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Data from a severely reduced experimental design are investigated in order to obtain detailed
information on important factors affecting the changes in quality of meat during storage under
different conditions. It is possible to model the response, meat color, using traditional ANOVA
(analysis of variance) techniques, but the exploratory and explanatory value of this model is
somewhat restricted owing to the number of factors and the fact that several interactions exist. For
those reasons, it is not possible to visualize the model in a simple way and therefore not possible to
have a clear overview of the total variation in the data. Using a recently suggested alternative to
traditional analysis of variance, GEMANOVA (generalized multiplicative ANOVA), it is possible to
analyze the data effectively and obtain a more interpretable solution that enables a simple overview
of the whole sampling domain. Whereas traditional analysis of variance typically seeks a model with
main effects and as few and simple interactions and cross-products as possible, the GEMANOVA
model seeks to describe the data primarily by means of higher-order interactions, albeit in a
straightforward way. The two approaches are thus complementary. It is shown that the
GEMANOVA model is simple to interpret, primarily because the GEMANOVA structure is in
agreement with the nature of the data. It is shown that the GEMANOVA model used is
mathematically unique, which leads to attractive simplified ways of interpreting the model. The
results presented are the first published results where the GEMANOVA model is not simply
equivalent to an ordinary PARAFAC model, thus taking full advantage of the additional structural
power of GEMANOVA. A new algorithm for fitting the GEMANOVA model is developed and is

available from the authors. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modified atmosphere packaging (MAP) is widely used to
extend the shelf-life of fresh meat. Gas flushing is used to
replace the air surrounding the meat with an atmosphere
containing elevated levels of oxygen and carbon dioxide.
Normally an atmosphere containing 20%-30% CO, and 70%-
80% O is used for retail packaging of fresh beef. An elevated
level of carbon dioxide is used to retard microbial growth
and an elevated level of oxygen is used to prolong color
stability [1]. Color is the most important factor for consumer
preferences when purchasing fresh meat. The attractive red
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meat color stems from the oxygenated derivative (oxymyo-
globin) of the meat pigment. A high oxygen level stabilizes
the color, but inevitably the pigment will oxidize to
metmyoglobin, resulting in an undesirable brown meat
color. A high oxygen level is also expected to enhance other
deteriorative processes in meat, such as lipid oxidation [2,3].

Color stability of fresh meat is influenced by a large
number of factors, some of a biochemical nature, some due to
handling during the slaughter process. Storage and pack-
aging conditions can also influence the color shelf-life of
meat [4,5]. This study focuses on describing to what extent
different storage and packaging conditions affect the color
stability of fresh beef. Different levels of storage time,
temperature, oxygen content in the package headspace and
extent of light exposure were investigated. Development of
mathematical models describing color changes during
storage can help identify the important factors and find
critical levels for these factors. Further, such models can
form the basis for designing an optimal modified atmos-

Copyright © 2002 John Wiley & Sons, Ltd.



phere composition, also affecting other important quality-
deteriorative processes in meat.

Large variations in color stability between meat of
different origin can influence the empirical mathematical
models. Different muscle types show large variability owing
to different myoglobin content and different metabolic type
of activity. Meat from animals of different age, breed,
feeding, etc. will also result in differences in color stability
[5].

The data analyzed here come from an experiment using
longissimus dorsi muscles from three different animals.
Supplementary studies have been performed investigating
meat from seven different animals and two different muscle
types: longissimus dorsi (high color stability) and semi-
membranosus (intermediate color stability). Comparison of
GEMANOVA models for these new data sets will be treated
in a future publication.

1.1. Chemometrics

A large body of tools is available for analyzing experimen-
tally designed data. Usually, analysis-of-variance tools are
used [6-10]. In these tools, each continuous factor is treated
as one independent variable. For example, an experiment
may include a factor temperature with values 10, 20 and 30°C.
Qualitative variables are typically split into a number of
binary variables; for example, substrate added with levels 1
and 0 corresponding to substrate being added or not. If the
qualitative variable has more than two levels, it is typically
artificially divided into more variables; for example, the
three variables transportation by car with levels 0 and 1,
transportation by bicycle with levels 0 and 1 and transportation
by train with levels 0 and 1. These artificial variables are then
related so that if one is at level 1, the remaining ones have to
be at level 0.

