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Abstract 

This paper describes the chemometfical aspects of an investigation of the enzymatic browning of vegetables. Enzymatic 
browning is caused by polyphenol oxidase, PPO. Kinetic UV/VIS spectra and experimental design variables of PPO incu- 
bated samples are used for predicting enzymatic activity and substrate consumption. The mathematical models used are mul- 
tiway PLS (N-PLS) and fiveway PARAFAC. Both methods are available from Internet in MATLAB code. Throughout the 
results of the multiway methods are compared to competing methods (PLS, PCR, Tucker, feedforward neural networks, lo- 
cally weighted regression, ANOVA and others). The result of the investigation is, that the multiway methods have clear ad- 
vantages with respect to predictions and interpretability, both mathematically and technologically. 
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1. Introduct ion 

Undesirable browning effects in fruit and vegeta- 
bles have been investigated in several surveys, yet 
little is still known on the basic mechanisms control- 
ling the browning. A major contributor to browning 
is the enzymatic browning caused by PPO, polyphe- 
nol oxidase [ 1 ]. 

Enzymatic browning is sometimes expressed as 
the dioxygen consumption of PPO, which is directly 
related to the activity of PPO, and sometimes as for- 
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mation of color. One purpose of this investigation is 
to verify if these two ways of expressing the impact 
of PPO are interchangeable in some way and there- 
fore, if both are valid to draw conclusions from. The 
relation between dioxygen consumption, color for- 
mation and substrate degradation is modelled, and the 
relation between PPO activity and 0 2, CO 2, pH, 
substrate and temperature is determined by response 
surface design. 

The main part of the paper is divided into three 
parts describing different modelling problems of a 
model system of lettuce: 

- Predicting PPO activity (dioxygen consump- 
tion) from kinetic UV/VIS  spectra. Fortyfive sam- 
ples with different substrates were incubated with 
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PPO. The activity of PPO was determined by PPO 
assay and the UV/VIS  spectra were measured sev- 
eral times during an hour from incubation. The rela- 
tion between the kinetic spectra and the activity was 
found by multiway PLS (N-PLS) with a preprocess- 
ing step designed to eliminate the nonlinearities in the 
data. The purpose of the model is to show, that the 
spectral changes in the model system are indeed in- 
dicative of the PPO activity and to show how the 
spectral changes relate to the activity. 

- Predicting kinetic changes in the amount of 
products (determined by HPLC)  from kinetic 
U V / V I S  spectra. The model is essentially the same 
as before, albeit now the dependent variable is multi- 
variate, namely the substrate consumption deter- 
mined by HPLC after five different incubation times. 
Predicting the outcome of the HPLC analysis from 
spectra would make it possible to avoid the tedious 
and chemistry consuming HPLC analysis. 

- Describing the influence of five different fac- 
tors on the PPO activity (dioxygen consumption). The 
data in this problem can be regarded as a fiveway ar- 
ray of activities and decomposing this array to its es- 
sentials by PARAFAC can give a model that simul- 
taneously makes it possible to predict the activity of 
other levels of factors than the ones used and show 
how the factors influence the PPO activity. 

Each part consists of a description of the mathe- 
matical model used, an essential part describing the 
results and how they are obtained, and finally a de- 
scription of the results of using other methods is 
given. By N-PLS and PARAFAC it is demonstrated 
how the use of suitable mathematical methods cou- 
pled with the right preprocessing can help under- 
standing underlying bio-physical phenomena in com- 
plicated systems. 

For details on the experimental conditions and a 
more in-depth discussion of the technological aspects 
see Ref. [2]. 

2. M a t e r i a l s  a n d  m e t h o d s  

2.1. General 

Five heads of fresh iceberg lettuce (Lactuca sativa 
L. cv. Saladin 'Iceball ') were obtained from a c o m -  

Table 1 
Experimental design for the three different experiments 

Factor Levels Levels Levels 
(UV/VIS) (HPLC) (PPO activity) 

Substrate CG, EPI, MIX CG, EPI, MIX CG, EPI, MIX 
0 2 ( % )  0, 5, 10, 20, 80 0, 20, 80 0, 5, 10, 20, 80 
CO 2 (%) 0, 10, 20 0, 20 0, 10, 20 
pH 6 6 3.0, 4.5, 6.0 
Temp. (°C) 30 30 5, 20, 30 

# samples 45 15 405 

All combinations performed except for O z//CO 2 = 0/20  in the 
HPLC analysis. In the UV/VIS experiment UV/VIS spectra were 
measured. In the HPLC experiment the area of the substrate peak 
was determined relative to an internal standard, and in the PPO ac- 
tivity experiment, the PPO activity (dioxygen consumption), was 
determined in replicates. 

mercial grower near Copenhagen, Denmark. PPO was 
extracted and purified according to Ref. [2]. 

Color was measured spectrophotometrically with 
a Lambda 19 U V / V I S / N I R  spectrometer (Perkin 
Elmer) from 220 to 500 nm (1 nm intervals) every 
second minute 30 times. Measurements were made in 
a closed quartz cuvette containing 3.555 ml 0.1 M 
acetate buffer (pH 6.0, 30°C) saturated with a gas 
mixture of appropriate composition, 25 IxL of either 
0.01 M chlorogenic acid (CG), 0.01 M epicatechin 
(EPI) or an equimolar mixture (0.01 M) of both 
(MIX), and 20 ixL purified PPO (Table 1). Almost 
only the substrate ( C G / E P I / M I X )  and its products 
absorb light in the samples, and the changes in ab- 
sorbance therefore relate directly to the changes in the 
substrate. 

Substrate consumption was determined by reverse 
phase HPLC using a series 1050 HPLC (Hewlett 
Packard), ODS Hypersil C18 column. The detection 
method was UV absorbance at 280 nm and a gradi- 
ent method according to Ref. [3] was used. Solvent 
A was water at pH 3.0 adjusted with 1 M phosphoric 
acid and solvent B acetonitrile. The amount of each 
substrate is expressed as peak area relative to the peak 
area of the internal standard (0.2 mM vanillic acid). 
The sample contained 4.775 ml 0.001 M acetate 
buffer (pH 6.0, 30°C) saturated with a gas mixture of 
appropriate composition, 0.1 mL 0.04 M chlorogenic 
acid, epicatechin or a mixture of those, and 25 IxL 
purified PPO (Table 1). The sample reacted in a Clark 
electrode chamber aerated with the same gas mixture 
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(Rank Brothers, UK) and for each time (0, 1, 5, 10, 
and 30 min) 0.2 mL was sampled from the chamber 
and immediately mixed with an equal volume of 
stopping solution containing 2 mM NaF, 2 mM cys- 
teine and 0.2 mM vanillic acid. The samples were 
stored at - 5 ° C  until analysis (the same day). 

