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Blockmodels are used to collapse redundant elements in a system in order to clarify the patterns 
of relationships among the elements. Traditional blockmodels define redundancy in terms of 
structural equivalence. This choice serves many analytic purposes very well, but is inadequate for 
others. In particular, role systems would be better modeted by blockmodels based on regular 
equicalence. The first goal of this paper is to generalize blockmodels to incorporate bath 
structural and regular equivalence. Another limitation of traditional blockmodels is that they are 
defined only for 6~&~tions of> 2-way l-mode adjacency matrices. This exsludes common 
datasets such as actor-by-event, actor-by-organization, item-by-use and case-by-variable matrices. 
It also excludes 3-way data such as actor-by-actor-by-tome or subject-by-garb-by-object matrices. 
The second goal of this paper is to define blockmodels for muitiway. mu&mode matrices in 
general. In so doing, we also shift the focus of attention away from the blocking af actors for 
other entities) and toward the blocking of ties (or multiway cells). 

An important tool in the analysis of social networks is the blockmodel 
(Breiger et al. 1975; White and Breiger 1975; White et al. 1976; 
Boorman and White 1976). Blockmodeling seeks to (a) cluster actors 
who have substantially similar patterns of relationships with others, 
and (b) interpret the pattern of relationships among the clusters. 
Viewed as a method of data reduction, blockmode~~ng is a valuable 
technique in which redundant etements in an observed system are 
reduced to yield a simplified model of relationships among types of 
elements. 

However, despite initial papers presenting the method in this light 
(Breiger et al. 1975; B oorman and White 19761, blockmodeling is not 

* This paper is based on Chapter 3 of Borgatti (1989). 
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usually seen this way. Rather, blockmodeling is seen as a tool for 
discovering roles and positions occupied by actors in a social structure 
(Knoke and Kuklinski 1982). This is unfortunate because standard 
blockmodeling is not well suited to this task. ’ Standard blockmodels 
place actors in the same block if they are relatively structurally 
equiL~alent (Lorrain and White 1971; Burt 1976). That is, actors are 
blocked together if they have the same types of ties with the same 
others. These blocks are then interpreted as positions, and the modal 
relationships observed between members of a given position and 
members of other positions are mterpreted as the role played by 
actors occupying that position. 

However, as many authors have pointed out (Sailer 1978; White 
and Reitz 1983; Winship and Mandel 1983; Doreian 1988a, 1988b; 
Faust 3988; Pattison 1988; Borgatti and Everett 1989, 19921, these 
interpretations do not fully capture the notions of position and role. 
In reality, actors occupying the same position (such as two doctors or 
two mothers) do not necessarily have similar ties with the same 
others. Rather, they have the same ties with the same types of others. 
That is, all doctors may have the same role-relations with patients, 
nurses, suppliers and other doctors, but not necessarily the same 
patients, nurses etc. Similarly, two mothers do not normally have the 
same children: it is enough that they have any children. 

Thus, structural equivalence is not an appropriate basis for classify- 
ing actors into social positions. A better choice is regular equivalence 
(White and Reitz 19831, as many authors have argued (Doreian 1988a, 
198813; Faust 1988; Borgatti and Everett 1989). Under regular equiva- 
lence, equivalent actors have the same types of ties not with the same 
actors but with equivalent actors. This conception more accurately 
captures the concept of role and position. The first goal of this paper 

’ Except when used simply to reduce the data prior to a different kind of role analysis. This is 

the approach taken by Boorman and White (1976) and Wu (1983). After collapsing redundant 

actors, they analyze compound relationships among relations. For example, Boorman and White 

study positive and negative relations in the Sampson (1968) monastery data. They find (pp. 
1393-1394) that the compound relation “friend of an enemy” mirrors the simple relation 
“enemy of”. These findings are revealing of the social roles of “friend” or “enemy”, and so this 
approach is indeed a role analysis. However, blockmodeling has little to do with it: it is used 

merely to collapse substantially redundant actors in order to simplify the analysis and possibly 
eliminate some effects of measurement and other error. In later work this step is dispensed with 

(Breiger and Pattison 19861, and compound relations are computed from the raw data. 



M. G. Elwett and S.P. Borgatri / Digruphs, networks md hypergraphs 93 

is to generalize the notion of blockmodels to utilize regular equiv- 
alence as the basis for blocking. 

The second goal of this paper is to enhance the usefulness of 
blockmodeling as a data reduction tool for many different kinds of 
datasets. Until now, blockmodeling has been used only in the context 
of network analysis, although the algorithms behind it have long been 
used in other fields (for a review, see Arabie et al. 1978). In this 
paper, we extend blo~kmodeling to apply not only to network data, 
but to any data that can be represented as a matrix. This makes it 
possible to blockmodel actor-by-event, actor-by-organization, item-by- 
use, consumer-by-product and other common incidence matrices. Fur- 
ther, following Baker (1986) we extend blockmodeling beyond the 
confines of Z-way matrices to multiway, multimode data. Applications 
include Astor-by-Astor-by-relation data, actor-by-means-by-outcome 
matrices, and so on. In addition, we define blockmodels for both 
binary and valued data, including nominal-scale (categorical) values. 

1. ~ultiway, multimode matrices 

Network data typically consist of one or more binary adjacency matri- 
ces representing social relations among a set of actors. Adjacency 
matrices have two ways, corresponding to their rows and columns. A 
way is a set of objects that subscript or index the cells of a matrix. 

An adjacency matrix is usually thought of as having one mu&, 
corresponding to the single set of actors that both the rows and 
columns reference. A mode is a set of objects indexed by a matrix way 
(Tucker 1964). In contrast, an incidence matrix that records which 
women (rows) attended which events (columns) has two ways (rows 
and columns) and two modes ~women and events). A matrix of 
distances between pairs of cities has one mode because both ways 
refer to the same objects - in this case cities. A 2-way matrix must be 
square to have only one mode. 

A mode may be viewed as a kind of way. The set of modes of a 
matrix partitions or maps the set of ways of a matrix into a set of types 
or classes of equivalent ways. For example, in the case of a 2-mode, 
3-way matrix such as a collection of actor-by-actor adjacency matrices, 
each representing a different social relation, we implicitly map the 
first two ways onto the first mode (actors) and the third way onto the 
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second mode (relations). We regard two ways as distinct if they are 
mapped to different modes. Two ways must be distinct if they contain 
different numbers of elements. 

