developed by Hubaux

w xand Vos 11 . The method has the advantage that the
calculation of the confidence intervals is associated
with the predicted concentrations of a multivariate
model and takes into account the probabilities of false
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positive and false negative decisions. A statistical
modification of the above approach, based on the

w xwork of Clayton et al. 9 in univariate calibration is
also presented and discussed. In multivariate calibra-
tion, the detection limit does not only depend on the
mathematical model and the calibration sets used but
also on the presence of other analytes in the sample
to be analysed. Therefore, each analyte in every sin-
gle sample has a different MDL and, as a conse-
quence, it is important to assess whether the concen-
tration derived from a given response is detectable or
not at the chosen probabilities of error.

The estimator has been validated with real data by
comparing both the theoretical and the experimental
percentages of committing a type II error, from dif-
ferent fixed values of the type I error and at different
levels of concentration. Additionally, the procedure
described is applied to the calculation of the detec-
tion limits of a set of real data, consisting in the de-
termination of the aromatic content of gasolines by
near-infrared spectroscopy.

2. Theory

2.1. Calibration model

The general inverse calibration model can be ex-
pressed as cccccsR bq´ , where the concentrations are

Ž .a linear function of the responses sensors . Matrix R
contains the responses at J different sensors for the I

Ž .calibration samples. ´ I=1 is the vector of resid-
Ž .ual error unmodelled variation in ccccc and its ele-

ments are assumed to be independently and identi-
Ž .cally distributed i.i.d. . Assuming that the data are

mean centred, the vector b of regression coefficients
at J wavelengths for an analyte k can be estimated

ˆ ˆ q ˆ qin the calibration step using b sR c , where R isk k
Ž .the pseudoinverse of matrix R I=J and c is thek

Ž .vector I=1 of analyte concentrations in the cali-
ˆbration samples. In general, b is sought in such ak

ˆ 25 5way that the value c yR b is minimised, withk k
5 5P as the Euclidean norm of the given vector.

The difference among the existing multivariate re-
gression methods simply lies in the various ways of

w xinverting matrix R 12 . For inverse least-squares
Ž . qILS regression, matrix R is equivalent to
Ž T .y1 TR R R , the well-known least-squares solution.

Ž .For principal components regression PCR and par-
Ž .tial least-squares regression PLS , however, the cal-

culation of the pseudoinverse matrix is a three-step
procedure: decomposition of matrix R, determination

Žof the number of optimal factors pseudo or chemical
.rank of the matrix and subsequent calculation of its

pseudoinverse. One of the most used algorithms for
calculating Rq is the singular Õalue decomposition
Ž . w xSVD 13 .

ŽOnce the model has been validated e.g., by
.cross-validation , if the response of an unknown

sample is measured as a row vector, rT , the expres-un

sion which predicts the concentration of the analyte
Ž Ž ..k is given by the scalar Eq. 1 :

T ˆ q T ˆc sr R c sr b . 1Ž .ˆun ,k un k un k

2.2. Variance of the predicted concentration

Several expressions for the variance of the pre-
dicted concentration in inverse models have been de-

w xveloped 3,14,15 . Traditionally, in the literature on
statistics, the calculation of this uncertainty relies on
the model csR bq´ , which assumes that there are
no errors in the measurement of the concentrations
and instrumental responses. This is a severe restric-
tion in many spectroscopic analytical methods, in
which the concentration of the analyte in the calibra-
tion samples, usually determined by a reference
method, has a non-negligible measurement error. As

w xit has been pointed out by Faber and Kowalski 16 ,
the EIV model, where the errors in the measurement
variables are taken into account, is an alternative for
this kind of situations. A general expression for the
variance of the predicted concentration can be de-
rived for the EIV model:

2y1 2 2 2ˆ ˆ5 5var c f I qh s qs q b sŽ .ˆ ˆ ˆ ˆŽ .un ,k un ´ c k R

2 ˆ 2 25 5qs q b s 2Ž .ˆ ˆ´ k run un

where s 2, s 2 and s 2 are variances of the mea-ˆ ˆ ˆc R r un

surement errors for the concentrations and responses
of the calibration set and for the response of the test
sample, respectively. s 2 and s 2 are the variancesˆ ˆ´ ´ un

of the residuals for the calibration model and for the
ˆtest sample, respectively. Finally, h is the leverageun