Thus both quantitative and qualitative variables are
treated as pseudo-quantitative variables, which makes
straightforward modeling of the correlation between the
response(s) and the designed factors possible. Assume that
there are [ experiments and | variables. Further assume, for
simplicity, that there is only one response whose values are
held in an I-vector y with the ith element holding the
response for the ith experiment. Let the I x | matrix X hold
the factors; e.g. the first column in X, x;, holds the I
temperature readings, the second column the substrate added
variable, the third column the transportation by car variable,
etc. Then the problem of assessing the effect of each variable
on the response can be expressed as a standard multiple
linear regression problem

y=Xb+t (1)

where t is an I-vector of residuals holding the part of the
response y that cannot be explained by the experimental
design and b is a J-vector of regression coefficients (b;) that
provides information on the effects. Usually both X and y are
centered and possibly scaled prior to regression in order to
level out differences in offset and magnitude. The relative
sizes of the regression coefficients (with their associated
uncertainties) provide the relative importance of each
variable.

The above analysis-of-variance model is additive in each
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independent variable. This means that the effect of each
factor is independent of the variation in other factors.
Raising the level of (possibly centered and scaled) variable
1 from level 1 to 5 implies an increase in the response by 5b;.
In some situations, such a simple additive model of main
effects is not realistic because the factors do not affect the
response independently. A common, natural and well-
working remedy to this is to allow interactions between the
factors. For example, an interaction can be made between
temperature and substrate added by adding a column in X
which is simply the elementwise product of temperature and
substrate added. With this approach, simple interactions such
as two-way interactions can be handled efficiently. More
complex, higher-order interactions are seldom used because
they are difficult to interpret. The present data represent,
however, a situation in which it is reasonable to assume that
most of the variation in the data is caused by such higher-
order interactions. Hence the data pose a challenge to the
traditional analysis approach. It will be shown that the
GEMANOVA approach recently suggested [11,12] provides
a more natural basis for complicated data with higher-order
interactions. The GEMANOVA model leads to models from
which the underlying characteristics of the problem can be
easily understood and visualized.

2. MATERIALS AND METHODS
2.1. Meat samples

Longissimus dorsi muscles of fresh beef were used. The
muscles were matured in vacuum bags for 2 weeks at 2°C.
Subsequently the muscles were trimmed free of external fat
and cut into 1.5 cm thick steaks. Meat from three different
animals was used and left and right parts from each animal
were treated independently, giving a total of six muscles.
Meat from the different animals was handled in the same
way after slaughter, e.g. maturing time, transportation
conditions, etc., and all animals passed the normal quality
control at the slaughterhouse. The animals may, however, be
of different age, breed etc.

2.2. Storage and packaging conditions

Storage time, temperature, time of light exposure and
oxygen content in the package headspace (balanced with
carbon dioxide) were varied. The meat samples were placed
in polystyrene trays and flow-packed using a laminated
packaging material with an oxygen transmission rate of
40cm® m2 day ! atm . The samples were kept in
refrigerated storage and exposed to light (Philips Fluotone
TLD 18 W/830 yielding 1000 lux at the packaging surface)
for 0%, 50% or 100% of the storage time. The temperature was
monitored continuously during storage at several places in
the refrigerator using data-loggers (TINY Talk II-Temp
Loggers, RS Radio Parts, Copenhagen, Denmark). The meat
samples had a volume of 80 ml and the headspace in the
packs was 750 ml.