Whereas the number of ways in a matrix is unambiguous and 
clearly a property of the matrix, the same cannot be said for modes. 
Data analysts may reasonably disagree on the number of modes in a 
given matrix. Furthermore, the same analyst may choose to define the 
number and make-up of modes of a given matrix differently at 
different times depending on the analytic question to be answered. 
For example, for some purposes, the non-symmetric adjacency matrix 
of a directed graph may be regarded as having one mode or two, 
depending on the analytic purpose. Thus modes are most properly 
thought of as properties of the analysis. That said, however, it must be 
admitted that, for most datasets, there is a clear and natural choice of 
modes. For that reason, we shall find it convenient to refer to 
“2-mode matrices” rather than a “2-mode analysis of a matrix”. 

A 2-way matrix consists of a set of rows and a set of columns, a set 
of cells (i, j), and a set of values or entries in those cells. More 
abstractly, the matrix consists of a pair of ways [R, C), the Cartesian 
product R X C, and an assignment of a value to each ordered pair 
(Y, c) E R x C. Hence, a matrix may be viewed as a mapping of the 
Cartesian product of a set of ways into the set of real numbers. We use 
this conception to define the general notion of a multiway matrix: 

Definition 2. Let W = {IV,, W,, . . . , W,,) be a set of m ways. Let 
EcnV( for i=l,..., m be a subset of the Cartesian product of all 
ways. An m-way match X(W, E) is a function X: E + R. The cells of 
an m-way matrix are the m-tuples c = (c,, . . . , c,,) where c, E wi. The 
value of a cell c is written x(c) or x(c,, . . . , cm), as convenient. 

Definition 1 allows for the possibility that some cells of a matrix (those 
not in E) have missing, null or undefined values. This permits a 
distinction between the quantity zero and the absence of a value. This 
is particularly useful when using matrices in which cell values are 
measured on an interval scale in which a value of zero implies not the 
absence of something but a quantity one unit greater than - 1. It is 
also useful when using matrices to represent valued graphs in which 
the value assigned to a pair of unconnected nodes is undefined rather 
than zero. For example, in a graph in which links represent pipes and 
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values represent the temperature sensitivity of each pipe, it makes no 
sense to measure the temperature sensitivity of non-existent pipes, 
and so no values are observed for pairs of unconnected nodes. 
Similarly, in a matrix representing a non-reflexive relation such as “is 
married to”, it is desirable to distinguish cells in which the measured 
relationship could conceivably occur (all off-diagonal cells) from cells 
in which the relationship could not possibly occur (diagonal cells). The 
distinction corresponds roughly to the distinction made in other 
contexts (cf. Bishop et al. 197.5) between “structural zeros” and “data 
zeros”. 

2. General blockmodels 

As presented by Breiger et al. (197.5) and White et al. (19761, a 
blockmodeling analysis begins, in the simplest case, with a matrix X in 
which rows and columns refer to actors. The matrix represents an 
observed social relation such as “is a friend of” or “reports to”, and 
has values x(i, j) = 1 if actor i has the specified relationship with 
actor j, and x(i, j) is null otherwise. An example is given in Figure 1. 

Blockmodeling can be divided into two distinct steps, which we 
shall refer to as blocking and modeling, respectively. Traditionally, the 
blocking step consists of partitioning actors in a network into struc- 
turally equivalent sets called blocks. For example, a blocking of the 
matrix in Figure 1 yields the following blocks of actors: {a, c), {b, d}, 

Actor 

abcdefghij 

El 
: 

Actor e 
f 

: 

3 

111 
111 
11 1 
111 

111 
111 

111 
1 11 

111 
111 

Fig. 1. An adjacency matrix 
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C 
Actor 
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E 

F 

Actor 

A B c D E F 

ac bd e f gi hj 

a 
c 

b 
d 

e 

f 

4 
i 

h 

j 

Fig. 2. Blocked matrix based on a structural blockmodel of the matrix in Figure 1. 

{e}, If), {g, i}, {h, j}. For future reference, we define a blocking 
formally as follows: 

Definition 2. Let X(W, E) be an m-way matrix. A blocking of X is a 
set of partitions P = (P,, . . . , P,> of each of the ways of X. 

A blocking is said to be trivial if each element of each way is placed in 
a separate block (the identity blocking), or if all elements of each way 
are placed in the same block (the complete blocking). Two elements u, 
~1 E W, of a given way are members of the same block (i.e., are 
equivalent) if P,(u) = P,(u). Figure 2 presents the blocked matrix, 
which is a rearrangement of the rows and columns (and other ways) of 
the data matrix according to blocks. Note that the partitions of the 
ways of a matrix induce a partition of the cells as well: cells are 
equivalent if and only if they connect equivalent way-elements. The 
classes of equivalent cells, together with their values, are referred to 
as matrix block. In Figure 2, thirty-six matrix blocks are evident. For 
future reference, we define matrix blocks as follows: 

Definition 3. Let X(W, E) be an m-way matrix. Let P be a blocking 
of X. Then P induces an equivalence relation P* on KLW where, Vc, 
d E IIW cP*d if and only if Pj(ci> = Pjd,) for i = 1,. . . , m. An m-way 
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B 

C 
Block 

D 

E 

F 

Fig. 3. Image matrix 

Block 

A B C D E F 

based on a structural blocking shown in Figure 2 

matrix block (or simply matrk block) is a submatrix of X whose cells 
comprise an equivalence class of P *. 

The modeling step consists of building a new matrix, based on the 
blocking, which summarizes the pattern of relationships observed in 
the data matrix. The new matrix, called the image matrti or model, 
has rows and columns corresponding to blocks and cell entries that 
indicate whether the actors belonging to the blocks are linked in the 
data matrix. An example is given in Figure 3. In the example, the 
(A, B) cell contains a value of 1 because, according to the blocking 
shown in Figure 2, all actors in the first block (A) are connected to all 
actors in the second block (B). In contrast, the (B, D) cell is empty 
because none of the actors in the second block (B) have any ties with 
any of the actors in the fourth block CD). A formal definition of the 
model will be given in a later section. 

