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SUMMARY

This paper offers an approach for handling retention time shifts in resolving chromatographic data using the
PARAFAC2 model. In Part I of this series an algorithm for PARAFAC2 was developed and extended toN-way
arrays. It was discussed that the PARAFAC2 model has a number of attractive features. It is unique under mild
conditions though it puts fewer restrictions on the data than the well-known PARAFAC1 model. This has
important implications for the modeling of chromatographic data in which retention time shifts can be regarded
as a violation of the assumption of parallel proportional profiles underlying the PARAFAC1 model. The
PARAFAC2 model does not assume parallel proportional elution profiles, but only that the matrix of elution
profiles preserve its ‘inner-product structure’ from sample to sample. This means that the cross-products of the
matrix holding the elution profiles in its columns remain constant. Here an application using chromatographic
separation based on the molecular size of thick juice samples from the beet sugar industry illustrates the benefit of
using the PARAFAC2 model. Copyright 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

In order to understand the chemistry of the color formation during sugar processing from beets, an
experiment was conducted to explore the presence and amount of chemical analytes in thick juice,
which is an intermediate product in the sugar production. The molecular entities of thick juice
samples were separated by size and affinity on a chromatographic system and detected by
fluorescence in the hope that the individual fluorophores could be separated and detected. However, it
turned out to be impossible to separate the analytes completely; that is, the elution peaks/profiles were
partly overlapping. The analysis was further complicated by the fact that there were huge shifts in
retention time of specific analytes from sample to sample.

Overlapping chromatographic peaks can sometimes be separated mathematically. If a univariate
detection system is used in a chromatographic system, an experiment results in a time profile which is
conveniently held in a vector. If several such experiments are performed on different samples, a
matrix X results, of which each row holds the profile of each individual sample. If there are no
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retention time shifts in the data, every analyte will give rise to the same elution profile in every
sample, except for a change in magnitude (area) depending on the concentration of the analyte.
Assuming there areR analytes, the data held in theI � J matrix X can be modeled byR bilinear
components as

X �
XR

r�1

braT
r � E �1�

wherebr is an I-vector holding the concentration of therth analyte in theI samples,ar is the time
profile of therth analyte, and the matrixE holds the residual variation. For each sample the time
profile is described as a sum of the individual profiles weighted by the corresponding concentrations
of the analyte,birar. This model implies that the time profiles do not change from sample to sample. If
the analytes are completely separated, the individual profiles can immediately be extracted, in which
case no additional mathematical modeling is required. If the time profiles overlap, this corresponds
mathematically to the vectorsar, r = 1, …, R, being non-orthogonal. Resolving or rather estimating
the profiles of the pure analytes in such a case has received a lot of attention in chemometrics, starting
with the work of Lawton and Sylvestre.1 Owing to the fundamental rotational indeterminacy in
bilinear modeling, it is not possible to estimate the pure profiles from the data without employing
some sort of external knowledge in the decomposition in order to obtain a unique model. The word
‘external’ is to be taken lightly here, since the necessary knowledge may sometimes be obtained
directly from the data. The main way of obtaining uniqueness is to identify selective variables (or
samples), i.e. elution times where only one analyte is present (or absent). As described theoretically in
Reference 2, this may lead to a unique or partially unique decomposition. The presence of selective
variables forms the basis for most traditional resolution techniques in chemistry. Another approach is
based on the use of constraints. One may estimate the parameters in the bilinear model under
constraints such as non-negativity of concentration estimates or unimodality of elution profiles.3

While constraints are useful for improving the estimates of model parameters, they do not lead to
uniqueness in general. Rather, they help reduce the feasible set of solutions.

Figure 1. Spectra used in simulated data
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When spectral detection rather than univariate detection is used, a three-way array is obtained, the
third mode consisting of measurements at different wavelengths. It is well known that forthree-way
chromatographic data with no retention time shifts it is possible to resolve uniquely the underlying
components without any additional constraints by the use of the PARAFAC1 model.4 Thus the
addition of a third spectral mode is highly convenient, since otherwise resolving the individual
components may not be possible.