PPO activity was measured in nanomoles of 0 2 
consumed per second by a polarographic polyphenol 
oxidase assay as described in Ref. [4]. PPO activity 
was determined for various levels of five different 
factors: 0 2, CO 2, temperature, pH, and substrate type 
(Table 1). 

2.2. Predicting enzymatic activity from UV / VIS 
spectra 

UV/VIS  spectra were measured at 30 equidistant 
times during one hour from incubation with PPO on 
samples with three different substrate types, five dif- 
ferent 0 2 levels and three different CO 2 levels. All 
factors varied independently giving a total of 45 
samples. The corresponding activity of PPO was de- 
termined by a polarographic polyphenol oxidase as- 
say. With these data it is possible to investigate the 
appearance of color at various conditions. 

One U V / V I S  spectrum consists of 281 wave- 
lengths. The matrix of all measured spectra for one 
sample is a 281 X 30 matrix, and the array of inde- 
pendent variables for all samples is thus 45 X 281 × 
30. The dependent variable is a 45 x 1 vector of ac- 
tivities. 

2.3. Predicting chromatographic peaks from kinetic 
UV / VIS spectra 

The development of color in the simple model 
system can be expressed as the formation of prod- 
ucts. By HPLC the consumption of substrate was 
measured at some of the same conditions as for the 
spectral investigation. The consumption of substrate 
is directly related to the amount of products. Predict- 
ing the kinetic profile of substrate from the former 
determined spectra, thus implies that the influence of 
PPO can be determined not only as the dioxygen 
consumption of PPO, but also as the amount of 
transformed substrate. The substrate consumption 
was measured at five different times after incubation 

with PPO (0, 1, 5, 10 and 30 min). The dependent 
variable is therefore five-dimensional and is arranged 
in a 15 x 5 matrix corresponding to the 15 samples 
determined. 

2.4. Predicting PPO activity from experimental de- 
sign 

For three substrate types, five 0 2 levels, three C O  2 

levels, three pH values and three different tempera- 
tures - -  all varied independently - -  the activity of 
PPO was determined in replicate. Building a calibra- 
tion model to predict the activity from the experi- 
mental conditions would give important information 
on how the PPO activity - -  and therefore the color 
formation - -  is influenced by the different factors. 
The different levels of the factors are shown in Table 
1. The number of samples in the replicated full facto- 
rial design is 3 × 5 X 3 X 3 X 3 X 2 = 8 1 0 .  M o s t o f  
the time the mean value of the replicates will be used, 
giving a total of 405 samples. How the data was 
structured depends on the analysis and will be de- 
scribed later. 

To clarify the experiments Table 1 shows the fac- 
tors varied in the three performed experiments. All 
calculations were done on a 133 MHz Dell PC with 
32 Mb RAM. The trilinear PLS algorithm was made 
in the mathematical software Matlab for Windows 
4.2c. 1 (Mathworks, Inc.). This implementation works 
with arrays of independent variables up to fiveway 
and arrays of dependent variables up to threeway. The 
PARAFAC algorithm was made in Matlab and works 
with up to tenway arrays. It also contains the possi- 
bility to constrain loadings to be orthogonal or non- 
negative and handles missing data. The algorithms are 
ava i l ab le  f rom In te rne t  at h t t p : \ \ n e w t o n .  
foodsci.kvl.dk \foodtech.html. Also available from 
our homepage are M-files for PARAFAC and Tucker 
made by Claus A. Andersson, from where the Tucker 
algorithm was obtained. The LWR algorithm used 
was taken from the chemometrical toolbox made by 
Wise and Gallagher [5] which runs under MATLAB. 
The neural network is part of the Neural Network 
Toolbox from Mathworks, Inc. ANOVA was per- 
formed in SAS. All other algorithms were imple- 
mented in-house in Matlab. 
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3. Predicting enzymatic activity from UV/VIS  
spectra 

3.1. Mathematical model 

For a set of calibration samples a cube or three- 
way array (sample X spectra X time) of independent 
variables is obtained as shown in Fig. 1. 

A calibration model is sought to predict the activ- 
ity from the kinetic UV/VIS  data in the threeway 
cube. The mathematical model is an extension of the 
PLS algorithm [6] to higher orders called multiway 
PLS or N-PLS [7], specifically trilinear PLS. Trilin- 
ear PLS is suited for the datatype dealt with here. 
Each latent variable in the trilinear model consists of 
a loading vector in the spectral direction, a loading 
vector in the kinetic direction and a score vector in 
the sample direction. The latent variables are found 
successively to have maximal covariance with the yet 
unexplained variation in the activity. The advantages 
of using a multiway method compared to ordinary 
twoway multivariate methods have been described by 
several authors (e.g. Ref. [8]). N-PLS is superior to 
unfolding methods, primarily due to a stabilization of 
the decomposition, because fewer parameters need to 
be estimated. Therefore more degrees of freedoms 
can be used in estimating the parameters of the model, 
giving a more robust, parsimonious and interpretable 
model. 

The trilinear PLS algorithm will here be described 
mathematically and to some extent qualitatively. For 
a more thorough description see Ref. [7]. In the fol- 
lowing, scalars are shown as lower-case italics, vec- 
tors by bold lower-case characters, bold capitals are 
used for twoway matrices and underlined bold capi- 

~ I Wa;en~th(2,,, Y 

Fig. 1. The structure of the calibration data. For each sample a ma- 
trix of spectra at different times is measured. 

tals for threeway arrays. The letters I, J, K and M 
are reserved for indicating the dimension of different 
orders. The terms mode, way and order are used more 
or less interchangeably though a distinction should be 
made between the geometrical dimension of the hy- 
percube - -  the number of ways - -  and the number 
of independent ways - -  which is the order/mode [9] 
[10]. 

The independent variables are arranged in a three- 
way cube called X ( I  × J X K). In this case I is the 

i 

number of samples, J the number of wavelengths 
measured and K the number of times the spectrum 
of each sample is measured. The dependent variable 
is arranged in an I X 1 vector y or an I X M matrix 
Y in case of several dependent variables. The origi- 
nal algorithm also handles higher order X and y, but 
only the relevant algorithm will be described here. 

