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Abstract: This paper provides a brief review of the most widely known methods and software 
dealing with multiway data. The main features are described focusing on applicative capabilities, 
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1. Introduction 

The availability of information concerning software which carries out multiway 
analyses is a necessary condition for the widespread usage of multiway methods. 
In this CSDA special issue some of the most widely known computer programs 
are presented by the Authors, taking into account the following aspects: charac- 
teristics of input data, data manipulation, mathematical models, optimization 
algorithms, applications and other practical information. 

The main purpose of this paper is to provide a brief presentation of multiway 
methods and software, which are well known and tested in many applications, 
including also some programs not presented by the Authors in this volume. 
However, we apologize for any omission occurring in this review. 

Emphasis will be given to application capabilities rather than theoretical 
foundations, therefore the methods are classified according to the data they can 
manage. A division in three groups is considered in the following three sections: 
methods for the analysis of quantitative data, those for categorical or mixed data 
and others for proximity or preference data. Of course, the methods dealing 
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with different measurement levels or with different kinds of data cause some 
overlaps between the groups. However, in spite of some repetitions, this organi- 
zation of the paper should make the program choices of the users easier and 
clarify the role of the software in the multiway framework. 

In the following we shall deal more frequently with methods based on purely 
geometrical rather than probabilistic models, consequently when referring to 
data matrices in general, terms like variables and objects (or units) will be 
adopted instead of the more specific random variables and sample units defini- 
tions. 

2. Analysis of quantitative data 

Data considered in this section are classified in three ways pertaining to three 
different classes of entities (modes) that, unless differently indicated, will be 
objects (or units), quantitative variables and occasions (or conditions, sets, 
replications, etc.). According to the definitions given in Coppi (this volume) two 
types of three-mode data will be distinguished: three-way data sets (different 
sets of variables are observed on the same objects or, conversely, the same 
variables are observed on different sets of objects) and three-way data arrays 
(same objects and same variables observed on each occasion). Before reviewing 
some methods dealing with the two previous kinds of data, we point out that 
several types of two-mode three-way data can be derived in both the cases 
mentioned: for instance a set of cross-product matrices between the variables 
(or proximity matrices between the objects) might be computed from a three-way 
array. Then the derived data could be analysed by the methods considered in 
section 4. 

Three-way data sets 

Two or more sets of quantitative variables can be observed on the same objects 
for different purposes. A few examples could help to clarify this point. 

For instance, several batteries of psychological tests can be administered to a 
group of students to study learning abilities and their relationships. Besides a 
measure of the correlation between sets of tests one might be interested in 
finding out a few latent variables summarizing those relationships. 

Typical sensory three-way data sets concern a group of instrumental variables 
assumed as predictors of a set of sensory variables, both measured on the same 
set of products. Emphasis will be given in this case to linear combinations in the 
former group that “best predict” variables in the latter. 

Furthermore, in some economic applications the degree of development in 
several areas might be measured by adopting more sets of indexes. Possible 
homogeneous typologies of the areas might be obtained by comparing the 
similarity structures pertaining to the different sets. 
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(19771 proposed asymmetric versions of Canonical Analysis (Redundancy Analy- 
sis) to find opportune subspaces. A program for this asymmetric approach in the 
case of two sets is implemented in the SAS package for instance (see options in 
CANCORR procedure). 

GCA represents a multi-set extension of the CCA which was developed after 
the sixties by Horst (19611, Carroll (1968) and others. Many contributions have 
been added on these lines, and general reviews can be found in Kettenring 
(1971), Van de Geer (1984) and Gittins (1985). 

A set of canonical variables for each group of the original variables and a set 
of “auxiliary variables” are determined by maximizing a measure of their 
relationship (usually equivalent to a function of the correlation matrix among 
the canonical variables). The auxiliary variables, which represent different 
aspects of the “general correlation” among the groups, span a subspace of the 
object-space that can be considered as a “compromise” space. 

Recently nonlinear generalizations of Canonical and Redundancy Analysis 
have been introduced in Gifi (1981, 1990), Van der Burg, de Leeuw and 
Verdegaal (1988) and Van der Burg and de Leeuw (1990). The nonlinear 
approach determines canonical variables which are combinations of nonlinear 
transformations of the original variables, thus the results will be invariant under 
the chosen type of transformations. In this case we seek the solution in a linear 
subspace which contains the subspace spanned by the observed variables. 

Two Alternating Least Squares (ALS) programs called CANALS (Gifi 1981) 
and OVERALS (Verdegaal 1986) were produced to incorporate respectively the 
nonlinear generalizations for two and multiple groups of variables. The charac- 
teristics of the program OVERALS along with applications to real data are 
described in this volume by Van der Burg et al.. 

When the definition of typologies of the objects is the main objective of the 
analysis (as for the economical example given before), or everytime we are 
interested in a global strategy involving separate and joint analyses of the three 
modes in an explicit manner, a useful class of methods is represented by the 
techniques following the “Interstructure-Compromise-Intrastructure” (ICI ap- 
proach; Glacon 1981, p. 22), described by Coppi (this volume). In this case three 
different stages of analysis are emphasized. 