Žof the unknown sample which describes the position
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.of the sample with respect to the centre of the model
and is given by:

TT q qˆ ˆ ˆh sr R R r . 3Ž .Ž .un un un

ˆAs the estimated pseudoinverse is used, both bk
ˆand h may be estimated from ILS, PCR or PLS re-un

gression without loss of generality.
Ž .Eq. 2 is a general expression, which can be sim-

plified. If, for example, signal measurement errors are
neglected and it is assumed that s 2 ss 2 , then Eq.ˆ ˆ´ ´ un

Ž .2 becomes:

y1 2 2 2ˆvar c f I qh s qs qsŽ .ˆ ˆ ˆ ˆŽ .un ,k un ´ c ´ un

y1 ˆ 2 y1 ˆ 2f I qh q1 s q I qh s .ˆ ˆŽ . Ž .un ´ un c

4Ž .
If the measurement error in the reference concentra-
tion values is also neglected, then the expression of
the variance for the classical regression model is ob-
tained:

var c fs 2 Iy1 qh q1 . 5Ž .Ž .ˆ ˆ Ž .un ,k ´ un

Ž .The first term of Eq. 5 takes into account the error
Ž .in the data centring for a centred model , the second

is the squared Mahalanobis distance and the third is
the error due to the unmodelled part of the true value
c . The value of s 2 can be calculated from theˆun,k ´

residuals of the calibration model and it has to be
corrected for its degrees of freedom, ns Iyry1
Ž .for a centred model , being r the number of optimal
factors of the model. On the other side, if s 2

4s 2ˆ ˆc ´

and the signal measurement errors are neglected, Eq.
Ž .2 becomes:

2 y1 ˆvar c fs I qh . 6Ž .Ž .ˆ ˆ Ž .un ,k c un

Ž .Eq. 2 is important because, as well as serving as a
base for deriving the detection limit, it gives infor-
mation about the various error sources that are in-
volved in the model and so directly influence the pa-
rameters that affect it, both in the calibration and
prediction steps. However, two main problems are to

Ž .be mentioned concerning Eq. 2 . First, bias is not
taken into account, so the calibration model should be

Ž .tested for bias before Eq. 2 is used. Otherwise, the
uncertainty in predictions would be incorrect. This

w xpoint has been dealt with by Faber and Kowalski 5 ,
so the reader is referred there for more information.
The second problem is related to the calculation of the

Ž .different error terms in Eq. 2 . The best approach to
calculate these uncertainties is by experimental repli-
cation, both in R and ccccc matrices.

Two-sided confidence intervals associated with the
predicted concentration, c , can also be derivedˆun,k

Ž .from Eq. 2 , provided that the predicted concentra-
tion follows a normal distribution:

c ygFc -c qg 7Ž .ˆ ˆ ˆ ˆun ,k un ,k un ,k

where
1r2

gs t var c 8Ž .Ž .ˆ ˆ1ya r2,n un ,k

The assumption about the distribution of the pre-
dicted concentrations can be safely made in multi-
variate calibration, because the number of observa-
tions is generally large and consequently suitable
formulation of the central limit theorem can be in-

Ž .voked. Problems arise with Eq. 8 when the signal
2 2 w xmeasurement, s and s , are considered 5 . First,ˆ ˆR r un

Ž .as var c is a complex variance estimate, theˆun,k

number of degrees of freedom, n , for the calculation
of the statistic t has to be obtained by applying Sat-

w x Ž .terthwaite’s rule 17 . Secondly, c and var cˆ ˆun,k un,k

are no longer independent because the error in the
spectrum of the test sample is used to estimate both
quantities. So, the degree of correlation has to be
measured in order to safely apply the t-test and de-
rive the confidence intervals.