Both X and y are centered by subtracting the mean 
Of each o--bservation over all samples. Mathematically 
this can be described for X as 

xicjk = Xij k -- Xjk 

In the formula xu~ is the absorbance of the ith sam- 
ple on the jth wavelength at the kth time. The sub- 
script c indicates that it is the centered value. Mean- 
centering removes any offset in the data, and thus 
eliminates the need for any offsets in the following 
regression [11,12]. Furthermore it has the advantage 
that the decomposition is done with respect to the 
variations in the data instead of the level. Prepro- 
cessing of multiway data in general is more compli- 
cated, than preprocessing twoway data, because the 
preprocessing can have gross impact on the multilin- 
ear structure assumed to be in the data [13-15]. 

To calculate the first latent variable the product of 
the cube X and the vector y is calculated as 

1 

Zjk ~ E XijkYi" 
i = 1  

The thereby formed J X K matrix called Z is de- 
composed by singular value decomposition [ 16]. The 
first set of normalized singular vectors can be shown 
to be the two weight vectors, that is sought for the 
first latent variable. The weight vectors are called w ] 
( J X  1) and w K ( K X  1), where the subscripts indi- 
cate that the vectors refer to the spectral and the ki- 
netic order, respectively. With the weight vectors the 
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score vector can be computed, as the vector that pro- 
duces the best least squares model of  X given the two 
weight vectors. The score vector, t, is equal to 

J K 
t i = E  E x  J K ijkWj Wk , 

j= l  k=l 

t i being the ith element of  t. 
The latent variable defined by t, w J and w r is the 

best least squares model of  X, i.e. 

Xijk = t i w / W K '  (1)  

under the constraint, that t has maximal covariance 
with y. Thereby it is ensured not only to get a good 
model of  X, but a good model, that is descriptive also 
of  the variations in y. 2ij k is the prediction of  xij k. 

The latent variable is related to y by ordinary lin- 
ear regression giving a regression coefficient and a 
prediction of  y. The regression coefficient is calcu- 
lated as 

b = ( tTt)  - 1  tTy 

and the prediction of  y is 

= tb .  (2) 

As can be seen, by calculating one latent variable, a 
model is obtained of  both X and y, and both can be 
assessed in different ways to ensure, that they are 
valid [17]. In complex systems it is to be expected, 
that one latent variable is not enough to make a good 

model of y. To calculate further latent variables the 
residuals (unexplained part) of  both X and y are cal- 
culated by subtracting the model so far from the ac- 
tual data (the models given by Eqs. (1) and (2)). No 
extra loading vectors are calculated as in ordinary 
PLS, because this will not produce orthogonal scores 
anyway. In this respect the N-PLS algorithm resem- 
bles the PLS algorithm originally proposed by 
Martens and Nms [17]. 

The next latent variable is calculated by the same 
procedure as described above, but replacing X and y 
with their residuals. When regressing the following 
score vectors on the residuals of y one has to incor- 
porate earlier found score vectors as these are not or- 
thogonal. This is done by arranging the score vectors 
in an I X f matrix, T, where each column is a score 
vector. The regression coefficients for the f th  latent 
variable are then found as 

b = ( T T T ) - I T T y  .... 

where Yres now means the unexplained part of  y. 
It is worthwhile noticing, that the trilinear PLS 

corresponds to the Martens implementation of  bilin- 
ear PLS with only one extra step included, if the 
threeway array is unfolded to a matrix. The ordinary 
weight vector found as X ' u  (or X ' y )  is folded to a 
matrix with the dimension given by the number of  
variables in the second and third order of  X and this 
matrix is decomposed by SVD. The first p-ffir of  sin- 
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Fig. 2. A plot of a typical CG sample. 
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gular vectors is then the first set of weight vectors but 
can be backfolded to one ordinary weight vector by 
properly arranging the outer product of the two vec- 
tors, i.e. backfolding the matrix to a J K  × 1 vector. 
The rest of the algorithm will be exactly as the bilin- 
ear algorithm. 

The algorithm described above is the threeway 
version of the so-called PLS 1 algorithm. The number 
1 indicate, that it deals with univariate y. If instead 
the dependent variables are twoway, they can be ar- 
ranged in an I × M matrix, where M is the number 
of dependent variables. The PLS2 algorithm handles 
this situation automatically by decomposing Y in a 
manner similar to X. The implementation of the tri- 
linear PLS2 can be seen in Ref. [7]. The advantage 
of calibrating for several variables simultaneously is 
especially pronounced when these are correlated. If  
spectra are to be predicted it is clearly better to pre- 
dict the whole spectrum simultaneously, than predict- 
ing one wavelength at a time. Thereby the correla- 
tions between the dependent variables are used to 
stabilize the predictions. 

3.2. Results  and discussion 

A visual inspection of the data immediately made 
it clear, that one experiment for each substrate-type 
failed (0  2 = 80, CO 2 = 20) in the UV/ VIS  experi- 
ment. The spectra were of much less magnitude, than 
expected from the measured activity and the bio- 
chemical knowledge. The reason is most likely, that 
the substrate was too old when this experiment was 
performed, and hence the substrate had decomposed 
non-enzymatically. As a consequence of that, these 
three experiments were deleted from the data giving 
a total of 42 samples. A typical sample is shown in 
Fig. 2. 

The purpose of the calibration model is to incor- 
porate the various levels of substrate, O 2 and CO 2 
thereby showing that the effect of these factors with 
respect to activity can be determined from spectral 
measurements of the sample. Only few samples (42) 
were available, and it was very difficult to incorpo- 
rate all the above-mentioned factors in one global 
model. Instead a local model was made for each of 
the three substrate types (EPI, CG, MIX). For each 
substrate there were then 14 samples. 

The spectra were all measured from 220-500 nm, 
but for CG and MIX only 240-500 nm was used. The 
lower part was too noisy to be of any relevance. For 
epicatechin (EPI) the area 220-300 nm was further- 
more deleted• The reason for this is both the fact that 
a model including this area is worse than a model 
without, and the fact that the main spectral variation 
for EPI products is in the VIS area. Furthermore the 
wavelengths 402-403 nm were removed due to an 
instrumental error in this wavelength area [2]. 

During analysis of the data it was clear that no 
linear relation could adequately describe the relation 
between the variations in the spectra and the varia- 
tions in PPO activity. This is not surprising consider- 
ing the complicated polymerization mechanisms and 
dependency of the activity of an enzyme on the con- 
centration of substrate or other chemical conditions 
(cf. Michaelis-Menten). Another complicating prob- 
lem is the special kind of closure in the data. All 
spectrally active analytes in the mixture stem from the 
substrate initially introduced, and there is therefore an 
interdependency between the analytes, which is de- 
fined by the polymerization and enzymatic kinetics. 
Finally there are differences in the initial amount of 
substrate from sample to sample. Because only few 
experiments could be performed on one day, a choice 
had to be made on whether to use the same substrate 
for all samples giving a sampling error from the in- 
stability of the substrate or use freshly made sub- 
strate every day giving a sampling error from the 
preparation of the substrate. It was chosen to use the 
same substrate for all samples, but the result was, that 
the substrate composition was not exactly the same in 
all experiments• The first measured spectrum for each 
sample, should be the same, if the substrate did not 
change, but a score plot of a PCA on the first set of 
spectra for e.g., CG clearly showed large systematic 
variations, that corresponded very well to the order in 
which the experiments were performed. 

