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Multi®ariate statistical procedures for monitoring the beha®ior of batch processes are
presented. A new type of regression, called multiway co®ariates regression, is used to
find the relationship between the process ®ariables and the quality ®ariables of the final
product. The three-way structure of the batch process data is modeled by means of a
Tucker3 or a PARAFAC model. The only information needed is a historical data set of
past successful batches. Subsequent new batches can be monitored using multi®ariate
statistical process control charts. In this way the progress of the new batch can be
tracked and possible faults can be easily detected. Further detailed information from the
process can be obtained by interrogating the underlying model. Diagnostic tools, such as
contribution plots of each of the ®ariables to the obser®ed de®iation, are also de®eloped.
Finally, on-line predictions of the final quality ®ariables can be monitored, pro®iding an
additional tool to see whether a particular batch will produce an out-of-spec product.
These ideas are illustrated using simulated and real data of a batch polymerization
reaction.

Introduction

In most industrialized countries, chemical industries are
increasingly involved in producing high-value, high-quality
specialty products that are produced in batch reactors. Typi-
cal examples are the manufacturing of pharmaceuticals, bio-
chemicals, pesticides, or polymers. A batch process is a
finite-duration process in which a vessel is charged with ma-
terials according to a specified recipe. The reaction takes
place during a certain period of time, in which some process
variables are measured throughout the batch run. Finally, the
resultant product is discharged and some of its quality vari-
ables are also measured.

To get a good-quality product, the process variables have
to follow certain specified trajectories. If this occurs, the batch
is said to be in normal operating conditions. However, distur-
bances in the process may arise, so that the variables deviate
from their specified trajectories. These deviations, caused by

Ž .different sources such as the level of impurities in the batch ,
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may eventually lead to a bad-quality product. On-line moni-
Ž .toring and statistical process control SPC then become very

important as indicators of the real state of these batches.
Moreover, abnormal deviations can be detected and cor-
rected for a particular batch or for subsequent batches.

Ž .Nomikos and MacGregor 1994 and 1995a have developed
Ž .a multivariate statistical process control MSPC approach for

monitoring batch processes, based on multiway principal
component analysis of an historical set of successful batches.
However, this approach only uses the information available

Ž .from the measurements taken on the process variables X .
Nevertheless, the MSPC philosophy can be extended to the

Ž .case when product quality measurements Y are also avail-
able. By relating X and Y matrices, the model focuses on the
variation of the process variables that most affect the final
quality of the product. The same authors applied multiway
partial least-squares to model data from a polymerization

Ž .batch reactor Nomikos and MacGregor, 1995b .
Analyzing an historical set of batches is a typical three-way

problem. The is1, 2, . . . , I batch runs are placed along the
first axis, the js1, 2, . . . , J process variables are across the
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second axis, and finally, the ks1, 2, . . . , K time intervals
occupy the third axis. In both multiway principal component
analysis and multiway partial least-squares approaches, the
three-way problem of modeling the predictor matrix is done
by unfolding X in a suitable way and then carrying out tradi-
tional PCA and PLS on the transformed two-way matrix. An-
other approach can be used that considers the intrinsic three-
way nature of the data. This approach is called multiway co-
variates regression, and it is a generalization of principal co-
variates regression. X is decomposed by using either a
Tucker3 or PARAFAC model, and simultaneously regression
of Y onto X is performed. The aim of multiway covariates
regression, as in multiway partial least squares, is to build a
model based on the measurements of a reference batch
database that describes the normal operation of the process
Ž . Ž .X when it produces a good-quality product Y . Note that
since multiway partial least squares and multiway covariates
regression impose different models on the data, the methods
do not differ only in the algorithm employed.

Once the model has been built and validated, it can be
used to monitor the behavior of new batches. Monitoring is

Ž .performed by using statistical process control SPC charts.
In this way, the t-scores, the predicted final quality variables,

Žand the residuals for the new batch together with their con-
.fidence limits at each time interval can be calculated. The

occurrence of an abnormal batch is easily detected by exam-
ining these charts. However, most of the time it is important

Ž .to know which physical variable or combination of variables
caused the problem. This can be done by examining the un-
derlying model and checking the contribution of each process
variable to the detected deviation. Moreover, predictions of
the final batch quality variables can be obtained in real-time,
providing a powerful tool for detecting whether the process is
under control. Finally, the proposed approach has been ap-
plied to both simulated and real data from a polymerization
batch reactor.

Multiway Covariates Regression Models
In the following, scalars are written as italic lowercase

characters, vectors are bold italic lowercase characters, matri-
ces as bold italic uppercase characters, and three-way matri-
ces as bold underlined uppercase characters. More details re-
garding notation can be found in the Notation section.

The aim of multiway covariates regression is to build a
model based on the measurements of a reference batch
database that describes the normal operation of the process
when it produces a good-quality product. If these data are
available for different batches, they can be arranged in two

Ž . Ž .matrices, X I = J = K and Y I = M , I being the number
of batches, J the number of process variables, K the number
of time intervals where the process variables are measured,
and M is the number of quality variables measured in the
final product.

ŽMultiway covariates regression models Smilde, 1997;
.Smilde and Kiers, 1999 are a generalization of principal co-

Ž .variates regression developed by de Jong and Kiers 1992 .
Unlike multiway partial least squares, which is a sequential
method, principal covariates regression performs both de-
composition and regression steps in a simultaneous way. Ma-

Žtrix X can be decomposed by using either a Tucker3 Tucker,

Figure 1. Tucker3 and PARAFAC multiway covariates
regression models.
Core matrix in PARAFAC model is a superdiagonal matrix.
PCovR is the abbreviation of principal covariates regression.

. Ž .1963; Kroonenberg, 1983 or PARAFAC Harshman, 1970
model and simultaneous regression of Y onto X is per-
formed. The scheme of the procedure is shown in Figure 1.
The Tucker3 model can be written in matrix notation as:

X s AH CTmBT q E , 1Ž . Ž .

where for notational convenience, X has been rearranged to
Ž .give matrix X I = JK by putting each of the K vertical slices

Ž .I = J of matrix X side by side to the right, starting with the
Ž .one corresponding to the first time interval. A I = R , B1

Ž . Ž .J = R , and C K = R are the loading matrices of the2 3
batch, variable, and time modes, respectively. Also, the core

Ž .matrix, H R = R R , has been rearranged from matrix H1 2 3
Ž .R = R = R in Figure 1a and represents the magnitude of1 2 3
and the interactions between the latent components. The
squared sum of its values is the percentage of variance in X

Ž .explained by the model. Finally, E I = JK is the matrix of
residuals.