2.3. Strategy for calculating multiÕariate detection
limits

The predicted concentration and its confidence in-
tervals can be calculated in the prediction step from
the response of the problem sample. In order to as-
sess whether the predicted concentration is above the
limit of detection, a new approach has been devel-
oped in the multivariate field that takes into account
the probabilities of both type I and type II errors. In
this new scenario, the limit of detection corresponds

Žto the concentration calculated with a b probability
.of error derived from the instrumental response at

Žzero concentration level calculated with an a prob-
.ability of error . This approach uses criteria dis-

w xcussed by Hubaux and Vos 11 and subsequently
w xdeveloped by Garner and Robertson 18 in the field

of classical univariate regression and is based on the
confidence intervals of the regression model. A sta-
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tistical improvement of this approach is also pre-
sented, which is based on the work of Clayton et al.
w x9 , who uses a non-central t parameter in order to
account for the probability of a type II error.

The strategy developed for calculating detection
limits in multivariate calibration consists of the fol-
lowing steps:
1. Modelling and validation of the multivariate re-

gression model.
2. Measuring the multivariate response for the un-

known sample, r .un

3. Calculation of the predicted concentration and its
Ž Ž . Ž . Ž . Ž ..variance by using either Eqs. 2 , 4 , 5 or 6 .

Ž4. Calculating the detection response, rr i.e., theˆD

instrumental response corresponding to the un-
known sample but with an analyte concentration of

.zero , with an a probability of committing a type
Ž .I error Fig. 1 .

Ž .5. Calculating the concentration, MDL , for thek

detection response, rr , with a b probability ofˆD

committing a type II error.
6. Calculating c , from r and the model devel-ˆun,k un

oped in 1.
Ž .7. Comparing c with MDL and deducingˆun, k k

whether the measured response, r , is for a sam-un

ple with an analyte concentration which is higher

Fig. 1. Projection of a multivariate inverse calibration model on the
Ž .plane formed by the axis of response variables concentrations and

Ž .predictor variables instrumental responses . The connection with
multivariate models can be seen by realising that instead of one
slope, there are multiple slopes for a given analyte in the multi-
variate situation, all of them collected in the regression vector b .k

The probability of committing a type I error is shown in black, i.e.,
the probability that a response corresponding to an unknown sam-
ple, r , can be given a concentration higher than zero, when theun

analyte is not even present.

than the detection limit with a and b fixed prob-
abilities of error.
In step 3, the expression of variance of the pre-

dicted concentration must be chosen according to the
main sources of variability present in the data.

w xAdapting the methodology of Hubaux and Vos 11
to the multivariate domain, the detection response in
step 4, rr , is the intersection of the lower confi-ˆD

dence interval of the multivariate model with the
plane of responses for an analyte concentration of
zero. Mathematically, this can be obtained from Eq.
Ž .9a :

c ygs0 9aŽ .ˆ ˆk

Ž . Ž .which, after introducing Eqs. 1 and 8 and rear-
ranging, becomes:

J
1r2ˆr b s t var c 9bŽ .Ž .ˆÝ j j 1ya ,n k

js1

where the t statistic is one-sided in this particular
case.

In multivariate regression, there are multiple de-
tection responses, rr , which are the result of the in-ˆD

tersection of the lower confidence interval of the cal-
ibration model with the hyperplane in dimension J of
the instrumental responses. That is to say, different
samples, all of which have the same concentration of
the analyte in study but have a different matrix com-
position, and so, different spectra. All of these re-

Ž .sponses are solutions of Eq. 9b , so to unequivo-
cally define rr , the approach adopted in this paperˆD

consists of defining a straight line joining r and theun
Ž .origin of the coordinates see Appendix A . The in-

tersection of this straight line with the lower confi-
dence interval gives the detection response, rr , thatˆD

can be seen in Fig. 2. Chemically, this means that rr̂D

is a response which would correspond to a sample
with a matrix composition proportional to that of the
unknown sample, but without the presence of the an-

Ž .alyte under study with an a probability of error .