While some authors use the term “blockmodel” to refer to the 
image matrix alone, we prefer to think of the blockmodel as consisting 
of both the blocking and the image. Thus, we define a blockmodel as: 

Definition 4. Let X(W, E) be an m-way matrix. Let P = {P,, . . . , PJ 
be a blocking of X. Let I be an image matrix whose ways index the 
equivalence classes of the partitions in P. The collection B(P, I> is a 
blockmodel of X. 

We begin the discussion by considering alternative blockmodels con- 
structed by different blocking criteria, then take up the question of 
appropriate modeling strategies. 
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3. Structural blockmodels 

A blockmodel in the sense of Breiger et al. (1975) and White et al. 
(1976) is, in our terms, a blockmodel that uses structural equivalence 
as the basis for blocking. We refer to such a blockmodel as a 
structural blockmodel. Traditional blockmodels are defined for collec- 
tions of l-mode, 2-way matrices. Here we present a generalized 
definition for multiway, multimode matrices which includes the tradi- 
tional definition as a special case. 

Definition 5. Let X( W, E) be an m-way matrix. A blockmodel B(P, I> 
of X is a structural blockmodel if whenever P,(u) = P,(cl), u, 11 E W, 
then x(c) =x(d) for all cells c, d E E such that c, =u, di = c, and 
cI = d, for all j f i. 

The definition states that two elements of a given way will be assigned 
to the same block if they have the same values across all matrix cells 
whose cell indices are the same for all other ways. For example, if 
elements 7 and 9 of the third way of a Sway matrix are structurally 
equivalent, then x(1, 2, 7, 6, 3) =x(1, 2, 9, 6, 31, and, more generally, 
~(a, b, 7, d, e) =~(a, b, 9, d, e), for all elements of each of the other 
four ways. 

The definition is made more comprehensible if we think of the 
elements of a given way as “choosing” the elements of other ways with 
certain intensities. For example, consider a crime-by-city-by-year ma- 
trix in which cell values record the number of crimes committed each 
year of a given type in various cities. We can think of a certain kind of 
crime as “choosing” a certain city and year with some frequency, and 
choosing another city and year with the same or different frequency. 
Similarly, we can think of a certain city as choosing to have a certain 
type of crime with a certain frequency in a given year. Put this way, 
the definition specifies that two crimes belong in the same block if 
they occur with the same frequencies in the same cities and years. At 
the same time, two cities belong to the same block if they have the 
same distribution of crimes in the same years, and two years are 
blocked together if they exhibit the same frequencies of crimes in the 
same cities. 

Applied to a 2-way l-mode matrix, Definition 5 reduces to the 
standard blockmodels proposed by Breiger et al. (1975) and White et 
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Corporate Board 

12 3 4 5 

1 
2 

Person 3 
4 

5 
6 
7 

Fig. 4. Structural blockmodel of a 2-way, 2-mode matrix. 
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al. (1976). 2 An example of a structural blockmodel is given in Figure 
2. The image matrix is given in Figure 3. According to the blockmodel 
there are 6 distinguishable blocks of actors in the network: (a, c} 
{b, d} {e} (f} (g, i) {h, j}. Since, aside from relationships with them- 
selves, each pair of equivalent actors is connected and not connected 
to exactly the same others, there is in fact no reason to distinguish 
them. They are perfectly substitutable. Hence, the data reduction and 
consequent simplification provided by the image graph is gained with 
minimal loss of information. 

Applied to a 2-way, 2-mode matrix, Definition 5 requires that two 
rows be placed in the same row-block if they have the same values 
across all columns. At the same time, two columns are placed in the 
same block if they have the same values across all rows. An example 
of a structural blockmodel of a 2-mode matrix is given in Figure 4. In 
the example, the rows correspond to businesspersons while the 
columns represent firms. The matrix records which persons sit on the 
board of directors of which firms. Two persons are perfectly struc- 
turally equivalent if they sit on exactly the same boards. Two boards of 
directors are perfectly structurally equivalent if they are composed of 
exactly the same persons. 

An example of a 2-mode structural blockmodel of a valued matrix is 
given in Figure 5. In the figure, rows represent investment analysts 
while columns represent stocks, bonds or other securities. Equivalent 

* Our generalized definition does not repair a well-known shortcoming of the standard defini- 

tion. When applied to directed graphs, this definition will find a pair of nodes structurally 

equivalent even if there is an unreciprocated arc from one “equivalent” node to the other. A 
correction based on a better definition of structural equivalence (Everett et al. 1990) should be 

used in actual computations. We omit the correction here in order to simplify the exposition. 
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Security 

12 345 67 

1 
2 

Investment 3 
Analyst 4 

5 
6 

Fig. 5. Structural blocking of matrix recording risk ratings for seven stocks and bonds by six 

analysts. The values (A, B, C) represent ordinal measurements with A > B > C. 

analysts are those who give the same rating to the same securities. 
Equivalent securities are those that receive the same ratings from the 
same analysts. For datasets with just a few distinct values, as in this 
example; it is also possible to treat the different values as entirely 
different relations, creating a binary 3-way analyst-by-security-by-rat- 
ing matrix. The advantages of blockmodeling the valued matrix di- 
rectly are that it is simpler and it is readily extended to the case of 
continuous values. 

Applied to a 3-way 2-mode matrix such as the actor-by-actor-by-re- 
lation data of Sampson (1968), Definition 5 reduces to Baker’s (1986) 
extended blockmodel in which actors and relations are simultaneously 
partitioned. Actors are blocked together if they have ties to the same 
others on the same relations, and relations are blocked together if 
they connect exactly the same pairs of actors. Relations which are 
perfectly structurally equivalent relations are clearly redundant, and 
(all but one) can be ignored for all further analyses, including building 
role algebras (Boorman and White 1976; Sailer 1978). Thus, White 
and Reitz’s (1983) theorem showing that the same semigroup is 
generated from a structural image matrix as from the raw data matrix 
is valid for the case when relations are blocked as well as actors. 

4. Structural matrix blocks 

The matrix blocks of a structural blockmodel have a characteristic 
appearance: all cells within a block have the same value (or are null). 
This applies both to binary and valued matrices, as the blockmodels in 
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Figures 4 and 5 demonstrate. Although obvious, this is a useful result 
which we state as a theorem for future reference. 

Theorem 1. Let B(P, I> be a blockmodel of a matrix X(W, El. Then 
B is a structural blockmodel if and only if x(c) =x(d) for every pair of 
cells c, d that are members of the same matrix block. 