On the other hand, the PARAFAC model can also be ex-
pressed as in Eq. 1, but in this case the core matrix H is a

Ž .three-way identity matrix Smilde, 1992 , with ones on the
Ž .main superdiagonal see Figure 1b . The main difference be-

tween Tucker3 and PARAFAC models is that in the former
Žthe number of components in each of the modes R , R ,1 2

.and R need not be equal. It is also worth remarking that in3
Tucker3 models, the matrices A, B, and C are columnwise
orthonormal, which is not necessarily the case for PARAFAC
models. Finally, another important feature of Tucker3 mod-
els is that multiple solutions exist, since the A, B, and C
matrices can be rotated to produce the same final residual
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matrix E. This is not the case for PARAFAC models, since
the solution is rotation dependent.

After having defined the Tucker3 and PARAFAC models,
the multiway covariates regression model can be summarized
in Eqs. 2]5:

As XW 2Ž .

X s APTq E 3Ž .X

Ys AQTq E 4Ž .Y

PTs H CTmBT , 5Ž . Ž .

Ž .where A is an I = R matrix of scores that describes a low-1
Ž .dimensional subspace in the first way batch domain of ma-

Ž .trix X , and W is a JK = R matrix of component weights.1
Ž .The elements in the loading matrices, P JK = R and Q1

Ž .M = R , relate the variables in X and Y, respectively, to1
the components in A. As can be seen from Eq. 5, P has a
special structure that is easily recognized from Eq. 1 and de-

Ž .pends on the model Tucker3 or PARAFAC that is used.
Ž . Ž .Finally, matrices E I = JK and E I = M contain theX Y

information in both X and Y that is not correlated with the
components in A.

To sum up, the multiway covariates regression model given
Ž .by Eqs. 2]5 looks for R , R , R linear combinations of X1 2 3

that explain the maximum amount of variation in both X and
Y. The model is built by maximizing the following criterion
for a given value of a :

2 2max aR q 1y a R 6Ž . Ž .X Y
W

2 5 T 5 2 5 5 2R s1y X y XWP r X 7Ž .X

2 5 T 5 2 5 5 2R s1y Yy XWQ r Y , 8Ž .Y

where R2 and R2 are the percentages of variance in X andX Y
Y, respectively, explained by the model. Both R2 and R2

X Y
Žcan take values between 0 and 1 1 representing maximal ex-

.planation . In batch data, it is a common operation to center
or autoscale matrices X and Y. It is also convenient to nor-

5 5 2 5 5 2malize the data such that X s Y s1, to give equal
weight when modeling X and Y. By doing this, and substitut-
ing Eqs. 7 and 8 in Eq. 6, the maximization criterion can be
simplified. Moreover, the model can be built by finding a ma-
trix W that minimizes the following loss function value:

5 T 5 2 5 T 5 2a X y XWP q 1y a Yy XWQ . 9Ž . Ž .

The choice of a is a fundamental step and, as explained in
the experimental section, has important implications in moni-
toring and diagnosis of new batches. A multiway covariates

Žregression model built with a value of a s1 implies from
. 5 T 5 2Eq. 9 that the loss function to minimize is X y XWP . So,

Žall the effort is put in modeling matrix X it is the same as
performing a normal Tucker3 model on X and then regress-

.ing Y onto the score matrix A . This has important conse-
quences, as far as the similarity of W and P matrices is con-

cerned. Since W is wanted to model X , it spans a similar
space to loading matrix P. Another important consequence is
that when quality data are not available, the method can be
easily adapted to model only process data by choosing a value
of a s1 and not performing the regression step. On the other
hand, if the model is built with a value of a s0, the function

5 T 5 2value to minimize is in this case Yy XWQ . This means
that the emphasis now lies on fitting Y as much as possible.
Note, however, that X has almost always more columns that
rows. Consequently, Y is almost always in the column space
of X. If Y is in the column space of X , then it can be fitted
perfectly. This is clearly a matter of overfitting, and cross-
validation prevents this from happening by selecting a proper
Ž .and usually high value of a . As Eq. 9 indicates, the scaling
of the data has an influence on the final value of a . If, for
instance, autoscaling had been used, the variance in each X
or Y block would be proportional to the number of variables
of the block. Therefore, X would have more influence on the
model and smaller values for a would be expected to com-
pensate for that fact.

The choice of the number of components needed to build
a multiway covariates regression model is also highly impor-
tant. In the case of PARAFAC models, where the number of
components is the same for each mode, the problem can be
solved by including a cross-validation routine in the devel-
oped algorithm. In the cross-validation method, some of the
data are left out, a model for each number of components is
built with the remaining data, and then a prediction is made
using the left-out data. This process is repeated until all the
data have been left out once. Finally, the ability of the model
to predict is calculated by comparing the predicted vs. the
actual values for the validation data and for the different
number of components chosen. The optimal model is se-
lected to have the lowest prediction error. For Tucker3 mod-
els, the number of components in each mode may be differ-
ent, and subsequently the cross-validation procedure can be
very time-consuming as long as the number of components
increases. A quick method to find the optimal model is to
perform an eigenvalue decomposition of the squared matri-

T Ž . T Ž . T Ž .ces X X I = I , X X J = J , and X X K = K , wherei i j j k k
ŽX has been rearranged for each of the three models Geladi,

.1989 . The magnitude of the resulting eigenvalues can pro-
vide a rough estimate of the number of components in each
mode.