2.3.1. Detection limit calculation
Furthermore, for the same instrumental response,

r , there is a b probability of committing a type IIun

error. So, the concentration corresponding to the de-
Žtection limit taking into account both probabilities of

.error has to be calculated.
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Fig. 2. Plot of the geometrical estimation of the detection re-
sponse, r . r , r and c represent orthogonal x-, y- and z-axes,ˆ D 1 2

respectively.

In order to well define both probabilities of error,
the detection response, rr , is projected onto the topˆD

edge of the hyperbola which defines the confidence
interval of the multivariate model and which is con-

Ž .structed in this case with a significance level 1yb ,
Ž .so obtaining the concentration, MDL , which cor-k

responds to a single detection limit for each un-
Ž .known sample Fig. 3 :

J
1r2ˆMDL s r b q t var c 10aŽ . Ž .Ž .ˆÝk D , j j 1yb ,n D ,k

js1

Ž . Žor analogously, by introducing Eq. 9b see also Ap-
.pendix A :

1r2
MDL s t q t var c 10bŽ . Ž .Ž .ˆŽ .k 1ya ,n 1yb ,n D ,k

Ž .where var c is the variance of the concentrationˆD, k

derived from the detection response, rr and can beˆD
Ž . Ž . Ž . Ž .calculated from either Eqs. 2 , 4 , 5 or 6 by sub-

Ž .1r2stituting rr for r . The term t var c canˆ ˆun 1ya ,n D,kD
w xbe easily recognised as the critical level 8 , which is

the minimum significant value of the estimated con-
centration that can be taken as different from zero,
with an a probability of error. The limit of detec-

Ž .tion, MDL , can be seen then as the concentrationk

for which there is a probability b that the estimated
Ž .value when the analyte is present does not exceed

the critical value. With this definition, the probability
of having a false negative can be reduced at the ex-

pense of a higher limit of detection. Comparing
Ž .MDL with the concentration value predicted by thek

model will enable us to decide if the analyte in the
sample is detectable or not, with pre-set a and b

probabilities of error.
A statistical improvement was provided in the

w xunivariate field by Clayton et al. 9 . Their approach
establishes that when the parameters of the calibra-
tion model are not known and have to be estimated,

Ž .then the probability of a type II error false negative
follows a non-central t distribution, with non-central-

Ž .ity parameter D a ,b . The critical value, i.e., the
concentration from which the analyte is said to be
detected with an a probability of error is defined as
in the previous approach. On the other hand, the con-
centration value for which the false negative is b , for
a given value of the critical value, is:

1r2
MDL sD a ,b var c 11Ž . Ž . Ž .Ž .ˆk D ,k

Ž .where D a ,b is the non-centrality parameter of a
non-central t-distribution. This parameter can be es-

w xtimated from statistical tables 9,19 or computer al-
w x Ž .gorithms 20 . Results obtained by Eqs. 10b and

Ž .11 tend to be very similar when the number of de-
grees of freedom is high, which is often the case in
multivariate calibration.

Ž . Ž .It has to be pointed out that Eqs. 10b and 11
are valid only for the homoscedastic case, that is,

Fig. 3. Comparison of the concentration, c , derived from a re-ˆun,k
Ž .sponse, r , with the detection limit, MDL , derived from theun k

Ž .detection response, rr . In this case, as c - MDL , the ana-ˆ ˆun,k kD
lyte would not be detectable, with an a probability of committing
a type I error and a b probability of committing a type II error. It
can be seen that in terms of the magnitude of the confidence inter-

Žvals constructed with significance levels of 1y a and 1y b , re-
.spectively , the analyte may actually be detectable.
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when the variance in the concentration domain is
constant between the null and the alternative hypoth-
esis, which is, in fact, a reasonable assumption in
most occasions. In the heteroscedastic case, how-
ever, the concentration at the level of the limit of de-
tection is governed by the variance at that level, and
not by the variance at zero concentration level. In
fact, a non-central t parameter should be used, but
statistical tables are not available in the heteroscedas-
tic case. Although different approximations in the

w xunivariate case have been developed by Currie 21 ,
a rigorous expression to deal with this problem is still
lacking in the multivariate situation.