Proof. Suppose B(P, I> is a structural blockmodel. Let (ci,. . . , c,,) 

and Cd,, . . . , d,) be two cells of the same matrix block Y. It follows 
that P,(c,) = PJd,) and since the blockmodel is structural 
X(Ci, . . . , cm> = x(d,, c2, . e . , cm>. It can easily be seen that 
cd,, c2,. . . cm) is also a member of Y and since P,(c,) = P,(d,) we can 
similarly deduce that x(d,, c2,. . . ,c,) =x(d,, d,, cg,. . . , cm>. Contin- 
uing in this manner we eventually produce the sequence x(ci, . . . , cm) 

= x(d,, c2,. . . , cm> =x(d,, d,, c3 ,..., cm> = . . . =x(d ,,..., d,). Con- 
versely, suppose that for every pair of cells c, d in a matrix block 
x(c) =x(d). Then it follows directly from the definitions that B(P, I> 
is structural. 

The importance of this theorem is that it provides a basis for a 
measure of blockmodel fit. A blockmodel is structural to the extent 
that its matrix blocks have uniform values. A natural measure of fit, 
then, is the average variance within matrix blocks. In the case of the 
adjacency matrix of a non-valued graph, this criterion is closely related 
to the objective function proposed by Batagelj et al. (1992ue) for 
minimization by a structural blocking algorithm. The advantage of the 
average variance criterion is that it is appropriate for both binary and 
valued data. A block modeling algorithm using this criterion has been 
implemented in the UCINET IV (Borgatti et al. 1991) network 
analysis software. 

5. Regular blockmodels 

A regular blockmodel differs from a structural blockmodel in the 
criteria used to assign actors to blocks. Whereas structural blockmod- 
els are based on structural equivalence, regular blockmodels are based 
on the more general notion of regular equivalence. A regular block- 
model is defined as follows: 
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Actor 

achj bdgi ef 

1 11 
1 11 

11 
I 1 l-f-l-- 

e 
f 

Fig. 6 Regular blocking of matrix shown in Figure 1 

Definition 6. Let X(W, E) be an m-way matrix. A blockmodel R(P, I1 
of X is a regular blockmodel if whenever P,(u) = P,(o) U, cl E wl then 
for all cells c E E and ci = u there exists a cell d E E such that di = ZJ, 
x(c) =x(d) and cPd. 

Applied to ordinary network data 12-way, l-mode adjacency matrix) 
in which ties are coded “1” if present and null if absent, Definition 6 
reproduces exactly the regular equivalence definition of White and 
Reitz (1983). If a blocking is regular, then if any actor in a given block 
A has a tie with any actor in a given block B, then all the actors of A 
have a tie with some actor of B, though not necessarily the same actor. 
An example of a regular blockmodel of the 2-way l-mode matrix in 
Figure 1 is given in Figure 6. The image matrix is given in Figure 7. 
According to the blockmodel, there are three distinguishable types of 
actors in the network: {a, c, h, j} {b, d, g, i) {e, f). 

Applied to a 2-way, 2-mode matrix, Definition 6 requires that two 
rows placed in the same row-block have the same values across all 
columns. At the same time, two columns are placed in the same block 

ac bd 
hj gi ef 

achj 

bdgi 

ef 

1 1 

‘rtc-l 1 1 

1 1 

Fig. 7. Image matrix for regular blocking shown in Figure 6. 
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Customer 

Fig. 8. Two-way 2-mode data matrix in which xti, jf= 1 if person i visits restaurant j during a 
given time period. 

if they have the same values across all rows. As an example, consider 
the customer-by-restaurant matrix X shown in Figure 8, which records 
which persons visit which restaurants during a given time period. Thus 
x(i, j) = 1 if person i visits restaurant j, and x(i, j) = null otherwise. 
According to Definition 6, two persons are equivalent if they visit 
equivalent restaurants. A regular blocking of the matrix is presented 
in Figure 9. An image matrix is presented in Figure 10. Clearly, the 
regular blocking has identified two types of customers (labeled X and 
Yl as well as two types of restaurants (labeled A and Is>. The 
customers in X differ from the customers in Y in that X customers 
visit both kinds of restaurants, but Y customers only visit B restau- 
rants. Correspondingly, A restaurants differ from B restaurants in that 
they are visited only by X customers whereas B restaurants are visited 
by both kinds of customers. In a sense, the X role entails the Y role, 
and, symmetrically, the B role entails the A role. 

Let us assume that the reason the data turn out the way they do is 
that the A restaurants are expensive while the B restaurants are 

Restaurant 

A B 

12 3 4 5 

Person 

Fig. 9. Regular ~i~krn~del of matrix in Figure 8. 
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A B 

X 1 1 

Y El 1 

Fig. 10. Image matrix for regular blocking shown in Figure 9. 

cheap, and the X customers are wealthy while the Y customers are 
poor. Wealthy customers can visit either kind of restaurant, but poor 
customers are restricted to cheap restaurants. It is interesting to note 
that computing a structural blockmodel of this or any other data 
generated according to the same underlying rules would fail to reveal 
the existence of these basic subdivisions. The reason is that there is 
nothing in the underlying situation that would cause all poor people to 
visit exactly the same restaurants and all rich people to visit (a 
different set of> exactly the same restaurants, as would be necessary 
for a structural blockmodel to identify the groups. After all, the data 
may have been collected from people living in completely different 
parts of the globe. Further, there is no reason why each rich person 
must visit every single restaurant and each poor person must visit 
every single cheap restaurant. Yet that is what would be required in 
order for a structural blockmodel to detect the underlying organizing 
pattern. 

Definition 6 applies to valued matrices as well. As an example, 
consider the customer-by-restaurant matrix X given in Figure 11. 
Matrix values x(i, j> give the occasion (lunch or dinner) for which 
person i is most likely to eat at restaurant j. A 2-mode regular 
blockmodel will consist of two partitions, one of the customers (rows) 

Restaurant 

1 2 3 4 5 

1 1 1 1 2 1 
2 1 1 2 1 2 

Person 3 1 2 2 1 1 
4 1 2 1 2 1 
5 2 1 2 1 2 
6 1 1 2 2 2 
7 1 1 2 2 2 

Fig, 11. Valued 2.way 2-mode data matrix in which x(i, j) = 1 if person i visits restaurant j for 

lunch and x(i, j) = 2 if i visits j for dinner. 
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Restaurant 

A B 

12 3 4 5 

111 1 2 1 
X 2 1 1 2 1 2 

3 1 2 2 1 1 
Person Y 4 t 12 12 1 

5 2 1 2 12 

2 6 11 2 2 2 
7 11 2 2 2 

Fig. 12. Regular blocking of the matrix in Figure 11. 