The first stage, called interstructure analysis, concerns the study of the 
relationships between the groups of variables from a global point of view; the 
quantification of the “general correlation” between the pairs of groups can be a 
result of the method or can be explicitly defined as a measure for the compari- 
son of data matrices (usually a sum of covariances or correlations). A graph in 
which the groups of variables are each represented by a point is provided, based 
on the selected type of quantification. 

The second stage, called the compromise analysis, concerns a study of the 
proximities between the objects, based on the weighted means of the proximities 
associated with each group of variables. In this case, a configuration in which 
each object is represented by a point, displays the chosen mean proximities. 

The third stage, named the intrastructure analysis, concerns an analytical 
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study of the relationships among the variables and the proximities among the 
objects in the different groups of variables. The analysis is carried out using the 
configuration obtained at the second stage, on which the variables and the 
objects for each group are opportunely represented by appropriate projected 
points. When the occasions are ordered, a trajectory can be drawn for each 
object point making the interpretation of the configuration easier. 

The second and third stages are usually based on the Principal Component 
Analysis (PCA) of a matrix obtained by weighting and juxtaposing the data 
matrices associated with each group of variables. The weights are usually 
estimated before the application of the PCA using different kinds of procedures. 

In this framework we can consider two important methods: the first proposed 
by Escoufier (1973, 1977) and the second by Escofier and Pages (1984). The 
latter also can be considered in the framework of GCA by defining the fit in a 
suitable way. A detailed description of the two methods and the corresponding 
programs STATIS and AFMULT is given by Lavit et al. and Escofier et al. in 
this volume. 

It is useful at this point to make some remarks on the differences between the 
methods based respectively on the Canonical Analysis and the ICI approach. 

Graphical representations similar to the graph of the interstructure analysis 
are seldom considered when one uses GCA, thus the comparison essentially 
refers to the results obtainable in the compromise and the intrastructure 
analysis. The greatest difference from this point of view lies in the “concept of 
compromise” underlying the two approaches, the intrastructure usually being 
recovered, for each group of variables, by projections of objects and variables 
onto the compromise space. 

The compromise determined using GCA is much more influenced by the 
organization of the variables in groups than by the methods based on the ICI 
approach. In the first case the axes of the space (the auxiliary variables) are 
determined in order to maximize functions of the multiple correlations with the 
sets of canonical variables, whereas in the second case the “explained inertia” of 
the variables in the direction of the components of the compromise has to be 
maximized. 

Consequently the application of GCA seems more justified when the main 
objective of the analysis is the study of the relationships among the sets of 
variables and the objects are analysed from this point of view. On the other 
hand the ICI methods should be preferred when the relationships “within” the 
groups, in terms of inertia, are also interesting. In this case objects and variables 
both have the same importance in the analysis. 

The problem of the determination of a “compromise” and an “intrastructure” 
for the objects can be handled as a problem of comparison of separately 
obtained configurations, using Generalized Procrustes Analysis (GPA, Gower 
1975). Suppose we have one matrix of object coordinates for each group of 
variables, obtained using the same or different ordination techniques. For 
instance, different researchers have collected data on the same individuals and 
applied multivariate methods to produce several multidimensional representa- 
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tions. The main question arising in this case is, to what extent do the different 
sets of points contain similar information. GPA allows geometrical comparisons 
transforming all the configurations at the same time, so that each set of points 
matches the others as closely as possible, according to an opportune loss 
function (usually a sum of the distances between each transformed configuration 
and the centroid). Good minimizations provide us with representative centroids, 
that can be assumed as a “compromise”. The superimposition of the trans- 
formed configurations enables us to analyse the intrastructural information also, 
because each object is represented by a cluster of points and by a centroid lying 
in the middle of the cluster. The possibility to use procrustes statistics to provide 
representations in which each group of variables is represented by a single point 
is also considered in Gower (1987, p. 275). 

The theory of GPA is developed in Gower (19751, Ten Berge (19771, Lingoes 
and Borg (1978) and, more recently, in Commandeur (1991). All the main types 
of Procrustean transformations are carried out by the program PINDIS (Lingoes 
and Borg, 1976). Some interesting results concerning the comparison between 
the GCA, the ICI and the GPA approaches can be found in Ten Berge (1977), 
Glacon (19811, Kiers (1988, 1991) and Commandeur (1991). 

Some of the methods considered above can also be applied in the other case 
of three-way data sets in which the same variables are observed on each 
occasion on different objects (e.g. the same tests have been administered to 
subjects from two or more different groups). The extension of STATIS to the 
analysis of a set of variables observed on different populations is considered in 
Lavit et al. (this volume). GPA does not constrain the elements of the compared 
configurations to be objects, thus sets of variable points might be matched as 
well. Moreover Gower (1989) reviewed standard techniques like Discriminant 
Analysis, Canonical Variate Analysis and some of their interesting extensions 
which could be usefully applied. 

