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Improving the speed of multiway algorithms
Part II: Compression

Rasmus Bro ), Claus A. Andersson 1

Chemometrics Group, Food Technology, Department of Dairy and Food Science, Royal Veterinary and Agricultural UniÕersity,
RolighedsÕej 30, iii, DK-1958 Frederiksberg C, Denmark

Abstract

In this paper an approach is developed for compressing a multiway array prior to estimating a multilinear model with the
purpose of speeding up the estimation. A method is developed which seems very well-suited for a rich variety of models

Ž .with optional constraints on the factors. It is based on three key aspects: 1 a fast implementation of a Tucker3 algorithm,
Ž .which serves as the compression method, 2 the optimality theorem of the CANDELINC model, which ensures that the

Ž .compressed array preserves the original variation maximally, and 3 a set of guidelines for how to incorporate optional con-
straints. The compression approach is tested on two large data sets and shown to speed up the estimation of the model up to
40 times. The developed algorithms can be downloaded from http:__newton.mli.kvl.dk_ foodtech.html. q 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

An annoying aspect of estimating some multiway
Ž .models using alternating least squares ALS is the

time consumption of these algorithms. A way to in-
crease the speed of ALS algorithms is to compress the
data array initially and then subsequently estimate the
model from the compressed data. This is natural since
a multiway model is per se a compression of the
original data into fewer parameters, implying that the
systematic variation in the data is expressible in less
than the original number of data points. Hence, the
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model to be estimated should also be estimable from
Ž .another condensed representation of the systematic

variation in the data. Furthermore, since a multiway
model can be considered a multilinear decomposition
preserving the systematic variation in the data, it
seems useful to use a multilinear decomposition for
compression as well. After estimating the parameters
of the model in the compressed space, these can then
be transformed to the original space, and hopefully
provide a good approximate solution to the solution
that would be found if estimating the model directly
from the raw data. In the sequel we will refer to the
model used to compress the data as the compression
model and the model operating on the compressed
array as the analytical model.

Alsberg and Kvalheim have described in a series
of papers a method for compressing high dimen-
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w x w xsional arrays 1,2 . Kiers and Harshman 3 have
shown that this approach is equivalent to the CAN-

ŽDELINC CANonical DEcomposition with LINear
.Constraints approach. In CANDELINC, only or-

thonormal bases are allowed but any non-orthonor-
mal basis can be orthogonalized prior to compression

w xwithout any loss of information 4 . The Alsberg and
Kvalheim approach was developed specifically for
estimating Tucker3 models, while the CANDELINC
approach is valid for estimating any multiway model.

w xFurthermore as stressed by Kiers and Harshman 3
there is no need for special algorithms in the CAN-
DELINC approach. One simply regresses the data
onto the bases, use any existing multiway algorithm
on the compressed array, and decompress the result
by premultiplying the solution with the projection
bases. This, however, only holds for unconstrained
models with a nonweighted least squares optimiza-
tion criterion as will be shown. The only important
constraint that does not require any special attention
is orthogonality. If orthogonal loadings are found in,
e.g., a PARAFAC model of the compressed array,
then the backtransformed solution will also be or-
thogonal. In this paper Tucker3 is suggested for find-
ing the compression bases as the Tucker3 algorithm
is very fast and has the property of providing optimal
bases in a least squares sense. Alsberg and Kvalheim
suggest different bases in their work. If the size of
the array is so large that estimation of the Tucker3
model is in practice impossible due to the computer
capacity, then these suggested bases are sensible, but
if the computer capacity is sufficient it is not sensi-
ble to use other bases than those defined by the
Tucker3 model.

Note that the suggested compression approach is
relevant for estimating most multiway models. Even
in the case where one is merely interested in a
Tucker3 model, compressing the array first, enables
one to quickly estimate models of different dimen-
sions and perhaps using different constraints in order
to find the most appropriate model.

The compression method is developed and evalu-
ated on several data sets. It is shown that the new
method makes multiway modeling faster and more
memory-efficient. It is discussed how to express im-
portant constraints and weighting schemes in the
modeling of compressed arrays. Three-way arrays
will be used as an example but the developed theory

is directly applicable for arrays of any order. The ALS
procedure for estimating the PARAFAC model will
be used throughout but the method is also applicable
for other models and algorithms.