Ž .According to the IUPAC, the MDL is the con-k

centration for which the probability that the esti-
mated concentration value, c , does not exceed theˆun,k

critical value is b. So, for a given test sample, the
concentration of analyte will be detected, with fixed

Ž .a and b probabilities, as long as c G MDL . Soˆun,k k

it may happen that for an instrumental response, r ,un

the analyte concentration found, c , is detectable orˆun,k

not depending on the a and b probabilities of error
chosen, as can be seen in Fig. 3.

The major advantage of both methods is that, as
they are based on linear relationships, the normality
of distributions for the predicted concentrations is
preserved. However, it should be emphasised that
MDLs are sample-dependent and also model-depen-
dent. So, it is only possible, for a given sample, to
state that the concentration of the analyte is de-

Ž .tectable or not only for that sample with assumed
risks of taking false positive and false negative deci-
sions.

3. Experimental section

3.1. Samples and software

The calibration data set consisted of the NIR spec-
tra of gasoline samples, supplied by Repsol.
Twenty-nine samples were used in the modelling
step. The aromatic content was determined by a ref-
erence gas-chromatographic method of analysis, and
ranged between 3% and 12.5% of the total composi-
tion of the sample. Furthermore, for the validation

Žstep, 30 replicates of three different samples 2.19%,
.3.24% and 4.60% of aromatic content were anal-

ysed by NIR in different days and by different ana-

Žlysts this gives an estimation of the time-inter-
.mediate precision of the method . In all cases, sam-

ples were stored at 58C in aluminium bottles, to pro-
tect them from UV radiation.

The uncertainty associated with the reference
method was calculated from the standard deviation of
10 replicate samples, with a concentration level of
aromatics of 11%. A value of s s 0.17 was ob-ĉ

tained.

3.2. Instrumental

Spectra were collected of samples at room tem-
perature by a Unicam-Masso Galaxy spectrophotom-
eter, equipped with a tungsten source and a SePb de-
tector. Spectra were taken in the interval from 869 to
1613 nm. Absorbance responses were obtained at
2749 wavelengths; however, it was found out that us-
ing fewer data does not affect the prediction ability
of the model, so finally, responses at only 687 wave-
lengths were used. Every spectrum, including the
background spectrum, was the average result of 16
scans. Some 1-cm pathlength cells were used. They
were made of special quartz for NIR to ensure a small
absorption in the working interval.

3.3. Software

The regression method used was PCR, from the
SVD algorithm incorporated into the MATLAB soft-

Žware for Windows, version 4.0. The Mathworks,
.MA, USA .

4. Results and discussion

4.1. Model building and Õalidation

Prior to the model building, the spectra of the 29
samples were baseline corrected. This was done by
subtracting from each spectrum the absorbance cor-
responding to a non-informative wavelength, in this
case at 1100 nm. This procedure has been shown to

w xgive good results with this type of data 22 . Fig. 4
shows the spectra before and after performing the
baseline correction. Both matrix R of responses and
vector c of concentrations were also mean centred. A
PCR model was built and the optimal number of
components was chosen by a leave-one-out cross-
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Ž . Ž .Fig. 4. NIR spectra of the 29 calibration samples. a Before baseline correction and b after baseline correction.

validation procedure. Fig. 5 shows the predictive
Ž .residual error sum of squares PRESS as a function

of the complexity of the model.
A model with five principal components was

found to be optimal in terms of prediction. For this
model, a root-mean-square error of cross-validation
Ž .RMSECV of 0.87 was obtained. The root-mean-

square error of calibration was 0.64 and finally, s 2,ˆ́
Žthe fit of the model to the calibration data corrected

.for n s 29 y 5 y 1 s 23 degrees of freedom was
0.72.