Several generalizations of PCA have been proposed to deal with the same 
variables observed on different sets of objects. For instance, simultaneous factor 
analyses based on the PCA on averages of the correlation matrices across 
occasions were considered by Levin (1966) and, more recently, extended by 
Rizzi and Vichi (1992). An interesting method called Simultaneous Component 
Analysis has been developed by Millsap and Meredith (19881 and Kiers and Ten 
Berge (1989) to reveal components with common interpretation across the 
occasions. This is especially for cases in which separate PCA in each group are 
not effective. The method defines component weights such that the total 
amount of explained variance is a maximum. The program SCA (Kiers 1990) 
allows one to calculate the components by an alternating least square algorithm. 

Three-way data arrays 

In many empirical studies the three modes (objects, variables, occasions) per- 
taining to the observed data are fully crossed. For instance, longitudinal data are 
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obtained when the observation of a group of variables is repeated on the same 
objects. Kroonenberg (1983) reanalysed data available for a set of hospitals 
measured on the same variables in consecutive years to study their different 
patterns or rates of growth. Data arrays are also obtained when different 
subjects are requested to rate a set of stimuli using the same criteria. Harshman 
and De Sarbo (1984) presented an example from marketing research in which 
automobiles and celebrities were rated by several subjects using a set of bipolar 
rating scales in order to decide which celebrity should be chosen as spokesman 
for a given automobile. Moreover Lavit et al. (this volume) analyse data 
concerning the judgments of some students on the teaching method of their 
professors. 

Some of the methods for three-way data sets lose their peculiarities when 
applied to data arrays. The analysis of correlation between the groups per- 
formed with GCA is less interesting when the variables are the same in each 
group. The weighting system for the occasions adopted by the methods following 
the ICI approach is less relevant, especially if the occasions are time periods. 
However in this approach an interesting new feature of the intrastructure is the 
possibility to draw a trajectory for each variable, besides for each object, when 
the occasions are ordered. Thus the evolutions of objects and variables and their 
relationships are displayed in the intrastructural configuration. 

Specific methods for three-way arrays proposed in the factorial tradition are 
usually distinguished in two groups: those based on component models and 
others based on common factor models (or covariance structure models). Basi- 
cally, methods in the first group are mainly ‘data analytic’ and exploratory (the 
three modes are considered fixed) whereas those in the second one are more 
probabilistic and confirmatory (the object mode is stochastic). The parameters 
of the common factor models are usually estimated by fitting the derived set of 
covariance (or correlation) matrices instead of directly fitting the data (cf. 
Kruskal 1978 for a discussion of direct versus indirect fitting). For this reason 
they will be presented in section 4. In the following we recall some examples of 
methods based on component models. 

New possibilities for the analysis of three-way data arrays are provided by the 
methods based on multilinear models which assume a symmetric point of view 
with respect to the three modes (see Coppi in this volume for a more formal 
presentation). A general quadrilinear model was proposed by Tucker (1963, 
1964, 1966) as a generalization of the Singular Value Decomposition (SVD) for 
two-way matrices. 

Tucker introduced a new factorial approach based on the idea that a different 
underlying structure is associated with each mode and extended the factorial 
tradition of a single set of factors. The three “observational modes” of the data 
array are each associated with a “derivational mode”, that can be thought of as 
a set of factors or idealized categories. Therefore objects, variables and occa- 
sions are considered as, respectively, linear combinations of “idealized” objects, 
“latent” variables and “prototype” occasions. The relationships between the 
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three sets of factors are taken into account in a three-way array, the “core 
matrix”, estimated by the model. 

A trilinear version of the general model was also considered by Tucker (1972), 
particularly for cases in which one of the three modes cannot be meaningfully 
reduced (e.g. time indexed data). Moreover Kaptein, Neudecker and Wansbeek 
(1986) extended Tucker’s models to an arbitrary number of ways. 

The algorithms developed by Tucker did not produce a least squares approxi- 
mation to the data. Kroonenberg and De Leeuw (1980) proposed ALS algo- 
rithms to fit both the quadrilinear and the trilinear models, whose application is 
possible by the TUCKALS programs, described in this issue by Kroonenberg. 

The difficulties concerning the interpretability of the core matrix in real 
applications suggested considering trilinear models based on simpler assump- 
tions. Two interesting methods, called CANDECOMP and PARAFAC, were 
proposed respectively by Carroll and Chang (19701 and Harshman (1970). Both 
these methods are based on the same trilinear model and share the intrinsic axis 
property, that is they do not present the rotation problem (Kruskal 1976, 1977). 
Unlike Tucker’s conception, only one set of factors underlying the observational 
modes is assumed by CANDECOMP/PARAFAC models. Important differ- 
ences are the procedure to extend the model to higher way cases, implemented 
only by the first method, and the preprocessing procedure, particularly devel- 
oped by the second method. Furthermore a version of CANDECOMP called 
CANDELINC was also proposed by Carroll, Pruzansky and Kruskal (1980) by 
which linear constraints on one or more of the parameter matrices were 
introduced to take into account either external information regarding the 
elements of the constrained modes or a specific analysis of variance (ANOVA) 
design. 