ŽIn the following, scalars are indicated by lower-
.case italics, vectors by bold lower-case characters,

bold capitals are used for two-way matrices, and un-
derlined bold capitals for three-way arrays. The ijk th
element of X is called x and is the element in thei jk

ith row, jth column, and k th tube of X. When three-
way arrays are unfolded to matrices, the following
notation will be used: if X is an I=J=K array and
is unfolded to an I=JK matrix, X, the order of J and
K indicates which indices of J are running fastest. In
this case the indices of J are running fastest, mean-
ing that the first J columns of X contain all variables
for ks1 and for js1 to jsJ. For short we will
define the I=JK matrix X Ž1. where the superscript
indicates that it is the first mode that is preserved.
Likewise X Ž2. is a J= IK matrix and X Ž3. a K= IJ
matrix. If the arrangement of the array is clear from
the context the superscript will not be shown.

2. Theory

An I=J=K array X is given. Suppose that the
rank of the systematic variation in each of the three
modes is RA, RB, and RC, respectively. By the rank
of the systematic variation is meant the minimum
rank of an appropriate basis for the space spanned by
the systematic variation in a particular mode, i.e., the

w xrank if no noise was present 5 . For the first mode
the rank of, and a basis for, the variable space can for
example be determined from analyzing the I=JK
unfolded matrix X obtained by concatenating the K
layers of size I=J of X one after another.

Several methods exist for determining the proper
rank, e.g., judging the residuals, using cross-valida-

w xtion 6,7 or methods similar to Malinowski’s indica-
w xtor function 8 . For compression, however, it is not

essential to find the exact rank, but rather to define
the rank so large that the correct rank is less than the
defined rank. Let U of size I=RA be an orthonor-
mal basis for the space spanned by systematic varia-
tion in the first mode. An orthonormal matrix V of
size J=RB similarly defines the variable space of the
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systematic variation in the second mode and an or-
thonormal matrix Z of size K=RC defines the vari-
able space in the third mode. An F-component
PARAFAC model is sought for the I=J=K array
X. An F-component PARAFAC model is defined

Ž . Ž . Ž .through A I=F , B J=F , and C K=F as

2K
Tmin X yAD B 1Ž .Ý k k

ks1 F

where X is the k th layer of X, i.e., the I=J matrixk

obtained by fixing the third mode at its k th value. The
matrix D is a diagonal matrix containing the k th rowk

of C in its diagonal. General information on the
wPARAFAC model can be found in many papers 9–

x13 . As the optimal A is approximately describing the
systematic variation in the first mode of X it must
hold that a matrix exists such that

AsUG , 2Ž .
as U is a basis for the systematic variation. Similar
relations hold for the second and third mode:

BsVQ 3Ž .
and

CsZJ . 4Ž .
This is the same as saying, that the PARAFAC model
is linearly constrained to the subspaces U, V, and Z.
The CANDELINC model was developed for estimat-

w xing multiway models under such linear constraints 4 .
The theory of the CANDELINC model states that if
a PARAFAC model of X given by A, B, and C is
sought, subject to the above constraints, then it is only

Ž .necessary to estimate the much smaller matrices G,
Q, and J. More importantly these matrices can be
found by estimating a PARAFAC model on an array
Y of size RA =RB =RC found by regressing X onto
the orthonormal bases U, V, and Z. Written in ma-
trix notation letting X be the I=JK unfolded array,
and m denoting the Kronecker product these regres-
sions read

Y Ž1.sUT X Ž1. ZmV . 5Ž . Ž .
Estimating an F-component PARAFAC model of Y

Ž A . Ž Bwill give the loading matrices G R =F , Q R
. Ž C .=F , and J R =F , and through the relations of

Ž . Ž .Eqs. 2 – 4 the loading matrices in the original
spaces can be calculated.

If the orthonormal bases are bases for the system-
Žatic variation, then the model estimated from Y Eq.