Summarizing, there are three things presumed to 
cause the nonlinearities: (i) The biological depen- 
dency of PPO activity on substrate, 02 and CO 2, (ii) 
the closure, in that the weighted sum of spectral ana- 
lytes is constant during an experiment, and (iii) the 
fact that the substrate composition is not the same 
from experiment to experiment• The last point in any 
case ensures that the experiments are more realistic 
(though this was not the intention!). It also makes it 
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Fig. 3. Scatter plot from a model  of CG data. (a) A plot of the activity against the first score vector from an N-PLS model without prepro- 
cessing, and (b) the same but with all sample matrices scaled no norm one. 

necessary to incorporate the kinetics in the analysis. 
It is not possible to predict the activity from any level 
of a spectrum of the substrate or its products when the 
initial amount changes from experiment to experi- 
ment. 

As an example of the nonlinearity in the data, the 
first score vector from an N-PLS model of CG data 
versus the activity is depicted in Fig. 3a. 

Mild nonlinearities are usually not a severe prob- 
lem in PLS, but this nonlinearity is quite extreme. A 
natural thought would be to normalize all spectra of 
a sample with respect to the first measured spectrum 
of that sample, but this did not solve the problem in 
this case. Rationalizing that the level of the ab- 
sorbance is not indicative of the activity (as the sub- 
strate level varies from sample to sample), the mea- 
sured matrix of each sample was normalized, i.e., the 
matrix was scaled to matrix-norm one. The effect of 
this normalization can be seen in Fig. 3b. The nor- 
malization helps removing the nonlinearity, and helps 
the algorithm focusing on the relative changes in- 
stead of the absolute changes. 

For each substrate type a calibration model was 
made using the normalized kinetic U V / V I S  data as 
independent and the activity as the dependent vari- 
able. The number of latent variables was determined 
through leave-one-out cross-validation due to the low 
number of samples. For CG and MIX three and four 
latent variables respectively was used and for EPI 
only two. This indicates, that the EPI system is less 
complex than the CG system, perhaps because the 
VIS area is less influenced by interferences than the 
UV area. Though three different models are made, the 
predictions can be shown together in one plot (Fig. 4). 
All predictions are from the cross-validations. 
Though the result from the cross-validation is not to 
be judged as the ultimate estimate of the prediction 
power of the model (only a test set validation can be 
considered so), it is the most valid result considering 
the low number of samples. The correlation coeffi- 
cient and root mean square error of cross-validation, 
RMSECV, are shown in Table 2. 

The weight vectors are quite informative, reveal- 
ing and verifying several interesting aspects of the 

Table 2 

Prediction results using different calibration methods 

PPO activity N-PLS Unfold PLS Tucker PARAFAC 410 nm 

pred versus true derivative 

Corr. coef., r 0.929 0.925 0.729 0.870 0.799 
RMSECV 24.2 24.8 47.9 32.6 40.4 

The results are from a full crossvalidation on 3 × 14 samples corresponding to the three different substrate types with the first sample ex- 

cluded. 
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Fig. 6. Loading vectors in the spectral mode from N-PLS model 
the CG samples. The number corresponds to the component. 

model system. Even though the color increases with 
time in all three systems (CG, EPI and MIX), the 
most (or second most) important weight vector at- 
tains a local maximum after approximately 10-20 
min (shown in Fig. 5 for the CG system). 

A precise relationship between the spectral 
changes and activity thus requires information on the 
spectral changes in that time span. The explanation is 
most likely that during the first 10-20 min the spec- 
tral changes are primarily caused by the direct effect 
of PPO activity. Later, the spectral changes are 
mainly caused by the chemical non-enzymatic poly- 
merization of the quinons formed by the enzymatic 

x 10 -3 

0 10 20 30 40 50 60 
Time train 

Fig. 5. Loading vectors in the kinetic mode from N-PLS model of 
CG samples. The number corresponds to the component. 

activity. Both aspects are apparently important for re- 
lating the spectral changes to the activity of the en- 
zyme (see Ref. [2]). 

In Fig. 6, a weight plot in the spectral mode of the 
CG system is shown. The weight vectors show clear 
resemblance with CG and some of its products (see 
Ref. [2]) confirming that the model is capturing the 
relevant spectral information. 

3.3. Results from other calibration methods 

Whenever several modelling strategies are investi- 
gated simultaneously, there is a danger of finding 
spurious results, unless great care is taken in assuring 
that the models are valid. This can be done statisti- 
cally, by saving a test set until all decisions have been 
made, or by verifying the models from prior knowl- 
edge of the data, as has partly been done here. In this 
study several models have been investigated, and the 
results have been more or less equal with respect to 
predictions. For comparison the results will shortly be 
presented. Three other techniques were applied: un- 
fold PLS, PARAFAC regression (PFR) and Tucker 
regression (TR). The theory of these methods will 
shortly be outlined. 

At first however, we will mention the results of a 
procedure quite commonly used for describing the 
activity of PPO. The absorbance at one wavelength 
(normally between 400 and 420 nm; here 410 nm) is 
measured over a period. The absorbance is plotted 
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against the time, and the derivative at time zero is 
calculated, giving the initial rate of change in ab- 
sorbance. This initial rate is used as a PPO assay for 
PPO from various fruits and vegetables (e.g., Refs. 
[18,19]). This approach was pursued calculating the 
derivative by a Savitzky-Golay algorithm [20] with 
a window size of seven. The best results were ob- 
tained for epicatechin, which is quite natural because 
epicatechin spectra change more than chlorogenic 
acid spectra in the visual wavelength area. However 
with this approach a correlation of 0.766 between the 
first derivative and the activity and an average cali- 
bration error calculated by full cross-validation at 
30.1 (by linear regression) was obtained for the EPI 
system. Evidently this approach is quite inferior to the 
more standard chemometrical approaches, which fur- 
thermore give qualitative and quantitative informa- 
tion. Another way of putting it, the traditional spec- 
trophotometrical measure of PPO activity, does not 
give sufficient information to predict the PPO activ- 
ity (!!) as measured by the dioxygen consumption. 
The fact that the derivative at time zero has poor pre- 
dictive power also confirms the finding that spectral 
changes important for predicting PPO activity hap- 
pen around 10-20 rain after incubation. 