The method CANDECOMP can be applied (up to seven way extensions) 
using the programs INDSCAL (Carroll and Chang 1970; Chang and Carroll 
1969) and SINDSCAL (Pruzansky 1975). The program PARAFAC is described 
by Harshman and Lundy in this issue. 

Interesting comparisons between the methods considered in the framework of 
three-mode data are available, for instance, in Jaffrennou (19781, Glacon (19811, 
Law et al. (19841, Escoufier et al. (19851, Coppi and Bolasco (19891, Kiers (1988, 
1991) and Kroonenberg (1992). 

3. Analysis of categorical or mixed data 

We have seen (Coppi, this volume) that in the presence of qualitative data it is 
possible to structure the data array in different ways depending on the point of 
view we intend to adopt. Moreover, depending on the particular structure 
chosen, it is possible to apply different techniques. In this section we start with a 
more detailed description of multiway data structures with categorical or mixed 
data, then, after some general considerations of the different approaches, we 
indicate some software programs for each structure. 
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We will the following 

(1) object variabZes table. could contain qualitative variables, 
qualitative and variables (mixed or only vari- 
ables. last case been considered section 2. the variables, 
qualitative or are grouped several sets, obtain a data set 

same-objects and variables on occasion. If have one 
variable with categories while others are we could 

this qualitative as defining “occasions” in to apply 
methods of previous section. in this it is a three-way 
set but different objects same variables each occasion. this 
possibility not satisfactory, we have qualitative variables should 
consider methods introduced this section. 

Multiple contingency or set multiple contingency They can 
obtained from or more tables if the variables the 
tables qualitative. Of in this to frequency we lose 

possibility to a label each object. is ambiguous a 
multiple table is real multiway set. In three qualitative 

are sufficient obtain a contingency table, the three- 
fully crossed, only when variable assumes role of can 

there a genuine data set. we observe same qualitative 
on different of objects obtain one by variables 

(with the grouped in sets) and can construct multiple contingency 
If we the same and the variables on different 

“occasions” obtain one by variables (with the grouped 
in sets) and can construct set of contingency tables. 

Derived tables. use this to indicate set of tables 
obtained the previous data-structures using opportune index. 
multiway data could be from one of view, more general 

the others. of derived are: the tables among 
or objects, the tables residuals with to a 

There are which can used to more than of these 
To make illustration of techniques easy, will consider 

overlapping classification the methods to their to analyse 
kinds of structures described 

It is to note aspects which the different 
of the to the of a or mixed data-set. 

Whatever structure we analysing we one mode objects or 
variables) constant the occasions. methods which a (set 
multiple contingency require a qualitative data-set the 

same on each 
The interactions various orders the variables a key in the 

This context easily dealt by the analysing the 
cies of multiple contingency while the of the group, which 
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use interactive variables or nonlinear transformations, are less effective. A 
growing interest on this problem has led to the proposal of a combined 
application of the methods of the first and second groups (see f.e. Daudin and 
Trecourt 1980, Cavedon et al. 1982, van der Heijden and de Leeuw 1985, 
Leclerc et al. 1985, Aitkin et al. 1987). Another proposal considers the applica- 
tion of multilinear models to the matrix of residuals obtained using a log-linear 
model (e.g. Kroonenberg 1983). 

Another aspect to evaluate is the role we want to assign to the variables (e.g. 
to the sets of variables) in the analysis. The variables can have a symmetric role 
(as e.g. in the log-linear approach) or an asymmetric role, as for example when 
we want to predict one set of variables on the basis of another set (e.g. 
Qualitative Redundancy Analysis, Israels 1984). 

If we do not introduce some simplifications (e.g. the categorization of quanti- 
tative data) the presence of mixed measurement level variables requires specific 
techniques. The treatment of the mixed case has received growing interest in the 
last 10 years. Now there are methods which are able to analyse mixed variables 
by introducing a new set of parameters in the structural model. The new 
parameters could be used to introduce a nonlinear transformation of quantita- 
tive variables or quantifications of qualitative data (see e.g. van der Burg and de 
Leeuw in this volume, Gifi 1990, Di Ciaccio 1988). These techniques refer to the 
Optimal Scaling approach or to the Breiman-Friedman approach (see Breiman 
and Friedman 1985, Friedman 1991, Coppi and Di Ciaccio 1993). 

Techniques able to analyse multiway mixed measurement level data are 
considered separately at the end of the section. 

Object by variables tables of qualitative data 

Several methods can analyse objects by variables tables of qualitative data in a 
multiway approach. The following is a non-exhaustive list: Nonlinear Canonical 
Correlation Analysis (van der Burg et al. 1988), Qualitative and Nonlinear 
Redundancy Analysis (Israels 1987, Meulman 1987, Van der Burg and de Leeuw 
19901, Conditional and Partial Correspondence Analysis (Escofier 1988, Yanay 
19861, Non-symmetrical Correspondence Analysis (D’Ambra and Lauro 19891, 
Canonical Correspondence Analysis (Ter Braak 19861, Multiple Factor Analysis 
(Escofier and Pages 19841, Weighted Additive Model (WAM, Takane et al. 
1984). 