The primary concern in this paper is the problem of modeling three- and higher-way
chromatographic datawith retention time shifts. In the following we will first describe the
chromatographic data and a set of simulated data used for introducing the PARAFAC2 model with
respect to modeling retention time shifts. A short description of the possible models for resolving
chromatographic multiway data is given. Finally the results of modeling the simulated as well as the
real data are provided.

DATA

Simulated data

A three-way data set was generated for simulating spectrally detected chromatographic data with
retention time shifts. Four analytes with overlapping chromatographic peaks were used. The data
were generated according to the model

Xk � FkDkAT � Ek �2�

whereXk is the measured data from sample (i.e. experiment)k, Fk is a 100� 4 matrix holding the
elution profiles of the four (fictitious) analytes present in samplek, Dk is a 4� 4 diagonal matrix
holding the concentrations of the four analytes in samplek in its diagonal, and the matrixA is a 30� 4
matrix holding the spectra of the four analytes, chosen as in Figure 1. The matrixEk holds the added
noise. Thus only the spectra inA are constant over the samples. The data set consists of data from ten

Figure 2. Elution profilesFk from first experiment (full lines) and last experiment (dotted lines). The first and last
experiments have the most dissimilar elution profiles, and the profiles change gradually throughout the

experiments. Note that as the profiles shift, their width expands as well
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samples. In different samples the concentrations of the analytes were chosen randomly (evenly
distributed between zero and one) and the elution profiles were shifted differently as described below.
Thus the data array is of size 100 (time)� 30 (spectrum)� 10 (sample).

Normally distributed heteroscedastic noise was added proportional to the size of the signal such
that the variance of the noise was 5% of the variance of the systematic variation. Note that this is a
relatively large amount of noise.

The following choice of structure inFk (containing the elution profiles) was used. In any specific
experiment all elution profiles had identical shifts. The amount of shift was gradually increased from
zero in experiment 1 (Figure 2, full lines) to four time units in experiment 10 (Figure 2, dotted lines).
With increasing shifts the width of the peak area was also increased accordingly, being proportional
to the square root of the elution time.

If the data fit the premises of the PARAFAC2 model, the PARAFAC2 model gives unique
parameters (up to trivial scaling and permutations). Since the ‘true’ parameters (pure spectra,
concentrations and elution profiles) will provide a model that also gives the best fit, the PARAFAC2
parameters will thus be estimates of the true parameters. This is quite dissimilar from bilinear
modeling where the rotational invariance of the solution makes it impossible to estimate the
parameters unless auxiliary information is available. However, in this case it is knowna priori that
the data do not fit the PARAFAC2 model perfectly. For this to hold, the cross-product of the matrix
holding the elution profiles,Fk, should be constant overk as elaborated on in Part I.5 ThusFk

TFk = G
for any k. That this is not the case in the above example is easily shown from

FT
1F1 �

1?00 0?82 0?93 0?96
0?82 1?10 0?60 1?01
0?93 0?60 0?96 0?80
0?96 1?01 0?80 1?05

2664
3775

and

FT
10F10 �

1?00 0?90 0?96 0?98
0?90 1?05 0?77 1?00
0?96 0?77 0?98 0?89
0?98 1?00 0?89 1?02

2664
3775

The cross-products shown above have been normalized by scaling the first element to the value one
for easier comparison. It is readily seen that these matrices are not identical and hence the
requirements for the PARAFAC2 model to hold are not valid here. Thus the PARAFAC2 model will
not fit the data perfectly, though still give unique estimates of parameters. The crucial aspect is to
investigate if PARAFAC2 is still a reasonable model to use and if it can provide sensible estimates of
the underlying parameters (spectra, profiles and concentrations). It is less constrained than a
corresponding PARAFAC1 model, hence it is the main hypothesis in this paper that it can be expected
to perform better than PARAFAC1. We aim to show that for reasonable deviations from perfect data,
PARAFAC2 will still provide good estimates of the underlying parameters.