In unfold PLS the array of independent variables 
is unfolded to an I × J K  matrix by concatenating the 
K different 1 × J layers horizontally. I, J and K are 
the dimensions of the array. This unfolded matrix can 
then be used in an ordinary PLS algorithm. The dis- 
advantage of this approach is that no information is 
used across different orders. On the other hand, / f  the 
problem is not trilinear, unfold PLS might be able to 
describe the variations more adequately. 

Unfold PLS is often mistakenly named a multi- 
way method. Though this might to some extent be 
defensible, it is more likely confusing and mislead- 
ing. It is a way of dealing with multiway data, but the 
method itself is not multiway. The main problem with 
unfold PLS is the little usage of multiway informa- 
tion in the decomposition, and the low interpretabil- 
ity of the solution. It is quite uncommon to see load- 
ing plots from an unfold solution, simply, because 
these are very hard to interpret compared to multi- 
way loading vectors. From a mathematical point of 
view, the unfold approach is much more compli- 
cated, than the true multilinear methods because more 
parameters need to be estimated, and this is also what 

makes the interpretation difficult. If  an unfold and a 
multiway method are equally good (e.g., for predic- 
tion) the multiway method is preferable, because of 
its simplicity, which implies interpretability and ro- 
bustness. 

Threeway PARAFAC (parallel factor analysis) is 
a trilinear model, [10,21] that in some respect corre- 
sponds to principal component analysis as trilinear 
PLS corresponds to bilinear PLS. PARAFAC regres- 
sion is simply the PARAFAC analog to principal 
component regression. In threeway PARAFAC each 
component consists of three vectors; one score vec- 
tor and a loading vector in each variable direction 
(one spectral and one kinetic in this case). To calcu- 
late a calibration model analogous to PCR (principal 
component regression), the score matrix from the 
PARAFAC decomposition of the calibration samples 
is used as the independent variables in a multiple lin- 
ear regression model. To predict the dependent vari- 
able for new samples, the scores of the new sample 
can be calculated using the loading vectors of the 
PARAFAC model, much as in PCR, and from the re- 
gression coefficients the dependent variable can be 
predicted. The main advantage of PARAFAC is that 
unique results are obtained under fairly mild condi- 
tions [15,22]. There is no rotational problem as in 
twoway analysis. If  the data is indeed trilinear, the 
true underlying phenomena can, in principle, be 
found. In this case there is some evidence, however, 
that the data is not trilinear, because the same ana- 
lytes can have different kinetic profiles depending on 
the sample matrix. The main disadvantage of using 
PARAFAC is simply that the existing algorithms are 
extremely slow compared to the other methods used 
here. 

Tucker is another multiway decomposition method 
that is beginning to show promising results in 
chemometrics [10,23-25]. Apart from Ref. [25] no 
application of Tucker in calibration problems has to 
our knowledge occurred, though the principle is as 
simple as in all other decomposition methods. 

The Tucker model is conceptually more sophisti- 
cated than PARAFAC and N-PLS, in that the num- 
ber of loading vectors in each order need not be the 
same. Furthermore a loading vector is not only re- 
lated to one vector in each of the other modes, but 
can be related to all other loading/score vectors of 
the other modes. 
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To exemplify this, a hypothetical twoway exam- 
ple will show the basic idea of a Tucker model. Con- 
sider a matrix of chromatographically obtained spec- 
tra of a sample containing two analytes with differ- 
ent spectra but the same chromatographic profile. 
Looking at any column (wavelength) one will see the 
same picture, namely the chromatogram, and looking 
at a row (retention time) one will see either a sum of 
the spectra of the two analytes or noise if outside the 
peak. Without prior knowledge it is not possible to 
decompose this matrix into the two underlying spec- 
tra, but a good representation of the data would be the 
outer product of one column vector, i.e., the chro- 
matographic profile and a weighted sum of two row 
vectors, i.e., the underlying spectra. This can be writ- 
ten as 

pCS',  

p being the chromatographic profile, S the two by 
the number of wavelengths matrix of the spectra and 
C a one by two matrix containing the weighting of 
the spectra. The elements C can be regarded as a kind 
of singular values, and is called the core matrix.  

In threeway analyses one would obtain three sets 
of loadings instead of two, and the core matrix would 
be a cube with dimensions given by the number of 
factors extracted in each direction. If the number of 
loading vectors in all three directions is the same, and 
all elements of the core cube are zero except for the 
superdiagonal, the solution equals the PARAFAC so- 
lution; hence PARAFAC is a restricted version of the 
Tucker model. If the elements in the non-superdiago- 
nal are not zero, these can be interpreted in the fol- 
lowing way: I f  the element i, i, k is large and much 
larger than i, i, i, this means that the ith loading in 
the first order, the ith loading in the second order, and 
the kth loading in the third order constitutes a rank- 
one model, that is more descriptive of the data than 
the rank-one model given by the ith loading of the 
first order the ith loading of the second order and the 
ith loading of the third order. 

The essential fact of the Tucker model is that it is 
more flexible than PARAFAC and N-PLS and it is 
more restricted than unfold methods. So the Tucker 
model is in-between these two types of models. 
Which model is best depends on the data structure, 
and is not always obvious, but must be tested on the 
specific problem. 

Like PARAFAC regression Tucker regression can 
be performed by regression using the scores (load- 
ings of the first mode) as independent variables. For 
a new sample the scores can be calculated by the 
loadings of the second and third order and the core 
array. This is done as calculating the scores in the it- 
erative Tucker algorithm, only now the algorithm is 
not iterative because only the scores are unknown. 

The results of unfold PLS, PARAFAC and Tucker 
are shown with the N-PLS results and the results from 
the traditional method using the first derivative of the 
kinetics at 410 nm in Table 2. 

The results using these different methods clearly 
show that the multiway PLS algorithm is advanta- 
geous. Though unfold PLS gives almost equally good 
predictions the model is a lot more complex. Each 
loading vector in an unfold model consists of several 
thousands parameters, while in the true multiway 
methods only a few hundred parameters are esti- 
mated. As shown in Results and Discussion the inter- 
pretation of the threeway model is quite easy. As a 
comparison one could try to interpret the main load- 
ing vector from unfold PLS, which is shown in Fig. 
7. Though a general structure is observed, there are 
also deviations, that are somewhat difficult to inter- 
pret and quantitate in comparison with the threeway 
model. Notice for example the first part of the unfold 
loading vector. There are phenomena here that are 
quite different from the remaining part. Though in- 
teresting in itself, it is apparently not essential for 
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Fig. 7. The first loading vector from an unfold PLS model of the 
CG samples. 
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predicting the activity as the N-PLS does not contain 
any such discrepancies yet still predicts well. Com- 
pared to the N-PLS solution it is harder to interpret 
the loading vector, in essence simply because the un- 
fold model contains more parameters. 