1 = Lunch 
2 = Dinner 

and one of the restaurants (columns). First consider the customer 
partition. Under what conditions would customers u and u be classed 
together? The definition says that for every restaurant that customer 
u visits, u must visit an equivalent restaurant on the same occasion. 
Similarly, for two restaurants p and 4 to be classed together, it must 
be true that for every customer that visits restaurant p, there is an 
equivalent customer who visits restaurant q on the same occasions. 

The blockmodel in Figure 12 is regular. In this particular block- 
model, it happens that restaurants fall into two groups (labeled A and 
B) and customers fall into three groups (labeled X, Y and Z). The 
A-class restaurants differ from the B-class in that two different types 
of people (X and Z> visit the class A restaurants only for lunch, 
whereas no segment does that with the class B restaurants. On the 
contrary, at least one group (Z) visits the Bs only for dinner. Turning 
to the customers, it is clear that two of the groups (X and Z) 
distinguish between restaurants on the basis of occasion, but one 
group, (Y) does not. 

Note that the number of restaurants visited by any person for a 
given kind of meal is not important. For example, persons 4 and 5 are 
equivalent, yet person 5 visits two class B restaurants for dinner while 
person 4 visits only one. 

It should also be noted that the data shown in Figure 8 and Figure 
11 do not differ except that nulls in the former matrix are recoded as 
twos in the latter matrix. Yet the resulting blockmodels (Figures 9 and 
12) are different. In the first blockmodel, customers 1 through 5 are 
all seen as one block, whereas in the second, customers 1 and 2 are 
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distinguished from 3, 4 and 5. If we interpret ones in Figure 11 as 
meaning “visits” and twos as meaning “does not visit”, then the 
difference in blockmodels is, at first glance, puzzling. The reason is 
that using a one-two coding (versus a one-null coding) puts visiting 
and not-visiting on an equal footing; both are legitimate relationships 
that a customer might have with a restaurant and which might 
distinguish that customer from another customer. In Figure 12, cus- 
tomers 3, 4 and 5 resemble each other (and differ from 1 and 2) in that 
they visit and fail to visit the same types of restaurants. Customers 1 
and 2 visit all A restaurants. They do not have a “not visit” relation- 
ship with any A restaurants. In contrast, customers 3, 4 and 5 have a 
“not visit” relationship with both A and B restaurants. 

Thus, regular blockmodels give the analyst the option of choosing 
to regard the absence of a tie as a positive statement about the 
relationship between two entities. This means that regular blockmod- 
els can be used to correct a deficiency noted by Borgatti and Everett 
(1989) in the concept of regular equivalence, which is that a partition 
that is regular on a graph is not necessarily regular on its complement. 
In other words, recoding the values of an adjacency matrix so that 
nulls become ones and ones become nulls, can yield rather different 
results. By choosing to code nulls as zeros (or any other valid value), 
regular blockmodels can be obtained which hold simultaneously for a 
graph and its complement. 

It should be noted that the fact that regular blockmodels are 
defined for valued as well as binary matrix is a convenience but not a 
necessity. This is because any valued m-way matrix can always be 
represented as an (m + l&way matrix with value as the additional 
way. From a computational point of view, of course, such a represen- 
tation is significantly less desirable than the more compact valued 
representation (particularly if there are many distinct values). How- 
ever, from a conceptual point of view, the binary representation has 
the benefit of yielding blockmodels which directly partition not only 
the ways of the valued matrix, but also the values themselves. 

6. Regular matrix blocks 

Regular blockmodels have a characteristic appearance. Consider the 
blockmodel in Figure 12. The row and column partitions induce a 
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partition of matrix cells into six matrix blocks, which we shall refer to 
as XA, XB, YA, YB, ZA, and ZB. Each of the six matrix blocks is 
either filled with all the same value (as are XA, ZA and ZB), or each 
row and column of the matrix contains at least one 1 and one 2. The 
general principle is that if any cell in a matrix block contains a given 
value, then every row and column in that block must contain at least 
one instance of that value 3. Any matrix block that has this property is 
called a regular matrix block. In a regular blockmodel, every matrix 
block is regular. We state this result as a theorem for future reference: 

Theorem 2. Let B(P, 1) be a blockmodel of an m-way matrix X(W,E). 
If c E IIJV then define Ri(c) = (d: d = (cl,. . . , Ci_ ,, e, ci+,, . . . , cp), 
P,(e) = P,(c,>, e E V$). B is regular if and only if for every c E E, gP “c 
and i= l,..., p there exists h E Rjg) such that x(c) =x(h). 

Proof. Suppose B is regular. Let c E E and gP*c. It follows that 
P,(g,) = P,(c,> and therefore there exists an h E E such that h, = gi, 
x(c) =x(h) and cP*h. Since gP*c and cP*h, then gP*h, so that 
h ERR. Conversely suppose that P,(u) = P,(u), u,u E U: and let 
c~Ewithc;=uandg=(c,,c, ,..., ci_,,u,ci+r ,..., c,).SincegP”c 
then there exists d, l R,(gj such that x(c) =.x(d,l. The fact that 
d, ERr(g) means that d, =(e,, c2, C3,...,Ci_I, U, Ci+l,...,C,) with 
P,(e,) = P,(c,) and so d,P*c; we can therefore apply the condition in 
the theorem to d, to obtain a d, EZ?~(~~) with x(c) =x(d,) and 
d,P*c. We can proceed in this manner and change every element of 
g except gi to form a new cell d. From our construction di = u, 

x(c) =x(d) and cP*d and the theorem is complete. 
According to the theorem, regular blockmodels can be defined in 

terms of the matrix blocks they induce: a blockmodel is regular if and 
only if every matrix block it induces is regular. The theorem may be 
viewed as expressing a principle of decomposability: if X is a matrix 
and there exists a blockmodel B of X that is regular, then X may be 
decomposed into a set of disjoint regular submatrices. Further, within 
any regular block we can search for non-trivial regular blockmodels. If 
any are found, the resulting partition can be regarded as a special 
kind of refinement of the original blockmodel, which we call a local 
refinement. If the same refinement is regular across all matrix blocks, 

3 This observation first appears in an unpublished manuscript by D.R. White (1980: 29). 
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Fig. 13. Regular matrix. 

then it is a global refinement, and constitutes an alternative regular 
blockmodel of the matrix. 