It is noted that the estimated RMSECV is based on
measured reference values and not on true values. So,
what is being measured is an apparent RMSECV, as
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Fig. 5. Cumulative PRESS vs. the number of principal compo-
nents in the PCR model.

w xit has been pointed out by DiFoggio 23 . The differ-
ences between measured and predicted values de-
pend on both the errors in the reference method and

Ž .the inherent error of the model lack of fit . Even if
the multivariate model is performing better than the
reference method, one will never be able to prove it
by using validation samples whose concentrations are
known only to the same accuracy as the calibration
samples. This is one reason why RMSECV values are

Žalways higher than RMSEC root-mean-square error
.of calibration values in common applications.

There is, then, a random component in the mea-
sured reference values that contributes to the RM-
SECV, giving rise to a biased upwards estimator. This
random component is precisely the error associated
with the reference method, s . In this particular case,ĉ

s 2
4s 2 and therefore, the RMSECV is not veryˆ ˆ´ c

influenced by s . Furthermore, in this work the mea-ĉ

surement error in the spectra was also neglected, due
to the high repeatability of the NIR instrumental
measures. Taking into account all these considera-

Ž .tions, it seems that application of Eq. 5 is an ade-
quate way of calculating the variance of the pre-
dicted concentrations.

The model was tested for bias by using the ap-
w xproach developed by Riu and Rius 24 , which con-

sists of a regression of the predicted vs. the measured
concentration values for each of the cross-validation
samples and a subsequent joint F-test of the slope and
the intercept, taking into account the errors in both

axes. Fig. 6 shows the joint confidence region of the
F-test at a significance level of 95%. The point in the
centre of the ellipse represents the experimental val-

Ž .ues intercepts0.84, slopes0.88 . As the theoreti-
Ž .cal point intercept s 0, slope s 1 lies within the

boundaries of the ellipse, it can be concluded that the
PCR model with five factors is not significantly bi-
ased at this probability level. So, this model can be
safely used for the calculation of both confidence in-
tervals for the predicted concentrations and detection
limits.

4.2. Validation of the MDL estimator

The MDL estimator was validated with three sam-
Žples of different concentrations 2.19, 3.24 and

.4.60% , close to the inferior limit of application of the
model. Only the results obtained by the approach of
Clayton et al. are presented, which are very similar
to the ones obtained from the Hubaux and Vos

Ž .methodology. From Eq. 11 , the non-centrality pa-
rameter for each concentration level was calculated
as:

ck
D̂ a ,b s 12Ž . Ž .1r2var cŽ .ˆ k

where c is the concentration level of the analyte andk
Ž .1r2var c is the standard deviation of the replicateˆ k

Fig. 6. Joint F-test for bias in the PCR model. Confidence interval
Ž .for the slope and the intercept at a significance level 1y a s

0.95.
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Table 1
Ž .Standard deviation of 26 replicates, non-centrality parameter and theoretical and experimental b values at different a probabilities for

each of the three validation samples

Ž . Ž .Sample STD c D a ,b as0.01 as0.05 as0.10 as0.20ˆk
Ž .content % b b b b b b b bthe exp the exp the exp the exp

Ž . Ž . Ž . Ž .2.19 0.74 2.94 0.32 0.23 6r26 0.11 0.12 3r26 0.05 0.04 1r26 0.02 0.04 1r26
Ž . Ž . Ž . Ž .3.24 1.26 2.57 0.46 0.19 5r26 0.20 0.12 3r26 0.11 0.12 3r26 0.04 0.08 2r26
Ž . Ž . Ž . Ž .4.60 1.28 3.60 0.14 0.08 2r26 0.03 0.08 2r26 0.01 0.04 1r26 0.003 0.00 0r26

The numbers in brackets are the number of times that the predicted concentration of the replicate was found to be lower than the critical
level.

measurements for that sample, considering that the
variance is constant along the concentration values.
Subsequently, the probability of error b can be cal-
culated, for a given number of degrees of freedom, by
fixing the probability of error a . The results are

Ž .shown in Table 1 denoted by b for the three val-the

idation samples and different a probabilities of er-
ror.