Several authors pointed out that important links exist among many of them 
(see Israels 1987, Keller and Wansbeek 1983, Sabatier et al. 19891 

In this issue we consider two methods in particular which have had the proper 
software for some years: Nonlinear Canonical Analysis with the program 
OVERALS (now included in the package SPSS) and Multiple Factor Analysis 
with the program AFMULT (now also included in LADDAD package). Both 
these methods analyse a data matrix in which only the variables can be different 
on each occasion. The variables are divided in K groups and in each group we 
can have the same variables or different variables. 
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We have already considered these methods in the previous section for the 
analysis of quantitative variables. Now we are considering the case in which all 
the variables are qualitative, but we will see at the end of the section that both 
methods can treat mixed measurement level variables. 

The OVERALS method originates from the Optimal Scaling tradition (Gifi 
1990, Young 1981). In fact we can see it as a K-sets Canonical Correlation 
Analysis with Optimal Scaling, or a K-sets Homogeneity Analysis (Multiple 
Correspondence Analysis) with additivity constraints and Optimal Scaling (cfr. 
van der Burg, de Leeuw, Verdegaal 1988). Using Optimal Scaling and Alternat- 
ing Least Squares (ALS) the OVERALS algorithm can analyse nominal 
(single/multiple), ordinal and numerical variables (see the end of the section for 
the mixed case). The program can also manage “passive variables”, that is 
variables that are ignored by the loss function but which can be represented in 
the final solution. Another suggested possibility is to obtain a “partial solution”, 
that is, we can partial out a variable, making copies of the variable in each set. 
Applications of the method are shown in Gifi (19901, van der Burg and 
Dijksterhuis (1989), Verdegaal(1986). 

With the AFM method we can treat variables which have a nominal measure- 
ment level, but we cannot consider the ordinal level, as we do in OVERALS. If 
we have only qualitative variables, AFM can be considered as an extension of 
Multiple Correspondence Analysis (MCA). In fact if we have only one qualita- 
tive variable in each group, AFM and MCA are equivalent. In this particular 
case also OVERALS, with multiple category quantification, gives us the same 
results. Furthermore, if we consider also rank-one restrictions on the multiple 
category quantifications, OVERALS gives the same results as PRINCALS 
(Nonlinear Principal Component Analysis, Gifi 1990, Young et al. 1978). In the 
other cases AFM and OVERALS produce a different analysis, as we have 
already noted for quantitative variables in the previous section. In the general 
case with several qualitative variables in each group, AFM weights each group 
differently and there is not equivalence with MCA anymore. In this case we can 
see AFM applied to qualitative data as a weighted PCA of the indicators of 
variables categories. The weights can be considered as a way to “balance” the 
contribution of each group to the analysis. Interesting features of the program 
are the treatment of missing data, the possibility to weight the variables and the 
“aides a l’interpretation” of the results. 

Some limited extension of the STATIS method to consider qualitative data 
are dealth with in Glacon (1981) and Escoufier (1980) but they are not imple- 
mented in the software available. We note also the program ALSCOMP3 (Sands 
and Young 1980) which extends the method PARAFAC to the analysis of 
qualitative or mixed data. 

There exists also software allowing the application of more than one tech- 
nique to analyse a multiway objects by variables table. In a non-commercial 
framework we wish to point out the program CANOCO (Ter Braak 1986), 
including simple and partial Canonical Correspondence Analysis, and the pro- 
gram LAMDA (Laura and D’Ambra 19831 including Nonsymmetric Correspon- 
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dence Analysis. Among the commercial software we note SAS package and 
SPSS package. 

Multiple contingency tables 

We distinguish between two kinds of data: (a) we observe the same qualitative 
variables on different groups of objects; (b) we observe the same objects and the 
same variables on K different “occasions”. 

In case (a) we have a multiple contingency table for each group of objects, but 
we can also obtain a unique multiple contingency table if we join the groups of 
objects and introduce a new dummy variable to discriminate each group. As an 
example of type (a) data, we could observe the same sociological data in K 
different periods of time, on J different groups of individuals. In this case we are 
interested in the comparison of the relationships among the variables on each 
occasion. 

In case (b) we obtain a set of multiple contingency tables. We are, for 
example, in this situation if the same sociological data were observed in K 
different periods of time on the same individuals. This is a three-way array of 
qualitative data. In this case it would be incorrect to transform the data in a 
single multiple contingency table, because an object would be considered more 
than once in the table. 

In both cases (a) and (b) we assume that the basic data are constituted by 
several objects by variables tables. In case (a) we can construct a single multiple 
contingency table only by adding one variable which assumes the special role of 
“occasions”. 

A general limit for the analysis with multiple contingency tables is that we 
lose the identification of the objects. This limit is more evident in case (b) in 
which an interesting goal could be to describe the different behaviour of the 
objects on the K occasions. In this sense the analysis of data (b), transformed as 
multiple contingency tables, cannot be considered completely satisfactory. 

The analysis of a multiway contingency table has been developed particularly 
with a probabilistic approach. The most frequently utilized methods are the 
Logistic and Log-linear Model Approach (Cox 1972, Bishop et al. 1975) and the 
Latent Class analysis (Lazarsfel and Henry 1968, Goodman 1974). A more 
recent proposal is the Log-non-linear Model Approach (Goodman 1986). It 
explicitly introduces a (multiple) quantification of categorical variables, showing 
interesting links with other methods based on the scaling of the categories. 