As an example, consider the l-mode matrix in Figure 13. First, note 
that since every row and column of the matrix contains the same 
combination of values, the trivial complete partition (placing all rows 
and columns in the same block) is regular. For convenience, we refer 
to such matrices as regular matrices. A non-trivial regular blockmodel 
of this matrix is given by Figure 14. 

Note that a local refinement of the first matrix block is the partition 
{{l, 2, 3, 4) (5, 6)) for both rows and columns. Further, splitting 
(1, 2, 3, 4) from IS, 6) in every matrix block preserves regularity, and 
so ((1, 2, 3, 4) {5, 6} (7, 8, 9, lo}), shown in Figure 15, is a new global 
regular blockmodel. A number of further refinements, local and 
global, are also possible. 

A B 

x ;ii 

Fig. 14. Regular blockmodel of matrix in Figure 13. 
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A B C 
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Fig. 15. Global refinement of regular blockmodel in Figure 14 

Implied in this discussion is the fact that, in any given matrix, a 
number of distinct blockmodels may be regular. Borgatti and Everett 
(1989) have shown that, in graphs, regular equivalence forms a lattice 
of graph equivalences, of which structural equivalence is one member. 
These results are valid for 2-mode matrices as well, since any 2-mode 
matrix can be represented as a bipartite graph 4. Other results on 
regular equivalences, such as the iterated roles of Borgatti et al. 
(1989) carry over as well. 

The fact that 2-mode matrices can be represented as bipartite 
graphs also means that 2-mode regular blockmodels may be computed 
using standard network algorithms such as REGE (White 1984; 
MacEvoy and Freeman n.d.). Alternatively, new partitioning algo- 
rithms may be written using Theorem 2 as a basis for constructing a 
measure of fit to be maximized. Batagelj et al. (1992) have done just 
that for the 2-way l-mode case. Borgatti et al. (1991) have imple- 
mented such an algorithm in the UCINET IV software package. 

7. Image matrices for regular blockmodels 

In the case of structural blockmodels, image matrices summarizing the 
dataset are not difficult to define. Theorem 1 guarantees that, given a 
perfect structural blockmodel, every value in a matrix block will be the 

4 To construct a bipartite graph from a 2-mode matrix, let the rows correspond to one set of 
nodes, let the columns correspond to another set of nodes, and let the cells in the matrix 

correspond to the ties between the two sets of nodes. There are no ties within the node-sets. 
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A B 

X 

Y 

2 

Fig. 16. Image matrix for regular blockmodel shown in Fig. 12 

same as every other value in the same block. If all the values are ones, 
then the corresponding cell in the image matrix is assigned a one. If 
every value is null, then the corresponding image value is null. The 
same applies to any other value as well. 

Of course, in practice, matrix blocks will not be perfectly homoge- 
neous. A block containing mostly ones may contain some zeros, or 
vice versa. Then, to define the image matrix, we need to specify a rule 
for deciding what value to assign a given block. For one-zero data, 
various rules have been proposed, as Faust and Wasserman (1992) 
discuss. One rule takes the largest value in a matrix block (i.e., if there 
are any ones in the matrix block, the corresponding image cell is 
assigned a one). Another rule takes the minimum value. Yet another 
rule takes the modal value (i.e., if there are more ones than zeros, 
assign a one; else assign a zero). 

The goal that all these rules share is the assignment of a single 
value to summarize all the values in the corresponding matrix block. 
The validity of this goal hinges on the assumption (guaranteed by 
Theorem l), that any heterogeneity in a matrix block is an error, 
indicating lack of fit, ’ and not something to be reproduced in the 
image matrix. 

This assumption is valid for structural blockmodels, but not for 
regular blockmodels. ’ In general, as Figures 12, 14 and 15 demon- 
strate, the matrix blocks induced by regular blockmodels can have 
multiple values. The only constraint, as given by Theorem 2, is that 
every row and column of the block reproduces the same set of values 
as the block as whole. Consequently, it is inappropriate to seek a 
single value to summarize the matrix block. Rather, the summary 

’ Panning (1982) relies on this assumption to develop his measure of blockmodel fit. 

’ The assumption applies to regular blockmodels only when the data contain only one distinct 

value (other than null). 
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A B C 

1,2 2 1,2 

EEI 2 1 1,2 

1,2 1,2 1,2 

Fig. 17. Image matrix for regular blockmodel shown in Fig. 15. 

consists of recording that set of distinct values that is found in every 
row and column of the matrix block. 

Thus, the image matrix of a regular blockmodel has sets of values as 
its cell entries. For example, the image matrix for the regular block- 
model in Figure 12 is given in Figure 16. The image matrix for the 
regular blockmodel in Figure 15 is given in Figure 17. 

8. Applications of 2-way 2-mode regular blockmodels 

One potential area of application for a-way 2-mode regular blockmod- 
els is marketing research analysis. Suppose, for example, that a market 
researcher collects information on 300 consumers regarding brands of 
mustard presently found in their pantries. We organize the data as a 
consumer-by-brand matrix of zeros and ones, with x(i, j> = 1 indicat- 
ing that household i possesses mustard brand j. The market re- 
searcher is typically interested in answering two questions. First, what 
is the structure of brands in the category? Do all brands compete 
equally with all others, or are there different kinds of brands which 
are “positioned” differently and occupy different competitive “niches” 
in the marketplace? Second, what is the structure of the consumers in 
the market? Do they all have the same needs and tastes, or are there 
different “segments” with different preference and purchasing pat- 
terns? 

Given this type of data, the researcher typically answers the first 
question by what amounts to correlating columns of the data matrix 
and clustering, factoring or multidimensionally scaling the resulting 
brand-by-brand correlation matrix. In practice, other measures of 
column-column association might be used (such as simple co-occur- 
rence), and some processing of the association matrix might be per- 
formed to remove marginal effects. In addition, a variety of methods 
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other than clustering, factoring and multidimensional scaling might be 
used to help reveal patterns of association. Ultimately, however, all 
these methods reduce to finding clusters of brands purchased by the 
same households. These clusters are interpreted as niches, submar- 
kets, or “positionings” as they are known in the trade. In the case of 
mustards, studies reliably show the existence of three major brand 
positionings corresponding to ordinary yellow mustard, spicy brown 
mustard, and fancy Dijon mustard. 