Four of the thirty replicate measurements in each
of the samples were found to be outliers and conse-
quently were skipped in the calculations. Then, using

Ž .Eq. 1 , the aromatic content in every validation
sample was predicted. These 26 predicted concentra-
tions, c , were compared with the values of theˆun,k

Ž .1r2critical level, t var c , for each replicate,ˆ1ya ,n D,k
Ž .1r2being var c calculated in this case from Eq.ˆD, k

Ž .5 . The analyte was regarded as being detectable if
the predicted concentration is greater than the critical
level. So, the percentage of times that c is lowerˆun,k

Ž .1r2than t var c can be considered as an esti-ˆ1ya ,n D,k

mation of the rate of false negatives. This percentage
was compared with the one calculated theoretically
Ž .b in Table 1 , given a and the corresponding de-the

Ž .grees of freedom. Results denoted as b are alsoexp

shown in Table 1. A fairly good agreement between
the experimental and theoretical probabilities can be
observed. However, it must be borne in mind that
relatively few replications were carried out. So, it
would be expected to obtain better results for a high
number of replications.

4.3. Calculation of the MDL

Two of the previous validation samples were used
to test the approaches presented. One with an aro-

Žmatic content of 2.19% slightly below the inferior
.limit of application and the second with a concentra-

Ž .tion above this limit 3.24% . Limits of detection
were calculated for these two samples by applying the
two approaches at different levels of probabilities a

and b. Differences between the two approaches were
about 1% and even less when the number of degrees
of freedom increases and so, only the results from

Ž .Clayton et al. approach are presented. Eq. 5 was
used in all the calculations. Results are shown in
Table 2.

Table 2
Ž . ŽMultivariate detection limits expressed in units of % aromatic content for the two samples in study at different levels of probability from
.the approach of Clayton et al.

Ž . Ž .Sample 1 2.19% Sample 2 3.24%

as0.20 as0.10 as0.05 as0.01 as0.20 as0.10 as0.05 as0.01

bs0.50 0.75 1.15 1.48 2.14 0.78 1.19 1.53 2.22
bs0.20 1.51 1.90 2.24 2.92 1.55 1.97 2.32 3.03
bs0.10 1.90 2.30 2.64 3.33 1.96 2.37 2.73 3.45
bs0.05 2.22 2.63 2.97 3.66 2.29 2.71 3.07 3.80
bs0.01 2.83 3.24 3.59 4.30 2.92 3.34 3.71 4.45
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The values of the limit of detection vs. the b

probability of error for different values of a , can also
be plotted, giving rise to the so-called characteristic
curÕes of detection. Fig. 7 shows this curve for the
first sample. From these curves, it can be seen that the
concentration level of the analyte in study can be de-
tected or not, depending on the chosen risk of com-
mitting a false positive or a false negative. For these
particular samples, the predicted concentrations by
the model were 2.99 and 3.48%, respectively. By
looking at Table 2, both samples would fail to be de-
tected when both a and b have very low values,
which is, in fact, a very severe requirement, not cho-
sen in practice.

Any further improvement of the ability of the
method to detect lower levels of analytes in samples,
can only be achieved by improving the model perfor-
mance in terms of prediction or by reducing the
magnitude of the different sources of error that con-
tribute to the variance of prediction. It is just neces-

Ž . Ž .sary to have a closer look at Eq. 2 or Eq. 5 in this
case, to confirm it. So, as it has been pointed out
above, validation of the calibration model, which in-
cludes the test for bias, is a fundamental step in the
calculation of multivariate limits of detection. Fur-
ther research is being carried out to study the effect
on MDLs of different parameters related to the cali-

Žbration models as the type of regression, number of
.factors or number of samples, among others .

Fig. 7. Characteristic curves of detection at different levels of
Ž .probability a for a sample with an aromatic content of 2.19%. a

Ž . Ž . Ž .0.2, b 0.1, c 0.05 and d 0.01.