These are essentially two-way methods and have strong limits in the analysis 
of data (a) or (b). A three-way method is the Simultaneous Latent Structure 
Analysis (Clogg and Goodman 1984) which is able to make a latent structure 
analysis of data (a) correctly. This method can be used to check homogeneity 
constraints on the models parameters of each table. An analysis of a set of 
contingency tables using log-bilinear model was proposed by Becker and Clogg 
(1989). Choulakian (1988) and Mooijaart (1992) proposed the use of log-trilinear 
models. 
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These methods also have some powerful features. They have a probabilistic 
approach and we can obtain a reliability analysis of the results usually not 
obtainable with other techniques, unless using resampling methods (Bootstrap 
or Jackknife). 

Another method that combines descriptive and confirmatory features is the 
analysis of contingency tables by Ideal Point Discriminant Analysis (Takane et 
al. 1987). 

Several contributions in this field refer to a joint use of the log-linear 
approach with explorative methods. We note the Generalized Correspondence 
Analysis of Multiway Contingency Tables (van der Heijden and Meijerink 1989), 
or the three-way analysis of residuals from a log-linear model (Kroonenberg 
1983, D’Ambra and Kiers 1991). 

An important problem with multiple contingency tables analysis is that 
usually there are serious difficulties to analyse more than 4 or 5 variables at a 
time. Moreover the variables should not have too many categories. Otherwise 
there will be too many zeros or low frequencies in the cells of the table and the 
methods will not be correctly applicable. 

For the analysis of multiple contingency tables several packages are available 
@AS, SPSS, GENSTAT, BMDP . . . ) which contain logistic or log-linear proce- 
dures. Other more specialized software should be requested from the authors. 

Derived tables 

We consider now another possibility consisting in the transformation of the 
previous data structures in order to obtain a set of proximity tables between 
objects, categories, variables or occasions. The aim of this is to obtain a 
rearranging of the data allowing a simpler or more powerful analysis. Depending 
on the particular transformation adopted, on the particular index chosen and on 
the techniques of analysis applied to the proximity tables, we obtain a very large 
number of conceivable methods. From this point of view the approach based on 
the derived tables can be considered more general than other approaches. In 
fact using proper indices and applying Three-way Multidimensional Scaling 
techniques, we can obtain the same analysis as some of the previous methods. 

Proximity tables among categories of qualitative variables can be obtained by 
an association index based on odds-ratios (Di Ciaccio 1986). Using this index we 
can transform a set of multiple contingency tables in a set of proximity tables 
which can be analysed by three-way Multidimensional Scaling (Coppi 1986, 
1988). 

The relation measurements between pairs of objects are analysed by D’Am- 
bra and Marchetti (1986) using a generalized PCA and they are also considered 
by Marchetti (1988) and Kiers (1989) combined with three-way methods, but 
these approaches were developed for the analysis of a two-way qualitative data 
set. 

If we want to extract only some aspects of the information from the original 
data, it is appropriate to construct tables of residuals with respect to a model 
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explains the less interesting aspects of the data. In fact we can obtain our 
aim just by analysing these tables of residuals. Alternatively we could obtain 
tables of coefficients describing a particular aspects (for example a three-way 
interaction) of a model (for example the log-linear model). These kinds of tables 
could be analysed using methods such as, for example, the Three-mode Compo- 
nent Analysis Kroonenberg 1983) or the PARAFAC (D’Ambra and Kiers 
1991). 

The approaches which use derived tables appear to be less ‘natural’ than the 
previous methods. This is partly due to the two-step procedure (derive tables - 
analyse tables) and partly due to the difficulties in explaining the meaning of the 
new (derived) tables introduced by these approaches. 

Mixed measurement level 

When we have both qualitative and quantitative variables the most convenient 
structure to analyse is a set of objects by variables tables. If the role of all the 
variables is the same in the analysis then we can apply both the AFM and 
OVERALS programs, already considered. The two programs include the treat- 
ment of mixed variables in quite different ways. In OVERALS, according to the 
Optimal Scaling approach, we only have to declare the measurement level of the 
variables, while in AFM we have to group the variables in such a way that in 
each group we have only one measurement level. This feature allows us to 
consider a two-way analysis with qualitative and quantitative variables, but it 
creates some difficulties in three-way analysis because in this case each group of 
variables does not correspond to one occasion anymore. 

Another three-way method based on Optimal Scaling is REDUNDALS (van 
der Burg and de Leeuw 1990). This technique can be applied when we have two 
sets of variables and the aim of the analysis is the optimal prediction of one set 
from the other. This is a generalization of Redundancy Analysis (Van den 
Wollenberg 1977) to the analysis of mixed measurement level of data. 

Another approach is described by Kiers (1989) that constructs a “quantifica- 
tion matrix” for each variable, depending its measurement level, and then 
applies three-way scaling to the entire set of matrices. This approach is devoted 
to the analysis of two way data but could be extended also to the analysis of 
three-way data. 