PARAFAC gives distinctly poorer results than 
N-PLS and unfold PLS. The reason might be that 
there is some degree of non-trilinearity in the data, 
because equal species might have different kinetic 
profiles under different circumstances. This is con- 
firmed by rank analysis on unfolded matrices from the 
calibration cube. If the data is trilinear one would 
most often expect equal or almost equal bilinear rank 
of the unfolded calibration cube, no matter which way 
it is unfolded. In this case however, the rank was 
equal when the sample or the spectral mode was kept 
intact, but if the kinetic mode was made the intact 
mode, the rank was almost twice as high. The reason 
that N-PLS is not as influenced by this disagreement 
between the model and the data, is most likely that 
the latent variables are not calculated simultaneously 
as in PARAFAC. Therefore the most relevant, and to 
some extent most trilinear, variations are allowed to 
influence the model more than the nonsystematic or 
nontrilinear variations. The PARAFAC model in- 
cludes all variations, also nontrilinear, in order to 
make the least squares model. The Tucker model did 
not give good results. Somehow the flexibility of- 
fered by the Tucker model is not appropriate for this 
data set. 

4. Predicting chromatographic peaks from kinetic 
UV / VIS spectra 

4.1. Mathematical model 

The dependent variable in this problem is a five- 
dimensional vector containing the relative peak area 
of either chlorogenic acid or epicatechin measured by 
HPLC after five different incubation times (Table 1). 
As in the previous example the independent vari- 
ables are the kinetic U V / V I S  spectra corresponding 
to the conditions for the HPLC analysis. The model 
used in this section is the same as described for pre- 
dicting activity from U V / V I S  spectra, except that in 
this case Y is multivariate, so the trilinear PLS2 al- 
gorithm is used. 

4.2. Results and discussion 

As before all sample matrices (spectra × kinetic) 
of the independent variables were normalized to re- 
duce nonlinearities, and as before it was not possible 
to incorporate the three different substrate types into 
one model. In this case two models were made; one 
for predicting CG in the CG and MIX samples and 
one for predicting EPI in the EPI and MIX samples. 
Full cross-validation was used. 

Due to the low number of samples - -  ten in each 
model - -  it was decided to include all samples in the 
calibration even though some were potential outliers. 
Altogether the circumstances were such so that only 
indications could be hoped for by this model. It is 
unrealistic to hope that all relevant variations (inter- 
ferences from substrate, 0 2 and CO 2) can be cap- 
tured by a model built from only ten samples. Taking 
into account these difficulties, the model obtained 
works reasonably. For CG RMSECV was 0.510 and 
the correlation coefficient 0.707 (two components). 
For EPI the result was an RMSECV of 0.169 and a 
correlation coefficient of 0.686 (one component). The 
errors are large, but from the predictions (Fig. 8) one 
sees, that the model actually captures the main varia- 
tions both with respect to the general level of the 
substrate consumption and also with respect to the 
time dependent variations in the substrate consump- 
tion (see Ref. [2]). 

Though the model cannot predict the substrate 
consumption precisely from the data used here, the 
result implies the important fact, that substrate con- 
sumption can indeed be predicted from the spectral 
variations in a model system. Therefore it is possible 
to replace the tedious and time-consuming HPLC 
analysis with a direct spectral analysis of the sought 
PPO system. Clearly a larger calibration set is neces- 
sary, and if only one substrate type is to be modelled 
the predictions would most probably be better. 

4.3. Results f rom other calibration methods 

Only the unfold PLS was tried as an alternative in 
this case, as the data almost beforehand was known 
to be to complex to model properly considering the 
low number of samples. The result of the unfold PLS 
was an RMSECV for CG at 0.506 (two components) 
and for EPI at 0.169 (one component). The results are 
quite similar to the ones obtained with N-PLS, and the 
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increased complexity of the bilinear PLS therefore 
does not offer any advantages for this data set. 

5. Predicting activity from experimental design. 
Analysis of variance 

5.1. Mathematical model 

The data in this example constitute a full five-fac- 
tor factorial design, but due to very unsatisfactory re- 

suits by standard ANOVA techniques (see later) other 
approaches had to be pursued. The data are treated in 
two different ways (see Table 2). In the PARAFAC 
model, the data are interpreted as a multiway array of 
activities, specifically a fiveway array. The five dif- 
ferent modes/ways  are: 02 (dimension five), CO 2 
(dimension three), pH (dimension three), temperature 
(dimension three), and substrate type (dimension 
three). The ijklmth element of the fiveway array con- 
tains the activity at the ith 0 2 level, the jth CO 2 
level, the kth level of pH, the lth level of tempera- 
ture, for the mth substrate type. The fiveway array is 
tried depicted in Fig. 9. 

For the standard multivariate models (locally 
weighted regression, PLS and neural networks) the 
data are arranged in two data tables: A 405 × 1 vec- 
tor of dependent variables (PPO activity) and a 405 
X 6 matrix of independent variables each column 
corresponding to a factor, such that the first factor 
describes the level of 02, the second CO 2, the third 
pH, the fourth temperature, the fifth the level of CG 
and the sixth the level of EPI. In this case the data is 
thus considered to be twoway, each factor constitut- 
ing a variable. The data structure is shown in Fig. I0. 

The PARAFAC model has shortly been described 
above. For a more thorough description the reader is 
referred to Refs. [14,15,26]. In this application the 
model is used for analysis of variance, and the ap- 
plied model is a fiveway model. This means that one 
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Fig. 9. A graphical representation of the fiveway array of activi- 
ties. 
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Fig. 10. A graphical representation of the two calibration arrays 
used in the bilinear models. 

component consists of five loading vectors: a, b, c, 
d, and e, corresponding to the modes of O 2, CO 2, pH, 
T, and substrate. 

The use of PARAFAC for analysis of variance is 
rare [27]. However, the use of PCA and related 
methods for analyzing twoway interactions has been 
known for several years (see Refs. [28,29] and refer- 
ences therein). The advantage of using PARAFAC for 
ANOVA is in the way interaction terms are mod- 
elled. In a standard ANOVA an interaction between 
three factors (A, B and C) would be estimated as 
abcijk, while in a trilinear model, this effect would be 
estimated as aibjc k or as a sum of such expressions 
if more PARAFAC components are estimated, i.e., 
the interaction is not only estimated as a whole, but 
is modelled as a multiplicative effect of the three dif- 
ferent factors. If  the multiplicative model is appro- 
priate, the applied restriction (aibjc k instead of 
merely Eqk) will give a more interpretable model. 
This is comparable to the well-known result of per- 
forming P C A / P A R A F A C  decomposition of, e.g. 
spectral data. 