The second question is answered the same way as the first. Rows of 
the data matrix are correlated and clustered, which is to say that sets 
of households are identified that have substantially similar pantry 
holdings. These sets are interpreted as segments. Aggregate segment- 
by-niche matrices show the kinds of brands that different consumer 
segments buy. 

This analytic process is precisely equivalent to a structural block- 
modeling of the household-by-brand data matrix. It is also seriously 
flawed. The approach hopes to find segments of consumers who are 
indifferent between brands of a given type, but actually assumes that 
the same households will purchase several (in fact, all) brands of the 
type of mustard they like. Only if this happens (perhaps because of 
brand switching within type) would we expect high correlations be- 
tween brands of the same type. 

A more likely scenario is that consumers usually choose only one or 
two brands of each type. Some consumers keep all three types of 
mustard on hand because they see them as useful for different 
occasions and purposes. Other consumers buy only one type of mus- 
tard, and others buy only two types. Different households may pur- 
chase entirely different brands of mustard, yet follow the same pattern 
in the sense of, say, always purchasing one yellow brand and one 
Dijon brand. In short, we are suggesting that while consumer seg- 
ments may exist whose members have identical needs or purchasing 
patterns with respect to types of mustard, they should not be expected 
to purchase the exact same brands. Similarly, groups of similar brands 
may exist which serve the needs of certain consumer segments, but are 
not necessarily purchased by the same households. Consequently, 
analytic methods based on structural equivalence, such as traditional 
blockmodels, will fail to reveal the underlying market structure. In 
contrast, methods based on regular equivalence, are capable of detect- 
ing this kind of structure. 



M.G. Everett and S.P. Borgatti / Digraphs, networks and hypergraphs 113 

Similarly, a study of heterosexual teenage dating behavior might 
suppose that teenagers perceive different types of members of the 
opposite sex, some of which are more acceptable dates than others. A 
2-mode binary data matrix recording who has ever dated whom and 
blocked according to types might show that boys and girls select their 
dates from within categories of acceptable choices. However, it is 
unlikely that such a blocking would be structural because that would 
imply that if a boy dates one girl of a certain category, then he dates 
all girls of that category. ’ Rather, we expect the blocking to be 
regular, which would imply only that certain types of boys exclusively 
but not exhaustively date certain kinds of girls. 

As another example, consider an analysis of stock ownership which 
posits that there are different kinds of investors with different needs, 
and different kinds of stocks, with different benefits. We hypothesize 
that investors of a given type will share a signature pattern of 
investments, such as a concentration of funds on high income stocks 
with little diversification. Similarly, we assume stocks fall into cate- 
gories attracting different types of investors. However, we don’t neces- 
sarily expect two investors of the same type to invest in the same 
stocks: it is sufficient that they invest in the same kinds of stocks. 
Likewise, we do not expect two stocks of the same type to attract 
exactly the same investors, merely the same type. 

Two-mode regular blockmodels are particularly useful for modeling 
matrices meeting the following general description. First, row entities 
choose column entities (i.e., have a certain relationship with), and vice 
versa. Second, there are different types of row entities, and different 
types of column entities. Third, the different underlying types of row 
entities are distinguishable by the fact that they choose different types 
of column entities. Similarly, different types of column entities are 
distinguished by choosing different combinations of types of row 
entities. Fourth, given that a row entity belongs to an underlying class 
that chooses column entities of a given type, the choice or choices of 
particular column entities is arbitrary. Similarly, column entities choose 

’ It should be noted that the issue is not that data are never perfect and therefore no boy is 

likely to date absolutely all the girls he is supposed to and none of the girls he is not supposed to. 

The issue is that the ideal images at which structural blockmodels are aimed are, in this case, 

inappropriate on logical grounds. Even if approximate measures of structural equivalence or 
best-fitting structural blockmodels are identified, the data will never be fit by the model: it is the 

wrong model for this sort of data. 
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row entities randomly 8 within class of row entity. The first three 
conditions describe data appropriate for all blockmodels, including 
structural blockmodels. The fourth condition distinguishes data con- 
forming to the structural model from data conforming to the regular 
model. 

9. Applications of 3-way regular blockmodels 

Consider a criminal-by-crime-by-victim matrix, which we regard as 
3-mode. Assume the criminals consist of both individuals and groups, 
as do the victims. The crimes include burglary, larceny, rape, assault, 
homicide, and robbery. A regular blockmodel would simultaneously 
partition criminals, crimes, and victims such that equivalent criminals 
commit the same kinds of crimes against the same types of victims. 
Similarly, equivalent crimes are those which tend to connect the same 
classes of criminals with the same types of victims. Such an analysis 
might find, as Stark (1989) suggests (see also Stark et al. 1980; 
Crutchfield et al. 19831, that there are two types of crimes: intentional 
and impulsive. The intentional crimes (burglary, larceny, rape) are 
“rational”, pre-planned and have rates well-predicted by societal 
variables such as population turnover rates and proportion of church- 
goers. In contrast, the impulsive crimes (assault, homicide, robbery), 
are “irrational”, situational, and better explained by psychological 
variables. The analysis might further find that there are three kinds of 
criminals: adult professionals, teenagers, and “hot-heads”. The three 
types are characterized by the kinds of crimes they commit, with the 
professionals committing only intentional crimes, the teenagers com- 
mitting both kinds, and the hot-heads committing only impulsive 
crimes. Similarly, the victims can be classified according to the kinds 
of crimes and criminals they fall prey to. 