Two follow-up remarks are important. First, the goal of a
multiway covariates regression model in this application is not
primarily predicting the quality variables; it is also important
to use the model for monitoring purposes. Nevertheless, it is
useful to perform cross-validation to avoid overfitting and to
get an idea of the predictive power of the model, that is,
whether there is any connection between X and Y. Second,
in batch processes the process variables and their time histo-
ries are usually not independent, that is, they are interacting.
It is interesting to see how the different methods deal with
this situation. Multiway partial least squares takes all the
combinations of process variables and time points, and in that
way models the interactions. The multiway covariates regres-
sion model that is based on the Tucker3 decomposition deals
with the interactions in its core array. Hence, interactions be-
tween variables and time histories are modeled on the level
of the manifest variables by multiway partial least squares,
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and on the level of the latent variables by multiway covariates
regression using a Tucker3 structure. This is an important
distinction, and practice shows which works best in which sit-
uation. Note that PARAFAC-based multiway covariates re-
gression models can only model interactions to some extent
by incorporating extra components.

On-Line Monitoring and Diagnosis
Once the model has been built, it can be used to monitor

new batches. The predicted scores and the residuals in the x-
T Ž .and y-space for a new batch, x 1= JK , are given bynew

T T ˆa s x W 10Ž .ˆ new

T T T ˆTe s x y a P 11Ž .ˆnew

T T T ˆTf s y y a Q , 12Ž .ˆnew

respectively. It is emphasized that the residuals in the y-space,
f T, can only be calculated if the quality variables for the new
batch are available. By plotting the values of aT and eT to-ˆ
gether with the ones obtained for the calibration batches, we
can see whether the new batch is out of control. Different
types of deviations from normal operation conditions can be
observed. If the process is disturbed in the process variables
but the covariance structure of the normal operation condi-
tions’ data remains the same, then, in the score plot, the value
of the new a-score will lie far away from the cluster of nor-
mal batches, but the residual of the new batch will not show
a large value. On the contrary, if a disturbance is produced
during the batch that has not been taken into account by the
model, the residual for the new batch in the x-space will ap-
pear significantly different. Furthermore, if the residuals for
a new batch in the quality variable space are also large, it
means that the relationship between process and quality vari-
ables is not valid for that particular batch. There are two
possible reasons for that: an instrumental measurement fail-

Žure has occurred or the process has changed such as due to
.deactivation of the catalyst .

Using Eqs. 10]12 for monitoring a new batch has a serious
disadvantage: the scores, residuals, and predicted values are
obtained postbatch. This means that no action can be taken
during the process to correct or even to detect abnormal be-
havior. On the other hand, the difficulty that one has to face
when applying Eqs. 10]12 to monitor the batch process real-
time, is that the process variables corresponding to the xnew
vector are known only up to time k. Different approaches

Žhave been proposed to solve this problem Nomikos and
.MacGregor, 1995a . The one used in this article consists of

filling in the empty values of the process variables for the
new batch, from time kq1 to time K , with the last devia-
tions from the average trajectories obtained at time k. This
procedure was recommended by Nomikos and MacGregor
Ž .1994 and assumes that future observations in x will devi-new
ate persistently from their average trajectories at a constant
level for the rest of the batch. This is similar to the strategy
used in model-predictive control algorithms, where control
actions are taken that assume the future values of the dis-
turbances remain constant at their current values over the
rest of the process.

If the scores and the residuals are calculated at each time
interval, then control charts can be plotted to monitor how
the process is behaving. These charts are consistent with the
philosophy of statistical process control and are similar to the
common and well-known Shewhart charts. The two main
control charts that are needed to visualize the process are the

Ž .a-score chart and the squared prediction error of X SPE X
chart. The first is based on the significant components that
have been chosen to represent the highest variance in the
process, and the second one represents the variation that has
not been taken into account by the model. The confidence
intervals for the control charts are calculated from the refer-
ence batches, by applying the same procedure, described ear-
lier, for the new batch to get the scores and the residuals at

Ž .each time interval Nomikos and MacGregor, 1995a .
If a new running batch is disturbed in one or more process

variables, then the score andror the SPE value for that batch
at time k will be placed outside the control limits in the cor-
responding chart, and the deviation will be easily detected
later. However, the fact that either the score or the SPE charts
are out of control is not enough information. It would be

Ž .interesting to find the process variable or variables respon-
sible for this problem. This can be done with the help of the

Žcontribution plots Kourti et al., 1995; Kourti and MacGre-
.gor, 1996; Miller et al., 1997 . Two different types of contri-

bution can be plotted: the contribution to the scores and the
contribution to the squared prediction error. Scores are re-
lated to the original variables by Eq. 2, and, for a new batch,

T Ž .the vector of scores, a 1= r , at time k, can be expressedˆk 1
as

J
T T Tˆa s x W s x w , 13Ž .ˆ ˆÝk new , k k new , jk jk

js1

Ž .where x J =1 is the vector of process variables avail-new, k
able at time k, and the scalar x is the correspondingnew, jk

ˆvalue of the jth process variable at that time interval; Wk
Ž .J = r is the matrix of weights at time interval k for each of1
the latent variables; and, finally, wT is the jth row of matrixˆjk
Ŵ , corresponding to the jth process variable. The individualk
terms of the right side of Eq. 13 can be seen as contributions
of each of the process variables to the final score. The contri-
bution plot is a bar chart of these J contributions at time k
for each latent variable.

The squared prediction error for the new batch at time
interval k can be expressed as

kJ kJ
22SPE s e s x y x ,Ž . ˆŽ .Ý Ýk j new , j new , j

Ž . Ž .js J k y1 q1 js J k y1 q1

14Ž .

where e2 is the residual for the jth process variable at timej
interval k, that is, the difference between the actual value,
x , and the predicted one, x . As in the previous case,ˆnew, j new, j
each of the J terms on the right side of Eq. 14 can be seen as
contributions to the SPE of that batch at time k, and can be
plotted as bars in a contribution plot to SPE.
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Table 1. Process Variables Measured During the
Batch Run and Quality Variables Corresponding to the

Properties of the Resulting Polymer

Process Variables Quality Variables

1. Flow rate of styrene 1. Composition of the latex
2. Flow rate of butadiene 2. Particle size
3. Temperature of the feeds 3. Branching
4. Temperature of the reactor 4. Cross-linking
5. Temperature of the cooling 5. Polydispersity

water
6. Temperature of the reactor

jacket
7. Density of the latex in

the reactor
8. Total conversion
9. Instantaneous rate of

energy release

Multiway Covariates Regression Models Applied to
Industrial Batch Data
Simulated batch polymerization process

This example is a simulated study of a semibatch reactor
Ž .for the production of styrene-butadiene rubber SBR

Ž .Nomikos and MacGregor, 1994 . The fact that the simula-
tions are based on a mechanistic model and the disturbances
introduced are known and meaningful makes this benchmark
data set very useful for testing the methods proposed in this
article. The reference data set was chosen to contain fifty
batches that gave good-quality products. Nine process vari-

Žables were measured at 200 time intervals, giving a 50=9=
.200 X matrix. Five quality variables that were used to build

Ž .the matrix Y 50=5 were measured on the final products.
Both process and quality variables are listed in Table 1. Ad-
ditionally, two error batches, with off-spec quality, were simu-

lated. These batches were used to assess the performance of
the proposed multiway covariates regression model.