Ž .. w x5 will give the sought solution. In Ref. 4 this is
shown for any model that can be regarded as a
Tucker3 model or a restricted version of a Tucker3

w xmodel. The PARAFAC, PARATUCK2 14 ,
w x w xPARAFAC2 15,16 , and the Tucker2 17 models

can all be regarded as restricted versions of Tucker3
and can hence be estimated from the compressed ar-
ray without loss of information under the constraints

Ž . Ž .of Eqs. 2 – 4 .
The crucial point in this method is to find good

bases for the respective modes. If these are appropri-
ate, one would expect the analytical model estimated
from the compressed space to be equal to the model
estimated from the raw data. One possibility for find-
ing these bases would be to use the singular vectors

Ž .from a singular value decomposition Tucker1 of the
array properly unfolded for each direction. That is, U
would equal the first RA left singular vectors from an
SVD of X Ž1.. The bases V and Z are found similarly.

Ž .From these estimated bases and the relation in Eq. 5
the compressed array can be determined. In short for
the Tucker1-based compression one obtains the pro-
jections matrices as

Tucker1-based compression
Ž1. Aw xU,S,T ssvd X , RŽ .

6Ž .Ž2. Bw xZ,S,T ssvd X , RŽ .
Ž3. Cw xV,S,T ssvd X , R ,Ž .

w x Ž .where the function R,S,T ssvd X,F calculates the
rank F truncated singular value decomposition of the
matrix X, the matrix R holding the first F left singu-
lar vectors. Note that this approach has actually been
suggested earlier for the PARAFAC model specifi-

w xcally in Ref. 18 .
A better way, though, to define optimal bases is to

say that U, V, and Z should give a least squares esti-
Ž .mate of the array Y of Eq. 5 . This will lead to a set

of bases which preserves most of the original varia-
tion in the compressed array. The definition of the

Ž .array Y in Eq. 5 corresponds to the definition of the
w xso-called core array in a Tucker3 model 19 . It

therefore immediately follows that orthonormal load-
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ing matrices of a RA =RB =RC Tucker3 model will
provide optimal bases for calculating the compressed
array. Further, the compressed array will be equal to
the core array of the Tucker3 model. Realizing this,
it then follows that a fast Tucker3 model is the key

w xto a successful compression method. In part I 20 ,
such an algorithm was developed for the MATLAB
programming environment. After obtaining the array
Y any suitable model can be estimated as described

w xin Refs. 3,4 , and exemplified above for the
PARAFAC model.

Tucker3-based compression
2T T 7Ž .5 5argmin XyUY Z mVŽ . F

U,V ,Z ,Y

It is important that most systematic variation be
incorporated into the compressed array. This is espe-
cially true if the subsequent analytical model to be
estimated is constrained in some sense. Henceforth,
the goal of the Tucker3 model is not to find the model
but rather to find a model that is not underestimated
with respect to dimensions. It is of little concern
whether the compressed array is of size 7=7=7 or
11=11=11 with respect to the speed of the algo-
rithm, but it may have a significant influence on the
quality of the model if not all systematic variation is
retained in the 7=7=7 array. In general, very few
data types conform exactly to a mathematical model,
which means that one must expect some systematic
variation in the residuals. If, e.g., a three-component
PARAFAC model is sought it will not necessarily be
sufficient to compress the array using a 3=3=3
Tucker3 model. The way to choose the appropriate
number of components in the compression model de-
pends highly on the data type. No general rules can
be given, unless one is willing to settle for a quite
large compressed array. One may for example com-
press the array using, say five extra components
compared to the number of components in the ana-
lytical model, which would probably ensure a valid
model. If this is not satisfactory, one has to resort to
numerical rank-analysis or simply evaluate for in-
creasing number of components in the compression
model when the estimated final model no longer

w xchanges. The results presented in Ref. 21 as well as
here indicate that using the same number of factors
in the Tucker3 model as in the subsequent analytical

model will work satisfactory in many cases though
not all.

2.1. Modifications of the compression approach

In the literature algorithms have been given for
estimating the three-way PARAFAC and Tucker3
model in situations where only one mode is very

w xhigh-dimensional 22,23 . These methods are exact
and implicitly based on the fact, that the rank of the
high-dimensional mode is limited by the dimension-
alities of the remaining modes. If the product, d, of
the two smallest dimensions of the array is smaller
than the dimension in the mode of the largest size,
then it can be shown that the rank of this mode is up-
per-bounded by d. In the present approach this means
that in situations with one very high-dimensional
mode, one can simply compress only in the high-di-
mensional mode using a basis of dimension d. This
will provide a compressed array that exactly pre-

Žserves the variation of the original array A.K.
.Smilde, personal communication . It can be shown

that such a compression model can be estimated by a
Tucker1 model.