Chromatographic data

Fifteen samples of thick juice from different sugar factories were introduced into a Sephadex G25
low-pressure chromatographic system using a 0⋅02 M NH4Cl/NH3 buffer (pH 9⋅00) as carrier. In this
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way the high-molecular reaction products between reducing sugars and amino acids/phenols are
separated from the low-molecular free amino acids and phenols. The high-molecular substances elute
first, followed by the low-molecular species. Aromatic components are retained the longest time
owing to a high affinity to the Sephadex material. The sample size was 300ml and a flow of 0⋅4 ml
min71 was used. Twenty-eight discrete fractions of 1⋅2 ml were sampled and measured spectro-
fluorometrically on a Perkin Elmer LS50B spectrofluorometer.

The column was a 20 cm long glass cylinder with an inner radius of 10 mm packed with Sephadex
G25 fine gel. The water used was doubly ion exchanged and millipore filtrated upon degassing. The
excitation–emission matrices were collected using a standard 10 mm� 10 mm quartz cuvette,
scanning at 1500 nm min71 with 10 nm slit widths in both excitation and emission monochromators
(250–440 nm excitation, 10 nm intervals; 250–560 nm emission, 4 nm intervals). For each sample, 28
excitation–emission matrices are measured, one for each fraction collected. Thus the size of the four-
way data set is 28 (fraction)� 20 (excitation)� 78 (emission)� 15 (sample).

METHODS

A structural model of chromatographic data will first be developed for the ideal situation in which
there are no retention time shifts. Subsequently it will be shown how to accommodate this model for
handling retention time shifts. First only three-way data will be considered and afterwards it will be
shown how to extend the results to four-way data as well as the mathematical consequences of such an
extension. Then the results of applying the PARAFAC2 and competing models to the simulated three-
way and real four-way chromatographic data are shown.

Consider data such as the above-mentioned where fluorescence spectroscopy is used for detection.
When the emission wavelength is fixed, then at each elution time an excitation spectrum is measured.
This corresponds conceptually to the normal situation in UV-vis detection chromatography. Letxijk

be the emission intensity of theith fraction (elution time) of thekth sample measured at thejth
excitation wavelength. For a dilute solution in which no quenching occurs it holds that this intensity is
the sum of intensity contributions from the individual fluorophoric entities in the sample plus some
additional noise. Assume there areR independent fluorophores. For each fluorophorer the emission
intensity is linearly dependent on the concentrationckr in thekth sample. It is also linearly dependent
on the ‘quantum yield’ at excitation wavelengthj, ajr . Finally it is linearly dependent on the relative
amount of sample present in theith fraction,fir . Thus the model of the data can be stated as

xijk �
XR

r�1

fir ajr ckr � eijk �3�

This model may also be stated in terms of matrices. LetX be theI � JK matrix holding theI � J� K
three-way array with typical elementsxijk. The firstJ columns ofX correspond to theI � J slab
obtained from the three-way array by settingk equal to one. TheI � R loading matrixF holds the
parametersfir , andA (J� R) and C (K� R) are defined likewise. The columns ofF will be the
estimated elution profiles, the columns ofA the estimated spectra, and the elements inC the estimated
concentrations. Then it holds that the PARAFAC1 model can be stated as

Xk � FDkAT � Ek �4�

whereXk is thekth frontal slab of the three-way array andDk is a diagonal matrix holding thekth row
of C in its diagonal.