Ž . ŽFirst, matrix X 50=9=200 was rearranged to X 50=
.1800 , and then the data were autoscaled and normalized so

that the total sum of the squares of both the X and Y matri-
ces became one. Both the Tucker3 and PARAFAC models
were applied to the data. The number of optimal compo-
nents as well as the value of a were selected by a leave-one-
batch-out cross-validation procedure.

Results from the Tucker3 model are discussed first. From
T Žthe eigenvalue decomposition of XX X being previously
.rearranged in each of the three modes at least two compo-

nents were seen to be representative for each mode. How-
ever, different combinations of components were checked in
terms of prediction ability. The results obtained are shown in
Table 2.

The joint root-mean-square prediction error of cross-vali-
Ž .dation RMSECV was calculated as:

M I
2y y yŽ .ˆÝ Ý mi mi

ms1 is1)RMSECVs , 15Ž .
IM

where y and y are the real and predicted values of theˆmi mi
mth quality variable in the ith validation sample, I is the
total number of validation samples, and M is the number of

Ž .quality variables. A Tucker3 2,2,2 model with a s0.9 was
chosen to be optimal, since including more components did
not represent a significant improvement in prediction ability.
In Table 3 the percentage of variance explained by the model
for the individual quality variables is given for both calibra-
tion and cross-validation data. These percentages are calcu-

Table 2. Joint Root-Mean-Square Prediction Error of Cross-Validation of the Five Scaled Variables vs. the Value
of a for Different Tucker3 Models

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2,2,2 3,2,2 2,3,2 2,2,3 3,3,2 3,2,3 2,3,3 3,3,3

a s0.0 0.0781 0.0766 0.0781 0.0781 0.0766 0.0766 0.0781 0.0766
a s0.1 0.0782 0.0766 0.0782 0.0782 0.0766 0.0767 0.0781 0.0767
a s0.2 0.0781 0.0762 0.0781 0.0781 0.0767 0.0764 0.0781 0.0764
a s0.3 0.0781 0.0763 0.0782 0.0781 0.0762 0.0767 0.0781 0.0767
a s0.4 0.0781 0.0766 0.0781 0.0780 0.0762 0.0771 0.0781 0.0772
a s0.5 0.0779 0.0774 0.0777 0.0778 0.0779 0.0778 0.0778 0.0779
a s0.6 0.0770 0.0771 0.0767 0.0767 0.0769 0.0760 0.0767 0.0760
a s0.7 0.0746 0.0765 0.0742 0.0738 0.0767 0.0733 0.0737 0.0724
a s0.8 0.0718 0.0736 0.0718 0.0714 0.0739 0.0689 0.0715 0.0688
a s0.9 0.0708 0.0680 0.0708 0.0706 0.0689 0.0678 0.0708 0.0682
a s1.0 0.0711 0.0703 0.0711 0.0709 0.0708 0.0699 0.0709 0.0702

( ) ( )Table 3. Percentage of Variance Explained by a Multiway Covariates Regression MCR Tucker3 2,2,2 Model
( )and a Multiway Partial Least Squares MPLS Model with Two Factors for the Overall X and Y Matrices and the

Individual Quality Variables
2 2Ž . Ž .R % y y y y y Y R %Y 1 2 3 4 5 X

MCR Model Calibration set 59.21 27.57 92.09 92.11 52.31 64.66 19.36
Ž .Tucker 3 2,2,2 Cross-validation set 52.91 -0 90.78 90.80 43.52 55.10 17.72

MPLS Model Calibration set 54.30 20.79 91.28 91.29 67.74 65.08 23.02
Ž .2 factors Cross-validation set 43.09 -0 88.68 88.69 49.26 53.17 16.22
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lated as

5 T 5 2 5 T 5 2Y y AQ AQm m m2R s 1y ?100s ?100Y , m 2 2ž /5 5 5 5Y Ym m

ˆ 2 25 5 5 5Y Qm m
s ?100s ?100, 16Ž .2 25 5 5 5Y Ym m

where the subscript m refers to any of the M quality vari-
ˆ Ž .ables, and Y is the part of Y fitted or explained by them m

model. Results are compared with those obtained for a multi-
Žway partial least squares model Nomikos and MacGregor,

.1995b , showing that, except for polydispersity, the multiway
covariates regression model predicts slightly better. The mul-
tiway partial least-squares model fits X slightly better than
the multiway covariates regression model, but the cross-vali-
dation results for X do not support this.

ŽQuality variables 3 and 4 branching and cross-linking of
.the resulting latex are very well explained in both cases,
Ž .whereas variable 2 particle size is poorly modeled. It is em-

phasized that the results in Tables 2 and 3 have been ob-
tained from a model that is based on the optimal joint pre-
diction error. This means that the five quality variables have
been modeled at the same time, and different values for the

Žprediction error and even for the optimal value of the pa-
.rameter a would have been obtained had the quality vari-

ables been modeled individually. Figure 2 shows a plot of the
fitted vs. the measured values for the validation set and for
variables 1 and 3, respectively.