In general, if some modes are not to be com-
pressed this is implemented in the compression
method by estimating a Tucker2 or a Tucker1 model
instead of the Tucker3 model. Avoiding compression
in a certain mode can be useful, e.g., if the mode is
to be estimated with constraints that do not easily
translate into the compressed space.

Ž .If the uncertainties e.g., standard deviations of
the individual elements are known, several possibili-
ties exist for incorporating these uncertainties in the
loss function of the analytical model. One may scale

w xthe data prior to compression 24–26 or compute the
compression model using a weighted alternating least
squares regression approach. The analytical model
can henceforth be estimated with an unweighted loss
function. Instead of using the uncertainties in the
compression model, one may also simply estimate the
compression model without considering these. The
uncertainty of the elements of the compressed array
may then be obtained by regressing the uncertainties
Ž .same size as X in the same way as X is regressed
Ž Ž ..Eq. 5 . These uncertainties can hence be used when
estimating the analytical model.
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If the data array contains missing values, the com-
pression must be performed taking this into account

w xas described in Part I 20 . The resulting compressed
array will have no missing entries and hence no spe-
cial attention is needed in the algorithm for estimat-
ing the analytical model.

If the resulting loading matrices of the analytical
model are required to be nonnegative this poses some
problems, as the bounded least squares problem of the
uncompressed problem turns into a more general and
complicated inequality constrained least squares
problem in the compressed space. Currently no
method seems able to handle this special situation ef-
ficiently but the problem is being worked on, and will
be the subject of a following paper.

3. Experimental

Two data sets arising from fluorescence spec-
troscopy were used for testing the compression on
real data. The first called AMINO is a data set of five
samples with different amounts of tryptophane,
phenylalanine, and tyrosine. Each sample has been
measured spectrofluorometrically at excitation 250–
300 nm, emission 250–450 nm with 1 nm intervals.

w xThe data have also been described in Ref. 13 . The
Ž . Ždata array is of dimension 5 sample =51 excita-

. Ž .tion =201 emission . Note that for these data the
exact compression mentioned before is not possible.
Even though the first mode is only of dimension 5,
the product of the two smaller is 255 which is more

than the largest dimension. The proper PARAFAC-
dimensionality of the data has been found to be three.
The other data set stems from an investigation of a
sugar plant process and is called SUGAR. It suffices
here to say that 265 samples of sugar were dissolved
in water and measured spectrofluorometrically from
275–560 nm at excitations 230, 240, 255, 290, 305,
325, 340 nm by a procedure according to Nørgaard
w x27 . Part of the data was significantly influenced by
Rayleigh scatter. In order not to confound the results
with the problems of missing values, this part of the
data set was discarded in this analysis resulting in an
array of size 265=371=7. The proper PARAFAC
dimensionality is three.

For the AMINO data set, the following procedure
was used. The unconstrained PARAFAC model was
estimated for a two-, three-, and four-component
model respectively. This way it is possible to judge
separately what happens if the model is under- or
over-specified with respect to the number of compo-
nents. For the SUGAR data, only a three-component
PARAFAC model was estimated. A relative change

Ž . y6in fit sum-of-squared errors less than 10 was used
as convergence criterion. Each model was estimated
from the raw data and from an array compressed us-
ing two and up to seven components in the Tucker3
model to verify the influence of the degree of com-
pression. Naturally one expects that the fewer com-
ponents in the Tucker3 model, the faster the subse-
quent estimation will be as the array is smaller.
However, one will also expect that the estimated ana-
lytical model resembles the model estimated from the

Table 1
Results from estimating a two-component PARAFAC model on the data set AMINO