In this example, crimes act essentially as binary relations which link 
pairs of criminals and victims. Thus, one application of 3-way regular 
blockmodels is to extend the notion of regular equivalence to apply 
not only to nodes but also to relations in a network. Consider, for 
example, a 3-way, 2-mode actor-by-actor-by-relation matrix such as 

’ In this context, the term “random” means simply that choices are made according to criteria 

independent of and irrelevent to the blockmodel. 



the well-known Sampson (1968) data. A regular blockmodel of this 
data partitions actors into blocks whose members are connected to 
equivalent others on equiualent relations. This contrasts with the 
standard approach to handling multiple relations, which is to require 
regular equivalence to hold across each relation simultaneously. In 
this approach, two actors in a network are considered equivalent if 
they are connected to equivalent others on the stlme relations. In the 
context of a 3-way bfockmodel, this amounts to restricting the relation 
partition to be the identity partition in which each relation is consid- 
ered unique and placed in its own class. At the extreme opposite of 
this approach is the possibili~ of constraining the relation partition to 
be the complete partition in which all relations are considered equiv- 
alent and are placed in the same class. This yields a blockmodel in 
which equivalent actors are only required to have a tie with equivalent 
others on any relation. This is equivalent to finding a regular equiv- 
alence on the simple graph formed by the union of all relations. 

Another application of 3-way regular blockmodels arises in network 
analysis when the unit of observation is triads rather than dyads. For 
example, suppose we observe conversations at a party. As Scidman 
(1981) has noted, recording a conversation among three people as 
three separate pairwise jnteractions fails to capture the essential piece 
of information, which is that al1 three were in the same conversation, 
not three separate ones. Figure 18 gives the triads observed at a 
hypothetical party for six guests. To seek a l-mode 3-way regular 
blockmodel of this data is to ask the following question: is there a role 
structure among guests that patterns the kinds of triads that can 
occur? Although not obvious by simple inspection, the answer in this 
case is yes. The actors form three blocks: A = (1, 21, B = (3, 41, and 
C = (5, 6). Members of the same block engage in conversations with 
the same combination of types of other actors. The blocking of actors, 

Fig. 18. Triads observed at a hypothetical party. 
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(1,3,6) 
ABC (1,4,6) 

(2,x,5) 
(2,4,5) 

(1,2,5) 
AC (1,2,6) 

(1,5,6) 
(2,5,6) 

Fig. 19. Regular blocking of triads shown in Figure 18 

as always, induces a blocking of ties, which in this case represent 
conversations. As Figure 19 indicates, only two kinds of conversations 
are observed at this party. One kind, labeled ABC, involves a repre- 
sentative of each type of actor. For example, one conversation involves 
actors 1, 3 and 6; Another involves 2, 4, 5. Even though these two 
conversations involve none of the same actors, they are equivalent by 
virtue of involving the same types of actors. The other kind of 
conversation, labeled AC, involves only guests of type A and type C. 
In fact, all possible triads involving only these two types of actors are 
observed. 

Relationships among triads may be derived as well as directly 
observed. For example, we might compute the relation “i is indirectly 
connected to j via a two-step path through k”. Regularly equivalent 
actors are those which are indirectly linked to equivalent others by 
equivalent brokers. A 4-way 2-mode blockmodel can be used to model 
the relation “i is indirectly connected to j via a k-step path through 1 
(among others).” 

Regular blockmodels may also be used to study patterns in se- 
quences, such as words in a sentence. For example, consider the set of 
3-word sentences given in Figure 20. The data may be represented as 
a 3-way, l-mode word-by-word-by-word matrix in which x(i, j, k) = 1 
if there exists a sentence consisting of word i followed by word j 

Dogs chase cats. 
Cats like girls. 
Girls like boys. 
Boys like dogs. 

Fig. 20. A set of Sword sentences. 



followed by word R. A regular blockmode~ of this data consists of the 
folfowing blocking: {{boys, cats, dogs, girls), (chase, like)). The image 
matrix consists of a 3-way matrix which is empty except for cell 
(1, 2, I), which is one. If we label the first block “nouns” and the 
second block ‘“verbs”, then the image matrix tells us that the only 
observed sentence structure is of the form noun --, verb --j noun. Thus, 
regular blockmodels can be used to generate models of some syntacti- 
cally organized phenomena. For example, Propp 61968) and Colby 
(1973) have suggested that sequences of events in myths and folktales 
of a given culture and genre conform to simple grammatical rules that 
govern what kind of events can occur at a given point in a story. Thus, 
a given myth (or “sentence”) is a single datapoint or cell in a large 
multiway matrix, where each way corresponds to a position in the 
sentence. The image matrix from a regular bloc~ode~ of such a 
matrix gives the set of sentence types that are permitted by the 
grammar. 

Other phenomena that might be analyzed this way include career 
trajectories, political events, and behavioral scripts (Nowakowska 1973; 
Schank and Abelson 1977; Skvoretz 1984). A technical application 
along these hnes is the search for semigroup homomorphisms. To 
operationalize the task as a regular bloc~odeling problem, we repre- 
sent the semigroup’s multiplication table as a binary 3-way, l-mode 
matrix such that xfi, j, k) = 1 iff postmultiplying element t by eie- 
ment j yields element k. The resulting blockmode~ will identify 
classes of elements such that if elements e,, e2 are in the same class, 
and fr, f2 are in the same class, then all products e,f’ will be 
members of the same class. Thus, the image of the blockmodel gives 
the multiplication table for a (regular) semigroup homomorphism. It is 
interesting to note that in the case of groups (rather than semigroups), 
the multiplication table is always regular, 

As with regular blockmodels of Z-way matrices, regular blockmodels 
of multiway matrices are used to describe regularities that occur at the 
level of type rather than individual. Viewed from the point of view of 
matrix blocks, multiway regular blockmodels identify sets of y-tuples 
(matrix cells) that are equjva~ent because they are comb~natjo~s of the 
same types of elements. Equivalent p-tuples are like investment 
portfolios which, while not containing precisely the same securities, 
include representatives of all the same types. They are like distinct 
representative samples drawn from the same population. 
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10. Conclusion 

In this paper, we extend the notion of blockmodeling in two ways. 
First, we show how blockmodels can be adapted to incorporate 
regular equivalence as an alternative to structural equivalence as a 
basis for blocking. Second, we show how to apply blockmodels to 
multiway, multimode matrices. Thus, regular blockmodels can be used 
not only to analyze networks analysis, but to find structure in many 
different kinds of datasets. In the process, we also shift the focus of 
attention away from the blocking of actors (or, more generally, ways) 
and toward the blocking of ties (cells). Both theorems concern the 
characteristics of classes of matrix cells formed by structural and 
regular blockmodels. Focusing on equivalent cells makes it easier to 
conceptualize blockmodels of multiway matrices. It is also very appro- 
priate for structural analysis, inasmuch as the objects of analysis are 
not individuals but relationships among them. 
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