The percentage of variance in X explained by the Tucker3
Ž . 22,2,2 model, R , was calculated from Eq. 7, resulting in aX
value of 20%. This percentage can also be obtained from
5 T 5 2 5 5 2 5 5 2AP , P , or H . Such a low value is normal for this
type of data, where each of the variables at each time interval
carries a small amount of information. This total variance can
be further decomposed to get the percentage of variance ex-
plained by the model with respect to variable and time do-

Ž .main Figures 3a and 3b . These percentages are calculated
as:

ˆ 2 25 5 5 5X Pj j2R s ?100s ?100 17aŽ .X , j 2 25 5 5 5X Xj j

ˆ 2 25 5 5 5X Pk k2R s ?100s ?100. 17bŽ .X , k 2 25 5 5 5X Xk k

The subscripts j and k refer, respectively, to any of the J
process variables or the K time intervals. Thus, X and Xj k
are the jth and k th slices of the X matrix corresponding to

ˆ T ˆ Tthe variable or time modes, and X s AP and X s AP are,j j k k
respectively, the parts of X and X fitted by the model; andj k

Ž . Ž .P K = R and P J = R are the loading matrices corre-j 1 k 1
sponding, respectively, to the jth process variable and the

2 Ž .kth time interval. The mean of all R for js1, . . . , J andX, j
2 Ž . 2R for ks1, . . . , K gives R .X, k X
By observing Figure 3a it can be clearly seen that variables
Ž . Ž .7 density of the latex in the reactor and 8 total conversion

are the best explained by the model, while variables 1, 3, and

Figure 2. Predicted vs. measured quality variables for
the cross-validation set.

Ž4 flow rate of styrene, temperature of the feeds, and temper-
.ature of the reactor, respectively are practically not ex-

Ž .plained at all. The columns of loading matrix B Figure 3c
reveal a slight correlation with the explained variance, which
seems logical, since a high value in the loading for a particu-
lar variable has an effect on the explained part of X. It is
seen that variables 7 and 8 have the highest loading values
for the first component in the variable mode, while variables

Ž . Ž5, 6 temperatures around the reactor , and 9 rate of energy
.release are the dominant ones in the second component. Re-

Ž .garding the time domain Figure 3b and 3d , it is noted that
the highest percentage of explained variance is concentrated

Ž .in the second half of the batch process. Matrix C Figure 3d
shows the same tendency. However, its columns are not di-
rectly interpretable in terms of variance, since they are multi-
plied by matrices B, H, and A to get the predicted matrix X.
These results agree with the ones described in the article of

Ž .Nomikos and MacGregor 1994a .
The results obtained for the PARAFAC models are pre-

sented in Table 4. A model with two components and a value
of a s0.9 was found to be optimal in terms of prediction.
Including another component in the PARAFAC model over-
fits the data. This can be seen by observing the plots of matri-
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( )Figure 3. Results from the Tucker3 2,2,2 model.
Ž . Ž . Ž .a Percentage of explained variance for each of the process variables; b percentage of explained variance at each time interval; c matrix
Ž . Ž . Ž . Ž . Ž . ŽB J = R for the first white bars and second striped bars components in the variable domain; d matrix C K = R for the first solid2 3
. Ž .line and second dashed line components in the time domain.

Ž .ces B and C for each of the three components Figure 4 .
Note that the third column of each of the matrices is highly
correlated with the second one, showing that no substantial
information is modeled by this third component.

As can be seen from the results in Tables 2 and 4, the
prediction results of both optimal Tucker3 and PARAFAC
are practically the same. Moreover, the percentages of vari-

Ž .ance explained by the PARAFAC Eq. 2 model for both the
calibration and validation sets are practically identical to the
ones given in Table 3 for the Tucker3 model. Thus, for the
rest of this article, the different results and plots will be shown

Ž .only for the Tucker3 2,2,2 model. Modeling the process data
with a Tucker3 model gives more freedom with respect to the

number of components in each mode than the PARAFAC
modeling does. It happened to be in this particular example
that a Tucker3 model with the same number of components
was found to be optimal. An optimal Tucker3 model with an
unequal number of components would have made the differ-
ence from PARAFAC clearer.

Figures 5 shows the score plot in the space of the first two
Ž . wlatent vectors a , a and the residual sum of squares Q s1 2 i

JK Ž .2 xÝ e i, c for the fifty good batches. Scores for the twocs1
error batches, calculated from Eq. 10, have also been in-

Ž .cluded. The plot shows that the two error batches 51 and 52
are placed far away from the main cluster of good batches.

Ž .However, only one of the abnormal batches 51 is clearly
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Table 4. Root-Mean-Square Prediction Error of
Cross-Validation of the Five Scaled Variables vs. the

Value of a for the Different PARAFAC Models

PARAFAC 1 Comp. 2 Comp. 3 Comp.

a s0.0 0.0722 0.0781 0.0766
a s0.1 0.0721 0.0781 0.0766
a s0.2 0.0721 0.0781 0.0767
a s0.3 0.0720 0.0781 0.0769
a s0.4 0.0719 0.0781 0.0771
a s0.5 0.0718 0.0779 0.0785
a s0.6 0.0717 0.0770 0.0790
a s0.7 0.0716 0.0746 0.0764
a s0.8 0.0715 0.0718 0.0700
a s0.9 0.0716 0.0708 0.0687
a s1.0 0.0722 0.0711 0.0713

( ) ( )Figure 4. Matrices B J = R and C K = R for a
( )PARAFAC 3 model.

Ž . Ž .White, striped, and criss-crossed bars, as well as } , ] ]
Ž .and ] ? , represent first, second, and third component, re-

spectively.

( ) ( )Figure 5. Score plot a and Q plot b for the 50 refer-
ence good batches plus the two error batches.

Ž .Results obtained from the Tucker3 2,2,2 model. Batch 51
had an organic impurity contamination in the butadiene feed
started halfway through the batch operation. Batch 52 had
the same contamination but at the start of the batch pro-
cess.

detected as having a large residual in the Q-plot. For the
Ž .second error batch 52 , then, a deviation of the mean trajec-

tories for one or more process variables has occurred, but
this change has not affected the correlation structure of the
components and therefore its residual is comparable to the
ones from the reference batches.

Monitoring and Diagnosing New Batches. To illustrate the
usefulness of the developed methodology, the operation of a
new running batch was monitored. It is an ‘‘error’’ batch
Ž .batch 51 in which the level of impurities in the butadiene
feed increased halfway through the process, resulting in a fi-
nal product whose quality does not meet the specifications.
Figure 6 shows the SPC on-line monitoring charts for this
abnormal batch. Three different types of chart are given: the

Ž .scores and SPE charts, plus the joint a ] a score plot.X 1 2
The latter chart is not strictly necessary, but it serves as a
complement for the other two.