Data set AMINO, two-component PARAFAC model SVD-based component

Ž . Ž .Tucker3 Time of compr Time of model s Time of raw s Difference Time of compr Difference
Ž . Ž . Ž . Ž .components model s ‰ experimental model s ‰ experimental

y32 97 43 324 y0.6P10 147 8.4
y3 y33 16 8 324 6.3P10 144 6.8P10
y3 y34 37 11 324 2.4P10 147 2.4P10
y3 y35 65 16 324 1.9P10 149 2.0P10
y3 y36 146 17 324 1.6P10 152 1.9P10
y3 y37 73 19 324 0.4P10 155 0.4P10

The first column gives the number of components used in the Tucker3 compression. The second column is the time spent in estimating both
the compressed array and the model. The third column gives the time for only estimating the model from the compressed array, and the
fourth column the time for estimating the model from the raw data. The fifth column gives the difference in the percentage of variation
explained by the two models. The last two columns give the results from compressing with Tucker1 loadings.
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Table 2
Results from estimating a three-component PARAFAC model on the data set AMINO

Data set AMINO, three-component PARAFAC model SVD-based compression

Ž . Ž .Tucker3 Time of compr Time of model s Time of raw s Difference Time of compr Difference
Ž . Ž . Ž . Ž .components model s ‰ experimental model s ‰ experimental

y5 y43 32 24 849 2.0P10 151 2.3P10
y5 y44 56 29 849 7.7P10 157 1.1P10
y5 y45 82 35 849 4.1P10 162 0.4P10
y5 y46 165 41 849 3.4P10 168 0.4P10
y5 y47 101 48 849 1.3P10 175 0.1P10

For further explanation, see legend of Table 1.

raw data better, the more components are used for
compression.

The time used for estimating the model is given in
seconds and three times are tabulated: the time used

Žfor estimating the model from the raw data using the
.same initialization as for the Tucker3 model , the time

used for compression and estimating the model from
the compressed array and finally the time used for
estimating the analytical model from the compressed
array. The last one is relevant as one will often esti-
mate different models from the data in order to ver-
ify which is better. In such a case one would not re-
compress the array each time, but rather use the same
compressed array each time. We have chosen to use

Žtime rather than the number of FLOPS floating op-
.erations for indicating the computational complex-

ity, as the number of FLOPS seldom reflects the time
consumption realistically. In order to be able to gen-
eralize the results obtained to other platforms than
MATLAB, however, we will also mention the com-
plexity of the methods with respect to FLOPS. The
difference in fit between the model estimated from the
raw data and from the compressed data is also given.
The model estimated from the raw data is the ‘truth’
as it will per definition be the least-squares estimate;
hence the fit of the model estimated from the com-
pressed data, should give equally good fit.

For comparison, the results of using Tucker1-
based compression instead of a Tucker3 is also
shown. These Tucker1-defined bases are often sug-
gested as appropriate bases for describing the respec-
tive variable spaces in the literature. Indeed, if differ-

Ž .Fig. 1. Two-component PARAFAC model of AMINO. The broken lines indicate the loadings estimated directly from the raw data. a Us-
Ž . Ž .ing two-component Tucker1 for compression, b using two-component Tucker3 for compression, c using three-component Tucker1 for

Ž .compression, d using three-component Tucker3 for compression.
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Ž .Fig. 2. Three-component PARAFAC model of SUGAR. The broken lines indicate the loadings estimated directly from the raw data. a
Ž . Ž .Using three-component Tucker1 for compression, b using three-component Tucker3 for compression, c using four-component Tucker1

Ž .for compression, d using four-component Tucker3 for compression.

ences in time and fit between these two compression
approaches are negligible there is little sense in using
the more complicated iterative Tucker3 model for
compression.

4. Results

The most important finding of the investigation is
that the analytical model obtained from the com-
pressed data is almost always identical to the one ob-
tained from the raw data. Of all the models estimated
only two compression based analytical models differ
substantially from the models estimated directly from
the raw data. These are the Tucker1-based models
shown in Tables 1 and 2 with two- and three-com-

pression components, respectively. To illustrate
qualitatively the difference between the Tucker1- and
the Tucker3-based compression the estimated load-
ings in the emission mode are compared in Figs. 1 and
2 with the loadings estimated from the raw data.