4. Analysis of proximity and preference data 

The choice to consider proximities (three-way two-mode) and preferences 
(three-way three-mode) together in this section is justified by the close relation- 
ships of the geometric and algebraic models adopted for the two types of data. 

Scalar product and proximity data 

Data obtained by observing the same variables on different occasions can be 
transformed into a set of cross products (or covariance or correlation) matrices 
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by which to analyse the relationships between the factorial structures. The 
TUCKALS, CANDECOMP and PARAFAC methods can deal with this kind of 
derived data, moreover other important proposals were made, for instance, by 
Joreskog (1970, 1971), and McDonald (1978, 1984). Snyder, Law and Hattie 
(1984) provide a brief review of these methods whose application is usually 
performed by the programs LISREL (Joreskog and Sorbom 19SS), COSAN 
(McDonald 1978, Fraser 1980) and MUTMUM (Browne 1990). In particular 
COSAN, which is a general purpose program for the analysis of covariances 
structures, allows one to carry out the proposals based on the invariant factors 
multimode model by McDonald (1984) and on the longitudinal factor analysis by 
Swaminathan (1984). The program LISREL is included in the SPSS-X package 
and some covariance structure analyses can be performed by the procedure 
CALIS of the SAS package. 

A set of symmetric proximity matrices can be analysed by spatial and 
nonspatial models to obtain information concerning the differences between the 
structures of (dis)similarity and their stability. The Multidimensional Scaling 
(MDS) methods which handle this problem are called “individual differences” 
methods because of their psychological origin. Historically a first proposal to 
deal with sets of proximity matrices was the “points-of-view” analysis of Tucker 
and Messick (1963). Two stages of analysis are considered: first a matrix of 
correlations between pairs of data matrices is computed and factor analysed to 
obtain a representation of the homogeneous groups of occasions. Then a 
weighted average for each group is computed and represented by standard MDS 
techniques; each of the configuration obtained represents a different point of 
view. Some relationships of this method with the ICI approach can be pointed 
out, in fact we can consider the first and the second stage of analysis described 
above very close to the “interstructure” and “compromise” of the ICI approach. 

Successively many authors sought a more parsimonious solution to the indi- 
vidual difference problem. The Carroll and Chang (1970) proposal, whose model 
was also considered by Bloxom (1968) and Horan (1969), represented an 
important innovation and the starting point for methods of multiway MDS. 
Their model, called INDSCAL (for INdividual Difference SCALing), assumes 
that a “common space” (“compromise level”) exists in which each object is 
represented by a single point whose coordinates refer to the latent variables 
associated with the occasions. The “individual differences” can be considered by 
a set of occasion weights by which it is possible to shrink or stretch each 
dimension to have separate representations (“individual spaces”). A graph in 
which each proximity matrix is represented by a single point is obtainable by 
using the occasion weights as coordinates (“interstructural level”). The weighted 
Euclidean model is adopted and shares the important property of “uniqueness” 
with CANDECOMP and PARAFAC. 

Many programs perform the analysis proposed by the INDSCAL model, even 
if differences exist concerning the fitting criterion and other features. Besides 
the programs INDSCAL, SINDSCAL, PARAFAC, TUCKALS2 and PINDIS, it 
is possible to use ALSCAL (Young and Lewyckyj 1979) and MULTISCALE 
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(Ramsay 1977,1982). An ALSCAL procedure is also included in the SPSS-X 
package. 

Many generalizations of the INDSCAL model have been proposed. The idea 
on which they are based is to introduce a greater flexibility in the type of 
transformations which provide the “individual spaces” from the “common 
space”. Some of these generalizations are represented by the Carroll and Chang 
(1970, 1972) IDIOSCAL model, the PARAFAC2 by Harshman (19721, the 
“three-mode scaling” by Tucker (19721, and other procedures proposed by 
Bloxom (19781, Ramsay (1981) and Young (1984). The program IDIOSCAL and 
many of the programs cited above can manage this type of generalizations. 

An important approach to be considered in the framework of three-way 
proximity analysis is represented by the maximum likelihood MDS developed by 
Ramsay. 

MULTISCALE is a multidimensional scaling program which analyzes square 
data matrices with a probabilistic approach. Each datum is supposed to reflect a 
population value plus error. The program assumes independent Normal (or 
Log-Normal) distributed errors and fits the data by Maximum Likelihood 
Estimation (MLE). It provides confidence regions for each parameter and tests 
the significance of the improvement of fit as we move from a simpler to a more 
general model. Of course, the desirable properties of MLE are not relevant if 
the error assumptions are violated, thus the program provide diagnostic plots for 
error control. The program can fit three kinds of models: Euclidean, Weighted 
Euclidean (INDSCAL) and Full Metric (IDIOSCAL). 

A comparison between MULTISCALE, ALSCAL, INDSCAL and other 
MDS programs is made in Shiffman et al. (1981) where it is noted that the 
solutions are similar when the data are not exceedingly noisy. The different 
approaches to fit the INDSCAL model by several MDS programs are consid- 
ered in detail by Arabie et al. (1987). 