These types of charts are very useful for monitoring and
diagnosing new batches. As discussed previously, however, a
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( )Figure 6. On-line monitoring MSPC charts with their 95% and 99% control limits dashed and solid lines for the
running error batch.
Ž . Ž . Ž . Ž . Ž .a , b Scores for first and second component; c joint a ] a score plot; d SPE chart.1 2

difficulty arises in the calculation of the scores and SPE val-
ues, since the measured process variables for the new batch
are only available up to time k. In Figure 6, these values
were calculated by assuming that the measurements from time
kq1 to K remain constant at their current values at time k,
as previously stated.

The control limits for each plot are built at a 95% and
99% significance level, respectively, based on the distribution
of the reference batches. The scores and SPE values for each
of the reference batches were calculated at each time interval
k by following the same procedure for finding the missing
values described earlier.

The confidence intervals for the scores were calculated by
assuming that the fifty observation batches of the reference
sets at each time interval follow a normal distribution. Nor-

mal probability plots of the scores showed that this assump-
tion can be made safely. Control limits associated with the
scores were then derived using statistics based on the normal

Ž .distribution Hahn and Mecker, 1991 .
The squared prediction error for a new batch at each time

interval is calculated from Eq. 14. That quadratic form is
known to follow a weighted chi-squared distribution, g x 2 .h, a

The control intervals for SPE are calculated by matching the
Ž .moments mean and variance between the distribution just

mentioned and the distribution of SPE for the reference
Žbatches at each time interval Nomikos and MacGregor,

.1995a .
Figures 6a and 6b show the evolution of the scores for the

first and second components, respectively. Figure 6c shows
Ž .the joint plot of the scores for the two components a ] a ,1 2
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while in Figure 6d, the progress of the SPE is monitored. A
quick inspection of the plots reveals that something happens
at time interval 105, approximately. There is a deviation in
the average trajectory of the scores, more pronounced in the
second component, and also an increase in the SPE values. It
is known that halfway through the batch operation this batch
began developing an organic impurity contamination in the
butadiene feed that is 50% above normal. The problem is
clearly seen in the SPE plot, which means that this variation
has not been modeled in the calibration data set. Similar re-

Ž .sults were obtained by Nomikos and MacGregor 1995b by
applying multiway partial least squares to the same data.

However, the fact that either the score or the SPE chart is
out of control is not enough information. It would be quite

Ž .interesting to find the process variable or variables respon-
sible for this problem. This can be determined on-line by
looking at the contribution plots for each variable at time

Ž .interval 105 Figure 7 . Figures 7a and 7b reveal that vari-
ables 4, 5, and 6 are the most important ones. Variable 4
Ž .temperature of the reactor shows the highest contribution,
which is somewhat surprising, since this variable, as seen in
Figure 3, is not explained at all by the model. However, a

Ž .deeper insight in the model Eqs. 2]5 reveals that a contri-
bution to the score for a certain variable is not directly re-
lated to its loading. This can be illustrated by looking at Fig-
ure 7c and 7d, where the weight matrix W and the loading
matrix P at time interval 105 have been plotted. The sum of
the squared values of matrix P would give the variance ex-

Figure 7. Contribution plots and model matrices for the error batch at time 105.
Ž . Ž . Ž . Ž . Ž . Ž .a Contribution to the scores; b contribution to the SPE; c weight matrix, W JK = R ; and d loading matrix, P JK = R . White and1 1

Ž . Ž . Ž .striped bars in a , c , and d represent the first and second components, respectively.
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plained for each variable at that time interval. It is seen that
variable 4 is not explained at all. However, the bar plot of
matrix W shows that this variable has a nonnegligible value.

Ž .Thus, variable 4 the temperature of the reactor has no in-
fluence in estimating matrix X , because it shows that there is
very little variation in the normal operation of the process. In
fact, the temperature’s intervals spanned by the reactor in a
batch process is only about 0.68C. Any deviation in the latent
process variables is mainly reflected in the value of other pro-
cess variables, but not in the temperature of the reactor. Any
small variation in this temperature profile over different
batches, however, has some influence on the final quality of
the product; this is reflected in the weight matrix. Thus, a
certain correlation exists between variable 4 and any or all of
the columns in matrix Y.

A closer look at Figure 6 shows that after the first devia-
tion, the process tries to recover normality, but after time
interval ;120, there is a sudden increase in the SPE value
Ž .scores continue beyond specifications . By looking at the

Ž .contribution plots Figures 8a and 8b at time interval 125,
we can see that variable 9 is the most important, but that
variables 5 and 6 also become significant. The loading and

Ž .weight matrices Figure 8c and 8d show variables 7 and 8 to
be the ones that best explain the variation both in X and Y at
that time interval. However, this is reflected in neither the
contribution to the scores, nor in the contribution to the SPE.

ŽA new type of variation in this case a contamination in the
.butadiene feed has been encountered that was not present

in the reference batches. This abnormal variation, due to the
increase in the reactor impurities, decreases both the poly-

Figure 8. Contribution plots and model matrices for the error batch at time 125.
Ž . Ž . Ž . Ž . Ž . Ž .a Contribution to the scores; b contribution to the SPE; c weight matrix, W JK = R ; and d loading matrix, P JK = R .1 1
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Ž .merization rate and the resulting energy release variable 9 .
In turn, to maintain constant heat flow, the temperatures of

Žthe cooling water and the reactor jacket increase variables 5
.and 6, respectively .

By studying the contribution plots, a deeper knowledge of
the process can be achieved than if the usual loading plots
are used. This is because contribution plots represent the
particular process variables that are unusual at each point for
a given batch while the loadings represent the variability
across the entire data set. Furthermore, loadings only span
the x-space, while the contribution to the scores also includes
information from the quality variables. In this particular ex-
ample, however, the differences between the space spanned
by W and the one spanned by P are small. Correlation coeffi-
cients of 0.92 and 0.83 were found for each component be-
tween the W and P columns, respectively. This is due to the
fact that a value for a s0.9 has been chosen as optimal, which
means that much emphasis is put on modeling X , regardless
of its correlation with Y.