2.3. Instrumental analysis

On days 0, 3, 7, 8 and 10, color was measured on the meat
surface, immediately after opening the package, using a
Minolta Colorimeter CR-300 (Minolta, Osaka, Japan)
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Table I. Levels of factors in designed experiments for which a-
color response is measured

Variable Levels

Storage time (days) 0,3,7,8,10
Temperature (°C) 2,58

O, content in headspace (%) 40, 60, 80
Exposure time to light (%) 0, 50, 100
Muscle no. 1,2,3,4,5 6
Table Il. Other characteristics of design

Variable

No. of samples in full design 810
No. of samples in reduced design 324
Missing elements in array (%) 60

measuring the L, a, b co-ordinates (CIELAB color system).
Red color was expressed as the a-value, and only this
response value was used in the analysis. A high a-value
represents a red color of the meat sample. The measurement
was repeated on five randomly selected locations for each
sample and the average used.

2.4. Experimental errors

The experimental error in the instrumental analysis is an
important measure which can be used to evaluate the results
from the model. The measurement error (incorporating both
instrumental and sampling error) was determined by
measuring at different locations on the same muscle five
times. This yielded a pooled standard deviation of 2.2 and, as
the data used are averaged over the replicates, the standard
deviation of this average is approximately 2.2/ /5= 1.0. This
is thus the error approximately expected to be the lowest
attainable estimated error in the ANOVA model.

2.5. Experimental design (Tables I and II)

The full factorial design constitutes 5 x 3 x 3 x 3 x 6 =810
(storage x temperature x oxygen X light x muscle) combi-
nations all to be measured in five replicates. Owing to the
limited number of samples that can be taken from an
individual muscle [2], a reduced design was chosen using a
modified quadratic D-optimal design with 324 settings (40%
of the 810 initial combinations). The experiment was
performed six times (during 8 weeks) using meat from three
different animals, two samples from each (left- and right-
side muscle of each animal). The measurements were
randomized over muscles. The actual measurements on
different days are not performed on the same physical piece
of meat but rather on samples from the same muscle. On day
0 there is no effect of storage and packaging conditions yet,
and therefore all variable combinations are assigned the
same color a-value calculated as the mean of five analyzed
replicates on two samples from each of the six muscles.

2.6. Chemometrics
Models were developed using MATLAB® ver. 53 for
Windows and the N-way Toolbox [13]. The experiments
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were designed using the software MODDE® (Umetrics AB,
1999) and initially analyzed in data analytical software The
Unscrambler (Camo AS, 1999). The algorithm for fitting the
GEMANOVA model has been described earlier, but the
current data turned out to be difficult to handle, primarily
owing to the huge amount of missing data. Therefore a new
algorithm has been developed which is described in the
Appendix. The algorithm is available from http://www.
models.kvl.dk.

3. THEORY
3.1. Background

A new model for analyzing data from experimental designs
has been proposed by Bro [11,12,14,15]. A similar idea was
also presented by van Eeuwijk [16,17] for three-way data
specifically. That model, however, is based on an extension
of the singular value decomposition and consequently
inherits the rotational ambiguity of this. This is not, in
general, the case for the model suggested by Bro. This model
is called GEMANOVA (generalized multiplicative analysis
of variance) and is suited for analysis of data from factorial
or fractional factorial designs in which the main variation is
caused by higher-order interactions. The theory behind
GEMANOVA can be found in the original references, but
essential parts are explained in the following.

Consider an experimental design with three different
factors varying on I, | and K levels respectively and one
response. Let the response for the first factor at level i, the
second factor at level j and the third factor at level k be
denoted y;j. It then follows that the responses obtained from
a full factorial design can be held in a three-way array Y
(I x J x K) with elements yj.

Although traditional analysis-of-variance models can be
made to fit data from experimental designs well, the use of
several interactions can make the interpretation difficult and
thus the usefulness restricted. Conceptually, traditional
analysis-of-variance models start from main effects and seek
to keep the number of interactions as low as possible and of
the lowest possible order. This is motivated by the
interpretational complications arising from such interac-
tions. As understanding is often one of the main aspects of
analysis of variance, interactions are generally not ‘hoped
for'. In GEMANOVA the approach is reversed. The
GEMANOVA model focuses on the interactions and on
making practical models for these.