5. Conclusions

We have discussed a new different approach for
calculating MDL for inverse models which is able to
quantify the probabilities of committing type I and
type II errors, but further work has still to be done.
Several components are involved in the deduction of
MDL which can be well differentiated in the process

Žof calculation such as the individual terms of the
variance of the test sample or the calculation of the

.detection response, r . Future work has to focus onD

this two main issues. Development of a general ex-
pression for the variance of the predicted concentra-
tion, valid also in case of heteroscedastic measure-
ment errors in the response variables, is required. Re-
lated to this, a general expression for the MDL when
the variance in the concentration axis is non-constant
is still not available, which has to be with the no-ex-
istence of statistical tables for the non-centrality pa-
rameter in the heteroscedastic case. Moreover, calcu-

Žlation of the degrees of freedom to be used in the
statistical tests of hypothesis and confidence inter-

.vals associated to a complex variance estimate is a
problem not totally solved. Finally, further research
is being developed for the calculation of a non-am-
biguous detection response. The idea is to calculate
the net analyte signal of the test sample, i.e., the part
of the spectrum which is unique for the analyte in
study, and statistically compare it with the net signal
in the null hypothesis, i.e., when the analyte is not
present in the sample. This last net signal might be
obtained by performing a regression model based on
the net analyte signal of the calibration samples.
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Appendix A. Mathematical derivation of the de-
tection response

Assuming that the n-dimensional space is formed
of n orthogonal axes X , X , . . . , X and that the1 2 n

values x , x , . . . , x are the coordinates for a point1 2 n
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on each of the axes X , X , . . . , X , respectively, a1 2 n
Žstraight line that passes through two points, P x ,1 11

. Ž .x , . . . , x and P x , x , . . . , x in the n-di-21 n 2 12 22 n1 2

Ž .mensional space, is expressed according to Eq. A.1 :
x yxx yx x yx n n1 11 2 21 1s s PPP s . A.1Ž .

x yx x yx x yx11 12 21 22 n n1 2

Continuing this development, an equation must be
deduced for the straight line which passes through the
instrumental response of the unknown sample, run
Ž .r , r , . . . , r , and the origin of coordinatesun,1 un,2 un, J

of the model, in the space which is now J-dimen-
Ž .sional and formed by the variables or sensors .
ŽFor a centred model, defining r r , r , . . . ,m m ,1 m ,2

.r as the vector of means of the responses for eachm , J

sensor, the origin of coordinates is given by the point
Ž .P yr , yr , . . . , yr and the response of1 m ,1 m ,2 m , J

Žthe unknown sample by point P r yr , r2 un,1 m ,1 un,2
.yr , . . . , r yr . The equation of the straightm ,2 un, J m , J

line which passes through these two points is given
Ž .by Eq. A.2 :

r y yr r y yrŽ . Ž .1 m ,1 2 m ,2
s

yr y r yr yr y r yrŽ . Ž .m ,1 un ,1 m ,1 m ,2 un ,2 m ,2

r y yrŽ .J m , J
s PPP s A.2Ž .

yr y r yrŽ .m , J un , J m , J

where r , r , . . . , r are the coordinates of the re-1 2 J

sponse in the J-dimensional space. Reordering and
Ž .simplifying Eq. A.3 is finally obtained:

r qr r qr r qr1 m ,1 2 m ,2 J m , J
s s PPP s . A.3Ž .

r r run ,1 un ,2 un , J

The intersection of this straight line with the lower
confidence interval at zero concentration, defined by
the equation c ygs0 is given by the point whichˆ ˆk

belongs to the previous straight line and which com-
Ž .plies with Eq. A.4 :

J
1r2ˆr b s t var c . A.4Ž .Ž .ˆÝ j j 1ya ,n k

js1

Ž .Expressing all the r coordinates r to r as aj 2 J
Ž .function of r using Eq. A.3 and introducing these1

Ž .values into Eq. A.4 , we get a second-degree equa-
tion in r . Once solved, substituting the numerical1

Ž . Žvalue of r into Eq. A.3 gives rr r , r , . . . ,ˆ ˆ ˆ1 D,1 D,2D
. Ž .r , the detection response at the 1ya signifi-ˆD, J

cance level chosen.
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