Predicting Quality Variables. Apart from on-line monitor-
ing and diagnosing new running batches, the quality variables
also can be predicted from the multiway covariates regression
model at each time interval. Monitoring these quality vari-
ables in time can also help to find abnormal trends and sug-
gest possible causes. Different strategies for monitoring the
predicted quality variables are available, which are related to
the way the future measurements for x at time k are fillednew
in. The advantages and drawbacks of these approaches are

Ž .described by Nomikos and MacGregor 1995b . Although
these approaches provide the same Y predicted at the end of
the batch, the shape of the curves can vary substantially. The
procedure chosen in this article has already been described.
Figure 9 shows the Y-predicted monitoring chart for quality
variables 2 and 3 of the error batch. Quality variable 2 was
very poorly explained by the model and it is also poorly pre-
dicted. On the other hand, variable 3, which was explained
well, shows a prediction very close to the actual value. It has
to be emphasized that, once a fault has been detected by
inspecting the SPC charts, and the system is out of normal
operation conditions, the plots for the predicted quality vari-
ables have to be used with caution. The predicted values may
be inaccurate; however, the trends of the curves can be very
helpful in showing whether the final product will be off-spec.

It could also happen that a batch showing a significant
variation in the residuals results in a good-quality product. At
this point, a question arises: Would it be convenient to build
a model that also includes error batches? By doing this, the
model would span a larger x- and y-space, and consequently,

Ž .it would be able to predict in some cases the product qual-
ity, even when there is an unusual operation. However, imag-
ine that a model is available that takes into account all possi-
ble disturbances that can appear in the process. Such a model
would probably make good predictions in the y-space, but
would fail in diagnosing abnormal situations, because every
fault would not produce a significant change in the scores or
the residual values. When the purpose of the model is moni-

Ž .toring, the null hypothesis, H the batch is in control , has0
Žto be tested against the alternative hypothesis, H the batch1

.is out of control . In this case, any abnormal situation should
be detected, so a reference data set of only good batches is
needed. Moreover, a predictive model based on a reference

Figure 9. On-line predictions for two of the five quality
variables.
Asterisk marks on the right side of each plot correspond to
the actual final product quality.

data set that also includes error batches could not be used to
monitor, because the assumption of normality of the scores
and the residuals would be violated if the error batches are
included.

The preceding remarks indicate the following strategy. For
a given batch process two models should be made. The first
model is completely geared for predicting Y, and the second
model is focused on building control charts. Since the goals
of these models are very different, the models may be differ-
ent. In its most extreme form, the second model might not
even consider Y. This strategy is the subject of further re-
search.
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Table 5. Process Variables Measured During the
Batch Run and Quality Variables Corresponding to the

Properties of the Resulting Polymer

Process Variables Quality Variables

1. Polymer center temperature 1. Molecular weight
2. Polymer side temperature 2. Titrated ends
3. Vapor temperature
4. Autoclave body pressure
5. Heat-source supply temperature
6. Heat-source jacket-vent temperature
7. Heat-source coil-vent temperature
8. Heat-source supply pressure
9. Heat-source pressure-control checkpoint

Commercial batch polymerization process
The second example is a real polymerization batch process.

Data were supplied by Dupont and were also previously re-
Ž .ferred to by Nomikos and MacGregor 1995 and Kosanovich

Ž .et al. 1996 . The data set consists of 50 batches, from which
9 process variables are measured over approximately 120 time
intervals. From this set of batches, 2 quality variables of the
final product were also available. Both process and quality
variables are listed in Table 5. The autoclave in this chemical
process converts the aqueous effluent from an upstream
evaporator into a polymer product. The recipe specifies reac-
tor and heat-source pressure trajectories through five stages.
Since the number of measurements varies at each stage
throughout the different batches, the raw data set was lin-
early interpolated to get, for each batch, the same number of
measurements for each process variable at each stage. First,
for every batch the number of time points was counted at
each stage, and then the mean values for all the batches were
calculated. Next, every variable in a particular batch was in-
terpolated by a linear function according to the number of

Figure 10. Example of autoclave profiles.
Phs: heat source supply pressure; Pab; autoclave body
pressure; and Tpc: polymer center temperature.

data points at each stage for that batch. Finally, for every
batch the same number of data points was extracted from the
linear function at each stage. This number was taken to be
the mean value for all the batches, but any other fixed num-
ber can be chosen. In this way, a total number of 116 time

Žintervals resulted for every batch 9, 43, 22, 20, and 22 time
.intervals, respectively, at each stage . Other procedures to

align batch data exist, namely, taking a surrogate variable,
such as the percentage of conversion, that follows a certain
function and fitting the measurements to get the same time
points for each batch. However, the procedure used was found
to produce good results for this type of process data.

( )Figure 11. Results from the Tucker3 3,2,3 model.
Ž .a Percentage of explained variance for each of the pro-

Ž .cess variables; b percentage of explained variance at each
time interval.
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Figure 10 shows the operating profiles for some of the vari-
ables measured in the process. The autoclave body pressure
profile clearly shows the five different stages into which the
process is divided. Variable 9, the heat-source pressure con-
trol checkpoint, was skipped since it was found to be redun-
dant. Batches 46 and 47 were also skipped because their y-
values were of borderline quality. An earlier multiway partial
least-squares model revealed that these two batches lie far
away from the main cluster of normal batches. A multiway
covariates regression Tucker3 model was applied to the final
Ž . Ž .X 48=8=116 and Y 48=2 matrices, previously autoscaled

5 5 2 5 5 2and normalized to X s Y s1. The number of optimal
components and the value of a were selected by a leave-
five-batches-out cross-validation procedure. A multiway co-

Ž .variates regression Tucker3 3,2,3 model with a s0.9 was
found to be optimal in terms of predicting both quality vari-
ables.