5.2. Results and discussion 

5.2.1. Preprocessing 
When analyzing the fiveway array of activities by 

PARAFAC several issues must be decided. Prepro- 

cessing is quite important for obtaining the right 
model, but the theory of preprocessing is quite in- 
complete with respect to ANOVA-like data [30]. 
Consider a one-component  f iveway PARAFAC 
model. This is given as 

Xijkl m ~ a ib jckd lem,  

disregarding noise contributions. If however the data 
is meancentered within a certain mode, the second for 
example, the model is now 

Xijklm =-biklm ~- a ib j ckd tem,  

-biklm being the mean of the iklmth column. 
Scaling does not change the underlying model, but 

merely the way the parameters are computed, that is, 
how much weight is put on different variables. As can 
be imagined many combinations of scaling and 
meancentering, can greatly affect the outcome of the 
model. However, deciding on the proper preprocess- 
ing is difficult in this case. No theoretical results can 
guide on what kind of model is most appropriate. As 
a consequence, it was chosen to try the simplest pos- 
sible model, that is, a model on the raw data. It turned 
out that this model was better than any single- 
centered model. The reason might very well be, that 
any mean value is very poorly estimated in this data 
set because most of the modes have only three ele- 
ments in each column (centering is done on individ- 
ual columns/vectors of the array in PARAFAC). 
Some heteroscedasticity was present in the dioxygen 
mode, and a model was made scaling this mode. This 
model, however, had poorer predictive power, than 
the non-scaled model, simply because down-weight- 
ing the uncertain elements also means that the pre- 
diction errors of these increase. Hence, a PARAFAC 
model on the raw data turned out to give the best re- 
sults. 

5.2.2. Validation 
As this application of PARAFAC is different from 

traditional analysis of variance we will show several 
different types of validation procedures. 

To choose  the n u m b e r  of  componen t s ,  a 
PARAFAC model was made using the first set of the 
two replicate sets instead of using the mean of these. 
The model from this analysis given by the loadings 
A, B, C, D and E was compared to the other repli- 
cate set. The number of components, F, was chosen 
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to minimize the predicted residual sum of squares, 
PRESS, calculated as 

P R E S S  = a i f b j f c k f d t z e m f  - x i j k l  m , ( 5 )  
f = l  

xij~l m being the i jk lmth element/act ivi ty  of  the 
replicate set not used to build the model. One com- 
ponent gave the lowest prediction error, which fur- 

thermore was in the neighborhood of the intrinsic er- 
ror of the reference value. In Fig. l l a  the reference 
values from the first replicate set are plotted against 
the second and in Fig. 1 lb the first set of  replicates 
is plotted against the activities obtained from the 
model made from the second set of  replicates. The 
root mean square error between the two sets of  repli- 
cates is 11.88 and 13.39 between the predictions and 
the replicates. Most of  the prediction error (85%) can 
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hence be assigned to the error in the true values. Ap- 
parently, the 405 samples can be modelled almost 
completely by a model consisting of 17 (5 + 3 + 3 
+ 3 + 3) parameters! 

A one-component solution was also found from a 
test set procedure of a fractional factorial design 
where half the elements of the fiveway array were 
eliminated. 202 of the 405 elements were eliminated 
by simply stringing out the array to a 405 × 1 vector, 
eliminating every second element and refolding the 
vector to the fiveway array. Thereby every non-mis- 
sing element is surrounded by missing elements, and 
every missing element is surrounded by non-missing 
elements in the fiveway array. For the remaining ap- 
proximately half of the data, a PARAFAC model was 
built with an algorithm, that handles missing data. 
With the model, the predictions of the left-out sam- 
ples were obtained for both a one- and a two-compo- 
nent PARAFAC model. RMSEP for one component 
was 12.55, while for two components an RMSEP of 
51.92 was found. This validation procedure also 
shows that PARAFAC can easily handle missing 
data; in this case half of the elements were systemat- 
ically missing. 

From the PARAFAC loadings it is possible to 
predict the effect of any level of the factors investi- 
gated. Plotting the loading vector of e.g., dioxygen 
against the dioxygen level one gets a graph, from 
which the effect of any dioxygen level can be read. 
To validate this, a PARAFAC model was made leav- 
ing out all samples with 20% dioxygen. The loadings 
of the dioxygen mode determined without the 20% 
level is shown versus the level in Fig. 12a. Also 
shown is a quadratically estimated relation between 
the dioxygen level and the loading. From this curve 
the loading at the 20% level can be estimated as 383. 
From this value and the loadings of the remaining 
modes the 27 (1 × 3 × 3 × 3) left-out samples are 
predicted with a root mean square error of 13.11 
(shown in Fig. 12b). This shows, that from the 
PARAFAC model a completely general model is ob- 
tained showing the effect of each factor as simply a 
loading vector. 

5.2.3. The final model 
The outcome of the PARAFAC model is ex- 

tremely simple. Enzymatic activity in various experi- 
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mental designs can be described by a five-parameter 
multiplicative model 

X i j k l  m = a i b j C k d l e  m . (3) 

It is very interesting, that the only thing necessary to 
model the data is a fiveway interaction term. No ad- 
ditive terms at all are necessary. For any of  the modes 
a plot of  the loading vector will immediately show 
how changing the factor of that mode will affect the 
enzymatic activity. The factors are shown in Fig. 13. 
From these plots it is easy to see which conditions are 
most appropriate for keeping the PPO activity, and 
therefore the undesirable color formation, low. Con- 
trolling, e.g., the dioxygen level will be a very effi- 
cient way of keeping the PPO activity low, while only 
small effects can be obtained by controling the CO 2 
level. Here certain details will be a little further in- 
vestigated, some of  which are discussed more Ref. 
[2]. 

The loadings of  the substrate mode show that 
chlorogenic acid is a much better substrate for PPO 
than epicatechin, and that the mixture of  both sub- 
strates is not merely the sum of the activities of  the 
two. This supports the hypothesis, that CG acts pri- 
marily as substrate for PPO, while EPI to a larger de- 
gree is involved with the non-enzymatic polymeriza- 
tion [31]. This important finding is further discussed 
in Ref. [2]. 