Proximity data can also be represented by nonspatial models like trees, whose 
main purpose is to cluster the observed objects. For the two-way case a general 
formalization based on the concept of matching function was provided in 
Tversky (1977) by the contrast model. It is assumed that each object is repre- 
sented by a measurable collection of features and that a function (the matching 
function), based on the distinctive and common features, exists to quantify the 
similarities between the pairs of objects. Hierarchical clustering (Sokal and 
Sneath 1963), additive clustering (Shepard and Arabie, 19791, additive trees 
(Sattath and Tversky, 1977) and extended trees (Carter and Tversky, 19861 are 
all special cases of the contrast model. 

Some interesting results concerning the problem of choosing the type of 
model (spatial or nonspatial) to adopt in the applications were obtained in 
Pruzansky, Tversky and Carroll (1982). It is a common opinion that the analyses 
based on spatial methods should be accompanied by other techniques based on 
nonspatial models. 

A three-way generalization of the additive clustering model of Shepard and 
Arabie (1979) was proposed by Carroll and Arabie (1983). The model assumes 
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interobject similarity be an additive function of the common features, which are 
suitably weighted on each occasion. A common set of clusters (which are 
allowed to overlap) for all the similarity matrices and the associated sets of 
weights are obtained by this method. 

The estimating procedl ‘e combines a mathematical programming technique 
with ALS and combinatorial optimizations. The INDCLUS program (Carroll 
and Arabie, 1982) performs the analyses of the method. 

Now the case of asymmetric proximities is briefly considered, as in many 
applications data are observed for which the axiom of symmetry does not hold. 
Sometimes the problem is removed by averaging the different corresponding 
data values, particularly when it is possible to suppose the asymmetry to be 
random error (or noise). However in many situations this characteristic is an 
intrinsic property of the data that is interesting to analyse. For this reason 
models and programs of MDS for three-way asymmetric proximities have been 
introduced. Relevant examples are represented by the DEDICOM (Harshman, 
1978) and ASINDSCAL (Young and Lewyckyj, 1979) family of models, based 
respectively on generalizations of the scalar product and the Euclidean distance 
models. 

Preference data 

Preferences are quite common in Psychology, Marketing and other research 
fields. As a first example we could ask each of a group of people to rank 
different kinds of products (e.g. liqueurs or newspapers) in order of his/her 
preference for them. If we collect these data on several occasions (e.g. before, 
during and after an advertising campaign) we obtain a three-way (three-mode) 
array. In other applications subjects rank a set of objects with respect to some 
attributes or characteristics (e.g. sweetness, brightness, noisyness, etc.). As a 
final example we could observe for each subject both a square matrix of 
proximities between objects, and ranks of the same objects with respect to one 
or more attributes. 

Examples of analysis of preference data can be found in Shiffman et al. 
(19811, Carroll (19721, Young and Hamer (1987). 

Components Models or Multiway Multidimensional Unfolding Models (De 
Sarbo 1978, Young and Lewyckyj 1979) can be applied to preferences even if the 
second model should be preferred for its nonmetric approach which is closer to 
the nature of the data. 

Multidimensional Unfolding (Coombs 1964, Schoneman 1970) is a method for 
analysing rectangular matrices (i.e. two-way two-mode). By this technique we 
obtain a representation of the elements of the two modes in such a way that the 
distances between the elements of different modes are directly interpretable in 
terms of the entries of the matrix. On the other hand, unlike the Component 
Models, the distances between elements of the same mode are implicitly 
“derived” and they do not represent any simple function of the data. 

Consider our first example. What we expect from the resulting representation 
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is that each subject-point is located close to points for products the subjects like, 
and far from points for products the subjects dislike. 

Multidimensional Unfolding has been generalized to analyse three-way 
three-mode matrices in the metric and nonmetric approach (De Sarbo 1978, 
Young and Lewyckyj 1979, De Sarbo and Carroll 1985). It can be interpreted as 
a nonsymmetric (nonmetric) generalization of INDSCAL. 

An interesting generalization for sorting data using a probabilistic approach is 
considered by the method CATSCALE described by De Sarbo (this volume). 

Another possible approach is External Unfolding. For each subject this 
method places an “ideal point” in a Euclidean space containing a known object 
configuration (obtained for instance by applying symmetric MDS to a matrix of 
similarities among the objects). The ideal points are determined so that their 
distances from the objects correspond to the expressed preferences. In the third 
example given above a configuration of the objects-points could be obtained by 
an MDS method applied to the mean proximity matrix. Then we could carry out 
an external multiway unfolding analysis considering the observed preference 
data. In this way a representation of the subjects (“subject space”) and a joint 
plot of objects and attributes are available to explore the data array. 

This last approach provides a plot in which the distances between the objects 
are directly interpretable, moreover it does not suffer from the degeneracies 
quite common for the other Unfolding methods (Heiser 1981). 

Multiway Multidimensional Unfolding models are included in the ALSCAL 
program. External unfolding is also included, in ALSCAL and in PREFMAP 
(Carroll 1972, 1980). 
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