From the theory of the PARAFAC1 model4,6 it immediately follows that given the appropriateness
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of the model it is possible to resolve the data into meaningful components pertaining to individual
analytes. This is so because the PARAFAC1 model is uniquely identified up to scaling and
permutation of the components under mild conditions.7–10 The model of the chromatographic data
derived above assumes that the elution profiles of individual components, i.e. the columnsfr of F, are
identical in each sample. However, this is not the case in the presence of retention time shifts. In such
situations, using the PARAFAC1 model will be problematic. We then have to replace the first mode
loadingsF with a set of loadingsFk specific to samplek. The elution profilesFk for a specific
experimentk are then unrelated to the profiles from another experiment, so as to allow for retention
time shifts in the model. A model of shifted data may therefore generically be stated as

Xk � FkDkAT � Ek �5�

The parameters and residuals in this model are different in general from the ones given in equation
(4), but the matrices are given the same names in order to stress that ideally these should be identical.
This model is problematic for several reasons. First of all it possesses no uniqueness properties in the
sought sense since it can be shown to be equivalent to a bilinear model of the data unfolded to a two-
way matrix. Also important, though, is that it assumes no relation at all between equivalent elution
profiles in different samples. If the elution profilesaresomehow related, not using this will lead to an
unnecessarily high uncertainty in the estimated components.

Between the two extremes of having allFk equal toF and havingFk unconstrained there are several
possibilities for imposing structure inFk. It is the choice of the structure ofFk that determines the
structure of the model. The PARAFAC2 model offers one such intermediate model. In the
PARAFAC2 model each loading matrixFk is modeled as

Fk � PkF; k � 1; . . . ;K �6�

wherePk is anI � R column-wise orthonormal matrix andF is of sizeR� R. The matrixF represents
the common part of the elution profile matrices from different experiments in anR-dimensional
subspace, while the matrixPk determines the specific manifestation of these profiles in theI-
dimensional space of thekth experiment.y One may of course also envision other ways of imposing
structure inFk, but it seems that this type of structure is adequate for approximating many occurring
deviations from the strict linearity required in the standard PARAFAC1 model. A very important
feature of the PARAFAC2 model is that it retains the advantage of intrinsic structural uniqueness as
discussed at length in References 5, 11 and 12.

The structure imposed inFk can also be formulated differently by observing that equation (6) is
equivalent5 to requiring

FT
k Fk � FTF; k � 1; . . . ;K �7�

This means that for every samplek a set of elution profilesFk is estimated under the constraint that the
cross-products of the profile matrix are identical. It is simple to show that if for example the profiles of
all analytes are shifted the same amount, if there is no peak broadening and the elution baseline is
represented both before and after all analytes appear, then this assumption will be valid. If these
assumptions are not met, the PARAFAC2 model is still less restrictive than the PARAFAC1 model
while being unique. Thus even data that do not conform exactly to the restrictions may be better

yNote that the matrixF appearing in the PARAFAC2 model is not of the same size as the one appearing in the PARAFAC1
model.
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modeled by PARAFAC2 than by PARAFAC1, since the model misspecification will be less
pronounced for PARAFAC2.

Having discussed the three-way version of the PARAFAC2 model, it is appropriate to discuss
aspects of modeling four-way data. As discussed in References 3 and 5, the PARAFAC2 model is
easily extended to higher orders. An interesting aspect of the four-way model is that even if no
constraints are imposed onFk, the model will still be unique, since the four-way model with
unconstrainedFk is equivalent to a three-way PARAFAC1 model of the four-way data unfolded to a
three-way array.z Since the chromatographic data are four-way, it is therefore possible to validate the
four-way PARAFAC1 and PARAFAC2 models against the results of the three-way PARAFAC1
model fitted to the unfolded four-way data. Regardless of the presence of retention time shifts the
three-way PARAFAC1 model will give reasonable estimates of the model parameters if the elution
and sample modes are combined in the unfolding (Figure 3).