For the CO 2 mode the loading vector show that 
20% CO 2 decreases the PPO activity slightly (notice 
the scale on the figure), while there is only little dif- 
ference between the loadings of  the 0 and 10% level. 
It is technologically interesting to nail down if this 
small difference is significant or merely coincidental. 
To test this, the two replicate sets were each split in 
two sets, giving a total of four sets all with nearly half 
of  the elements missing. As all elements of  the repli- 
cates are measured independently, four independent 
data sets were now available. A model was made 
from each of  the sets, and the CO 2 loading vector was 
normalized. The residuals of  the two levels were 
found to be homoscedastic and a t-test was made to 
test if the 20% CO e loading could be equal to or 
higher than the loading of  the 10% level. On the ba- 
sis of these four estimates of the loadings, the hy- 
pothesis was rejected (0.00005% significance level). 
By ANOVA it was not possible to detect any differ- 
ence in the effect of  CO 2 on the 20 and 10% level 

[2], but from this result, it is clear that changing the 
CO 2 level does have a small effect. 

6. Results from other calibration methods 

Analysis of  variance (ANOVA) was carried out in 
SAS using the full replicated design allowing all in- 
teractions, and the five factors also used in the 
PARAFAC model. The result was difficult to inter- 
pret as 26 effects/interactions were found to be sig- 
nificant including many three- and fourway interac- 
tions. The proposed ANOVA model is given below, 

activityijklm 

= a i + bj q- c k + d t + e m + abij + acik + adi! 

+ aeim + bcjk + bdjt + bejm + cdkt 

+ Cekm + delm + abcij  k + abdij  l + abeij  m 

+ acdik I + aceik m + abcdij~l + abceijkm 

+ adeil m q- abdeijlm + cdekt m + acdeiktm, 

Interestingly the fiveway interaction was not signifi- 
cant. The fiveway interaction was the only effect used 
in the PARAFAC model, so the two methods point 
to quite different solutions. Using half the data for 
calibration a regression model was made with all sig- 
nificant effects using the combined multiple linear 
regression and ANOVA method in SAS. The result 
was a fair prediction (Table 3) using several hun- 
dreds of  parameters. Comparing the error, 35.3, with 
an error of  12.6 from PARAFAC which furthermore 
only uses 17 parameters, there is no doubt that the 
PARAFAC model is advantageous in this case. Bet- 

Table 3 
RMSEP of an independent test set of 203 samples 

PCR (5) 33.6 

PLS (3) 33.5 
QuadPLS (5) 24.4 
CubicPLS (4) 24.3 
NN (3) 24.7 
LWR (5) 16.6 
PARAFAC (1) 12.6 
ANOVA 35.3 

The numbers in parentheses are the number of latent 
variables/hidden nodes found by cross-validation on the calibra- 
tion set. 
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ter ANOVA models could possibly be obtained, but 
the important aspect in this context is that ANOVA 
and PARAFAC points at extremely different models 
of the data. ANOVA suggests 26 effects while 
PARAFAC suggests one. PARAFAC furthermore 
offers straightforward generalization of the effects to 
other levels of the factors, than the ones explicitly 
used in the experiment. 

The six factors varied in the experiment (0  2, CO 2 , 
pH, temperature, CG, and EPI) can be considered as 
a multivariate data set with six independent vari- 
ables, and the activity being the dependent variable. 
Different multivariate calibration techniques were 
tried to fit the data: Locally weighted regression [32], 
ordinary linear PLS, PLS with quadratic and cubic 
[33] [34], inner relations, and ordinary feedforward 
neural networks[35,36] with one and two hidden sig- 
moidal layer and one to five hidden neurons in each 
layer. Most of these methods have been well de- 
scribed in the literature, so only the quantitative re- 
suits will be shown together with a few comments 
(Table 3). The test and calibration set was the same 
in all cases (every second sample belonging to the test 
set etc.), and parameters such as the number of latent 
variables was determined from the calibration set 
alone, by a 10 segmented systematic cross-validation 
procedure. The conditions for the different methods 
was as follows: 

LWR. In each prediction the 25 closest samples 
were used for the local regression (weighted linear 
regression). The weighting of a sample was based on 
the weight (1 - u3) 3, where u is the distance of the 
sample relative to the sample furthest away from the 
new sample to be predicted. The distance was calcu- 
lated using the Mahalanobis distance of a 5 compo- 
nent PCA model. 

PCR. The independent variables were autoscaled. 
PLS. The independent variables were autoscaled. 
Quadratic and cubic PLS. The independent vari- 

ables were autoscaled. Latent variables were calcu- 
lated dimensionwise and only polynomials of the 
score itself was used. 

Ordinary feedforward neural networks. The neu- 
ral networks were trained by backpropagation and 
stopped when a predeflned subset gave a minimal 
prediction error. The best result of ten runs was used. 
A neural network with one hidden layer was chosen, 
as two hidden layers did not improve the error. 

The important result of the alternative calibration 
methods is that they do not work as well as the 
PARAFAC model, neither with respect to predic- 
tions nor interpretability. The nonlinear relationship 
between PPO activity and the factors varied, make it 
difficult for the linear multivariate calibration meth- 
ods to work. PLS and PCR are equally bad. A little 
better is PLS with quadratic and cubic inner relation, 
and surprisingly neural networks are not better than 
nonlinear PLS. Neural networks are more flexible es- 
pecially when several hidden layers are used, but ap- 
parently the flexibility offered is not sufficient for the 
problem at hand. LWR gives much more precise pre- 
dictions than any of the beforementioned methods. 

Knowing the most probable relation between the 
factors and PPO activity from the PARAFAC model, 
it is interesting, that none of the methods can prop- 
erly describe the variations. Only LWR, which re- 
quires many samples comes close to the PARAFAC 
model. 

7. Conclusion 

We have shown that multiway methods have po- 
tential in very different types of problems. Applying 
the right model to the data can sometimes give re- 
suits which might otherwise not have been thought to 
be obtainable, c.f., the traditional model relating ab- 
sorbance kinetics to PPO activity. Two examples of 
the application of N-PLS and one of PARAFAC have 
been shown and compared to other techniques. Not 
only are the methods competitive with respect to the 
primary goal, but all of them give quantitative and 
qualitative information on the mode l s /da ta  that 
would not otherwise have been obtained. For the N- 
PLS model relating kinetic U V / V I S  spectra to PPO 
activity a good model was obtained with a reason- 
ably low prediction error, but furthermore with load- 
ing and score vectors giving important information on 
how the spectra relate to the activity. The calibration 
of HPLC results was not impressing but considering 
the many variation induced in the few samples this is 
not surprising. The important thing is, that we now 
have reason to believe that a better calibration model 
could be build, from an appropriate data set. The 
PARAFAC model of the PPO activity is a good ex- 
ample of an alternative to traditional ANOVA. It 
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gives a very interpretable and robust model of the 
data; a model that is quite different from the ANOVA 
model. 
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