Figure 11 shows the percentage of the variance explained
Ž .by the Tucker3 3,2,3 model with respect to variable and time

domain. It can be seen in Figure 11a that process variables 3,
7, and 8 are the best explained by the model, while variable 4
Ž .autoclave body pressure is practically not explained at all.
In fact, it is a highly controlled variable, and a small variation
should be expected from batch to batch. Figure 11b shows
that stages 2 and 4 of the process are the ones that show
most variability. Further investigation revealed that, in stage
4, the heating medium was turned off during the remaining
processing time and, from that time, the system operated adi-

( )Figure 12. On-line monitoring MSPC charts with their 95% and 99% control limits dashed and solid lines for batch
47.
Ž . Ž . Ž . Ž . Ž .a , b Scores for first and second component; c joint a ] a score plot; and d SPE chart.1 2

July 1999 Vol. 45, No. 7AIChE Journal 1517



abatically and the reaction was self-sustained. This nonregu-
lated action adds an important source of variability, which is
reflected in the sudden increase in the explained variance
from time interval of ;70.

The behavior of a new batch was monitored based on the
model built on the 48 successful batches. Batch 47 was cho-
sen to illustrate this. Although it was not reported as failing
to meet product specifications, its quality variables were found
to be far from average. The same linear interpolation proce-
dure described earlier was used to generate the 116 time in-
tervals for that batch. Note that this was possible because the
measurements for that batch were known in advance. An-
other procedure has to be adopted for real on-line monitor-
ing of this batch process. Figure 12 shows the SPC on-line

monitoring charts for this batch. Figures 12a and 12b show
the progression of the scores for the first and second compo-

Žnents, respectively score chart for the third component did
.not provide additional information . The joint plot of the

Ž .scores for the two components a ] a is monitored in Fig-1 2
ure 12c. Finally, Figure 12d shows the evolution of SPE in
time. Apart from slight deviations in the early stages revealed

Ž .by both scores for the second component and SPE charts,
there is a clear deviation from the normal operating condi-
tions, starting at time 100 approximately. This corresponds to
the beginning of the fifth stage, in which the polymer is dis-
charged by pressurizing the reactor. The sharp peak in the
confidence intervals of SPE results from one of the reference
batches, whose heating medium pressure reduction began in

Figure 13. Contribution plots to scores and to the SPE for batch 47 at time intervals 98 and 112.
Ž . Ž .White, striped, and criss-crossed bars in a and c , represent first, second, and third component, respectively.
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stage 3, well before other batches in the group. Although no
explanation for this different profile is available, the batch
met product quality specifications, and it was also included in
the training data set.

By looking at the contribution plots at time interval 98
Ž .Figures 13a and 13b , further information can be obtained

Ž . Žfrom the model. Variables 3 vapor temperature and 6 heat
.source jacket vent temperature contributed greatly to the

Ž .scores Figure 13a . As was stated earlier, the heating medium
was turned off in stage four. The heat transfer to or from the
reactor until the end of the batch was then facilitated by the
heating medium vapors in the external jacket and internal
coils in the autoclave. It thus seems that heat-transfer in the
autoclave was not behaving properly, because the tempera-

Figure 14. Time trends for variables 6 and 8 for some
( )reference batches dashed lines and for the
( )batch under study solid line .

ture in the external jacket was decreasing abnormally. This
new source of variation was also detected in the contribution
plot to the SPE, where variable 6 had the largest value. Con-

Ž .tribution plots at time 112 Figure 13c and 13d are also pre-
sented to see how the process evolves during the final steps
of the process. Variables 3, 5, 6, 7, and 8 show the highest

Ž .contribution to the scores at that point Figure 13c . Except
vapor temperature inside the autoclave, the rest of these
variables start decreasing from stage 4 until the process is
finished. Further investigation of the profiles of variables 5,
6, 7, and 8 for this running batch shows that the final values
of the temperatures and pressure at the end of the batch

Figure 15. On-line predictions for the two quality vari-
ables.
Asterisk marks on the right side correspond to the actual
final product quality.
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Žwere significantly lower than for the reference batches see
.Figure 14 . Also, variable 3 was found to show an abnormal

profile in the last time intervals, which is reflected in the con-
Ž .tribution plot to SPE Figure 13d .

Figure 15 shows the y-predicted monitoring charts for the
two quality variables. The predictive ability of the model was
low to moderate, yet the evolution of the predicted y-values
can be very helpful in detecting abnormalities in the process.
This is well illustrated in Figures 15a and 15b, where the
charts show a sudden change in the predicted properties at
time interval 98, just as the MSPC charts detected. Thus, the
Y-predicted monitoring charts can be a good complement for
the traditional scores and SPE plots.

Conclusions
A new multiway covariates regression method for monitor-

ing batch processes and predicting future quality variables has
been presented. When a Tucker3 or a PARAFAC model was
used to decompose the three-way X matrix, information on
the variable and time domain was obtained in a clear way
through different loading matrices. The process can be moni-
tored by using common SPC charts, which are built from a
reference set of past good batches.

Further diagnosis of a new running batch can be achieved
by means of contribution plots. Once a fault has been de-
tected at a certain time interval by inspecting the SPC charts,
the process can be tracked by plotting the contribution of the
process variables to the scores and to the squared prediction
error. In this way, the variables responsible for the observed
deviation can be easily detected. However, a shortcoming of
the MSPC charts is that an out-of-control situation is only
detected when either the scores or the SPE values exceed the
control limits. Since score and SPE values often follow a cer-
tain increasing or decreasing pattern before reaching the
control limits, it would be interesting to develop criteria for
recognizing these special patterns, as is the case in univariate
Shewhart charts. In this way, abnormal variations or faults
could be detected earlier.

Predictions of the quality variables can also be monitored
on-line. However, predicted values for an error batch cannot
be completely trusted. The need for different models, de-

Ž .pending on the final purpose diagnosis, prediction , has also
been discussed. However, there are still some unresolved
problems. For example, information in most batch processes
is also available for some initial variables, which can be ar-
ranged in a matrix Z. Future work should focus on develop-
ing methodologies for modeling the relation between the X ,
Y, and Z matrices. There is also a need for building reliable
confidence intervals for the Y-predicted values in the multi-
way covariates regression models.
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Notation
xs vector
Ysbatch quality data

Ž .Xs three-way array batch process data
Hscore array in Tucker3 model

ms1, . . . , Ms index for quality variables
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