Determining the model complexity

For PARAFAC1 as well as PARAFAC2 it is essential to use the correct number of components. In
two-way analysis this is also important, but for multiway models the importance is even more
pronounced. In most two-way analyses one is mainly interested in determining a suitable subspace,
while in PARAFAC models the specific orientation within the subspace is also important. Moreover,
PARAFAC models are not nested, so choosing e.g. a four-component model instead of a three-
component model has implications not only for the additional component but also for the orientation
of all four components.

Figure 3. Four-way chromatographic data represented as a three-way array where sample and elution profile
modes are combined into one. Below the corresponding three-way PARAFAC1 model is depicted, showing that

for this unfolding the PARAFAC1 model estimates the elution profiles from each sample independently

zStill, if the added structural constraint of the PARAFAC2 model is valid, it is preferable to use it, since added constraints (on
Fk) will in general provide more robust and precise parameter estimates.3
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In order to determine the proper number of components for PARAFAC1 as well as PARAFAC2
models, several possibilities exist. As for ordinary two-way principal component analysis, methods
based on judging residuals and on resampling are possible. For multiway models, however, some
additional tools are available that are very helpful in determining the proper number of components.
The split-half analysis3 is founded on exploiting the uniqueness properties of the PARAFAC1 and
PARAFAC2 models. If the right number of components is chosen, the ‘true’ underlying latent
variables will be found. This will hold regardless of which samples are used for estimating these. If
the proper number of components is not used, the estimated parameters will be linear combinations of
the true parameters and therefore depend on which samples are used.

Another powerful tool for assessing the model complexity of PARAFAC1 models is the core
consistency diagnostic suggested in Reference 3 and elaborated on in detail in Reference 13. It is
based on the fact that the PARAFAC1 model can be posed as a restricted Tucker3 model where the
core array is fixed to be a superidentity array.14 The core consistency diagnostic amounts to first
calculating the optimal unconstrained core array for a Tucker3 model where the loading matrices are
the ones obtained by the PARAFAC1 model at hand. Then the core consistency diagnostic given as a
percentage is defined as

core consistency� 100 1ÿ

PF
d�1

PF
e�1

PF
f�1
�gdef ÿ tdef�2

PF
d�1

PF
e�1

PF
f�1

t2def

0BBB@
1CCCA �8�

wheregdef andtdef denote the elements of the calculated core and of the intrinsic superdiagonal core
respectively. IfG is equal toT, the core consistency is perfect and has a value of unity (100%), which
indicates that the PARAFAC1 model at hand is indeed appropriate. At the other extreme the
consistency may be below zero if the PARAFAC1 model is inappropriate or the variation is purely
random, hence mostly off-superdiagonal.

As demonstrated in Reference 13, if the number of components in the hypothesized model exceeds
the proper number of components, the Tucker3 core array will deviate considerably from
superdiagonality. This will not be the case if the proper number of components is used. Thus the
highest number of components that maintains a sufficiently superdiagonal Tucker3 core array will be
the adequate number of components to use.

RESULTS

Simulated data

The results of fitting PARAFAC1 and PARAFAC2 models to the simulated data using the correct
number of components (i.e. four) are shown in Figure 4. The PARAFAC2 estimates are closer to the
true values than the PARAFAC1 estimates. Furthermore, it can be seen that the PARAFAC2
estimated elution profiles are less smooth than the corresponding PARAFAC1 estimates. This is an
indirect illustration of the important property of PARAFAC2 that it puts fewer restrictions on the
elution profiles. This is needed because such restrictions are infeasible when there are shifts. In this
case, where a substantial amount of noise was added to the data, the estimated elution profiles become
rather unsmooth, but they do follow the original profiles closely.