The estimates are shown for the models men-
tioned above, and models including one more com-
ponent in the compression bases. It is easily verified
that only Tucker1-based models differ from the ref-

Ž .erence loadings Fig. 1aFig. 2a . Using more compo-
Ž .nents will remedy this Fig. 1cFig. 2c and the

ŽTucker3-based compression is always better Fig. 1b
.and dFig. 2b and d . The overall conclusion as judged

from the tables is, that Tucker3 compressed
PARAFAC modeling is consistently faster than un-
compressed modeling. Especially if the PARAFAC

Table 3
Results from estimating a four-component PARAFAC model on the data set AMINO

Data set AMINO, four-component PARAFAC model SVD-based compression

Ž . Ž .Tucker3 Time of compr Time of model s Time of raw s Difference Time of compr Difference
Ž . Ž . Ž . Ž .components model s ‰ experimental model s ‰ experimental

y3 y34 874 580 1130 14.0P10 989 14.0P10
y3 y35 627 581 1130 4P10 669 4P10
y3 y36 671 547 1130 2P10 760 4P10
y3 y37 625 573 1130 0P10 710 1P10

For further explanation, see legend of Table 1.
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Table 4
Results from estimating a three-component PARAFAC model on the data set SUGAR

Data set SUGAR, three-component PARAFAC model SVD-based compression

Ž . Ž .Tucker3 Time of compr Time of model s Time of raw s Difference Time of compr Difference
Ž . Ž . Ž . Ž .components model s ‰ experimental model s ‰ experimental

y3 y33 307 111 1545 5.4P10 172 64.8P10
y3 y34 297 123 1545 5.4P10 172 8.4P10
y3 y35 447 150 1545 0.5P10 174 0.5P10
y3 y36 455 176 1545 0.4P10 177 0.4P10
y3 y37 450 202 1545 0.2P10 180 0.2P10

For further explanation, see legend of Table 1.

Žmodel is slightly overparameterized too many com-
.ponents the gain is large, as the estimation of the

PARAFAC model from the raw data can then be very
Ž .time-consuming Table 3 . Surprisingly, modeling

based on Tucker3 compression is also faster than us-
ing the simpler Tucker1-based compression. This is
because the Tucker1 estimation of bases is per-
formed on quite large arrays. This could have been
remedied by using instead an approach similar to the
initialization of the Tucker3 algorithm as described in
part 1. The Tucker3 compression though, consis-
tently fits the reference model better than Tucker1-
based compression. Especially if few compression

Žcomponents are used the difference can be large Ta-
.bles 1 and 4 . There are thus no arguments for using

Tucker1-based compression instead of Tucker3-
based.

For all the models investigated the number FLOPS
used for estimating the models were also registered.
The main result is that estimating the PARAFAC
model using the Tucker3-based compression is gen-
erally 5 to 80 times cheaper than estimating the model
from the raw data in terms of FLOPS as compared to
only a 3 to 40 times cheaper with respect to speed.

Ž .Much of the computation 30–90% is used for esti-
mating the Tucker3 model, though with respect to
time these figures are generally lower. Even though
the compression approach is thus advantageous any
improvement of the Tucker3 algorithm will be bene-
ficial. A simple idea could be to only estimate the

ŽTucker3 compression model using few iterations -
.10 . The observation that the Tucker1 based ap-

proach is almost as efficient as the Tucker3 based
approach seems to indicate, that even an approximate
Tucker3 model can be beneficial. However, one must

keep in mind, that for all practical purposes, several
analytical models will normally be estimated, but
only one compression model is needed. Therefore the
actual importance of the complexity of the compres-
sion algorithm is less important than indicated by the
results presented here.

5. Conclusion

We have developed an efficient method for com-
pressing large arrays using a fast Tucker3 algorithm
for compression. The compression method has been
shown to speed up estimation considerably. Incorpo-
ration of important constraints has also been dis-
cussed. It might be argued that there is little gain in
using Tucker3 loadings instead of the more easily
calculated Tucker1 models for compression. How-
ever, as the Tucker3 model is fast and because it does
make a difference in some situations, the use of
Tucker3 loadings seems an appropriate choice for
compression. This, especially since the estimation of
the compression model is mostly fast compared to the
estimation of the possibly several analytical models.
The conclusion of this work also applies to, e.g., the
use of singular vectors for defining the variable space
before doing generalized rank annihilation.
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