In order to verify that the PARAFAC2 model is superior to the PARAFAC1 model for the given
data, 100 simulations were performed according to the above data but with different random
concentration matrices. For every simulated data set the two models were fitted and the correlations
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Figure 4. Estimated profiles and spectra from simulated data. The top plots show the true profiles (broken lines)
together with estimates (full lines). PARAFAC1 estimates are to the left and PARAFAC2 estimates to the right.
The middle plots show the same for experiment 10 and the bottom plots shows the reference spectra (broken

lines) compared with the estimates

Figure 5. Histograms showing correlation between estimated and true concentrations for each component for
PARAFAC1 (left) and PARAFAC2 (right). The histograms are based on 100 different models with different

random concentration matrices
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between estimated and true concentrations calculated. In Figure 5 these correlations are shown. Each
plot is a histogram containing the absolute correlation between the estimated and true concentrations
of one specific analyte for one specific model over all 100 data sets. It is evident that the PARAFAC2
model is generally superior to the PARAFAC1 model. The correlations between true and estimated
concentrations for the PARAFAC2 model are much more skewed towards one than for the
PARAFAC1 model.

Chromatography

The first step in modeling the chromatographic data is to determine how many components to use in
the model. In order to establish the correct number of components, a three-way PARAFAC1 model
was investigated in which the sample and elution modes were concatenated into one mode (see Figure
3). In this way, retention time shifts will not affect the model, since the profiles of each sample will be
modeled independently. For three-, four-, five- and six-component models the core consistency
(equation (8)) as well as the percentage of variation explained was calculated. The percentage of
explained variation was defined as

variation explained� 100 1ÿ

PI
i�1

PJ
j�1

PK
k�1

PL
l�1
�xijkl ÿmijkl �2

PI
i�1

PJ
j�1

PK
k�1

PL
l�1

x2
ijkl

0BBB@
1CCCA �9�

wherexijkl is an element of the four-way array andmijkl is the corresponding element of the model of
the array.

For the posed models the results are given in Table 1. Note that based on the percentage of variation
explained, it is difficult to assess which of the four candidate models is the most preferable since they
all explain approximately the same amount of variation. Using the core consistency, however, the
picture is much clearer. Three- and four-component models are seen to be suitable since they both
have very high consistencies. A five- or six-component model is definitely not appropriate, since the
loading matrices that should reflect the subspace of the systematic variation are mainly descriptive of
variation on the off-superdiagonal part of the array (indicated by the low core consistency). Since four
is the highest number of components for which the model assumptions hold, it may be concluded that
four components provide an adequate model complexity of the given data under the premises of the
PARAFAC1 model.

Having established the number of components to use, the two competing four-way models of the
data were fitted: a four-way four-component PARAFAC1 model and a four-way four-component
PARAFAC2 model. For both models, non-negativity was imposed on all parameters except the

Table 1. Explained variation and core consistency for different three-way PARAFAC1 models, of
chromatographic data

Number of components Explained variation (%) Core consistency (%)

3 96⋅4 91⋅9
4 98⋅9 96⋅3
5 99⋅3 20⋅6
6 99⋅4 15⋅1
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elution profiles in PARAFAC2, since imposing non-negativity on these is difficult.5 In Figure 6 (left)
the excitation and emission mode loadings of a four-component PARAFAC1 model are shown. The
parameters are not very appealing. The alikeness of several components suggests that the model may
not be valid. However, the solution is stable in the sense that it was obtained several times from
different starting values. In Figure 6 (right) the excitation and emission mode loadings of a non-
negativity-constrained PARAFAC2 model are also shown. These parameters look reasonable and are
very different from the PARAFAC1 loadings, especially in the emission mode. The PARAFAC2
model seems to be better. Based on these results alone, it is difficult, though, to conclusively claim
that the PARAFAC2 model is valid and better than the PARAFAC1 model.

A very simple way of validating which model is better admits itself as mentioned before. The
sample and elution modes may be combined into one mode and the subsequent three-way array
uniquely modeled by a three-way PARAFAC1 model. Since each elution mode will then be modeled
separately for each sample, possible retention time shifts will not affect the appropriateness of the
model.

For the model of the three-way data the excitation and emission mode loadings are shown in Figure
7. Note the close similarity between the three-way PARAFAC1 and four-way PARAFAC2 solution.
All three models (three-way PARAFAC1, four-way PARAFAC1 and four-way PARAFAC2) should
theoretically be identical if no retention time shifts are present. Since the four-way PARAFAC1
model gives substantially different parameter estimates, it may safely be concluded that this model
does not fit the characteristics of the data. The most likely reason for this is retention time shifts.

From the three-way model of the data a set of loadings is also obtained in the combined elution/
sample mode. Reshaping the loading for one specific component to a matrix, a set of elution profiles
for this ‘analyte’ is obtained, one for each sample. In Figure 8 this is shown for component 1. These

Figure 6. Estimated emission (top) and excitation (bottom) spectra from four-way PARAFAC1 (left) and four-
way PARAFAC2 (right)
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estimated profiles are not subjected to model error due to retention time shifts, since they stem from
the three-way model.

It is readily seen that even though the elution profiles should be identical in each run, this is
certainly not the case. There are huge shifts in the retention times from sample to sample, probably
caused by the very different contents of the samples. This explains why four-way PARAFAC1 cannot
fit these data well. The gel in the column is known to be sensitive toward the concentration of
phenolic compounds and certain amino acids. The inter-sample variation in the elution profiles is
probably due to different contents of such compounds with high affinity for the chosen gel causing the
shifts in retention times.

It is interesting to compare the elution profiles estimated by three-way PARAFAC1 with the

Figure 7. Emission (left) and excitation (right) mode loadings estimated from three-way non-negativity-
constrained PARAFAC1 model

Figure 8. Estimated elution profiles of component 1 (not scaled) estimated from a three-way PARAFAC1 model.
Each line is the estimated profile of the component in one specific sample. If no retention time shifts were present,

all profiles should be identical!
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estimates obtained from PARAFAC2. As for the three-way model and unlike the four-way
PARAFAC1 model, PARAFAC2 provides individual profiles for each sample (Fk). In Figure 9 the
estimated profiles of component 1 in all samples are compared for three-way PARAFAC1 and four-
way PARAFAC2. Note that the PARAFAC1 elution profiles are identical to the ones shown in Figure
8. As for the spectral parameters the similarity is very high even though the deviations between the 15
elution profiles are not of a type expected to be perfectly modeled by PARAFAC2.

Performing a split-half analysis for both the four-way PARAFAC1 and the PARAFAC2 model
substantiated that the four-way PARAFAC1 model is not suitable, since the parameters did not
replicate over different subsets. The data were divided into two groups by assigning eight samples to
one group and seven to another. For both subsets a PARAFAC1 and a PARAFAC2 model were fitted.
In Figure 10 the resulting emission and excitation mode loadings are shown. There are large
discrepancies in the PARAFAC1 parameters depending on which subset is used, while for the
PARAFAC2 model these discrepancies are smaller and probably caused by the very low sample size
(seven and eight respectively).

CONCLUSION

In this application a suggestion has been given for the solution of a very important and frequently
arising problem, namely shifted data. It has been shown that even though the data are severely shifted,
PARAFAC2 apparently is capable of modeling the data. In this case, validation could be very
elegantly performed by unfolding the four-way data to a three-way structure for which the
PARAFAC1 model, and its ensuing uniqueness, holds. However, usually, shifted chromatographic
data are at most three-way and therefore such a rearrangement in order to attain uniqueness is
impossible. Furthermore, using the four-way PARAFAC2 model, more structure is imposed in the
model than with the three-way PARAFAC1 model for the unfolded data, which is preferable from an

Figure 9. Estimates of elution profiles of component 1 in 15 different samples. Estimates from three-way
PARAFAC1 are shown to the left and from four-way PARAFAC2 to the right. The top plots show the estimates

of the first five samples, etc.
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interpretation as well as a noise reduction point of view.
The three-way PARAFAC2 model appears to provide a good approach for solving variable shifts

for three-way data, and further applications to chromatographic data will help substantiate this
conclusion.
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