A three-way interaction for the above data Y is usually
modeled as dj in traditional analysis of variance of
qualitative data, meaning that for any combination of the
first, second and third factors an individual effect is
estimated. This is problematic because the number of effects
is then the same as the number of responses. No reduction in
complexity is gained and thus no simple interpretation or
understanding can be made. However, it is known from
multivariate analysis that e.g. an ordinary two-way matrix
with typical elements d;; will seldom be full pseudo-rank.
Mostly, a well-fitting low-rank decomposition can be made
using e.g. principal component analysis. Thus, for a two-way
interaction, the structure can often be simplified consider-
ably using a bilinear decomposition.
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Fisher and MacKenzie [18] worked on the influence of
different manure treatments on different potato varieties.
They noted that even though a standard two-factor experi-
ment could be reasonably described by ordinary main effects
a; and b; plus random noise £;; i.e.

yij = a;i +bj + t; 2
i=1,...01 j=1,..]

the model did not shed much light on the underlying
phenomena causing the variations in the data. Instead, they
proposed a multiplicative model

y,] = a,»b]' + ' 3)
i=1,....I, j=1,...,]

Even though the model did not provide a significantly better

fit, the nature of the model was much more in line with the

nature and understanding of the data, and therefore more

interpretable and informative.

The usefulness of the model in Equation (3) as compared
to a model where the interaction is modeled in the ordinary
way as dj; is that the effects of the two factors are separated
and thus can be interpreted independently, much in the
same fashion that main effects are interpreted indepen-
dently. The difference, though, is that the joined effect is a
product rather than a sum of the individual effects. Thus the
multiplicative model of interactions is useful because it
logically separates the interactions into entities pertaining to
the individual factors.

As an intuitive simplified example of the usefulness of a
multiplicative model, consider the physical activity of rats as
a function of feed and water at critical levels. If the amount of
feed is increased to a higher level, the activity of the rats will
increase. However, if the level of water is low, the absolute
increase in activity will be small compared to the increase
observed when the amount of water is high. This is an
example of a response which can be meaningfully approxi-
mated as a multiplicative effect. The effect of water is
dependent on the level of feed and vice versa, but the relative
effect may be independent. Even if it is possible to fit a model
of such empirical data using only an independent main effect
of water and a main effect of feed, the multiplicative model is
preferred because it is more closely related to the nature of
the data. In practice, a combination of such multiplicative
terms and lower-order effects is usually beneficial, but the
example serves to show that traditional analysis of variance
conceptually starts from main effects, whereas sometimes it
is reasonable to start from the interactions and only add
lower-order effects to the extent that such effects are
necessary.

Several authors have described different analysis-of-
variance methods that include multiplicative terms for two-
factor experiments [19-22]. In these studies, modifications of
the traditional two-factor analysis-of-variance model are
shown where main effects and interactions are estimated
through the regular equations. Afterwards the interaction
term is decomposed by PCA. Several examples are given
where this approach gives more descriptive models.

Copyright © 2002 John Wiley & Sons, Ltd.
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3.2. GEMANOVA —the basics

Realizing that a two-way interaction is often appropriately
modeled by a low-rank bilinear decomposition, it is natural
to extend this idea also to higher-order interactions. Such
ideas have already been proposed in a simplified way where
lower-order interactions are ignored [23]. Consider a three-
factor experiment and a three-way interaction of the
response. The corresponding traditional analysis-of-variance
model reads

Yijk = dijc + tijk

. o B (4)
i=1,...,0, j=1,...], k=1,...K

where djj is the interaction term and ¢ the residual. There
may of course also be other effects such as main effects or
two-way interactions, but this is ignored here to keep the
exposition simple. Note, in relation to e.g. a global offset/
grand mean, that such a grand mean cannot be calculated
beforehand and subtracted in the GEMANOVA model. In
the case where a grand mean is needed, this is estimated and
treated similarly to other effects.

It seems useful to consider if the three-way interaction in
Equation (4) can be modeled by a low-rank trilinear
decomposition. Instead of Equation (4), the data can be
modeled, for the simplest situation, by a one-component
trilinear model as

Yi = aibjcr + ti

5
i=1,...0, j=1,...,], k=1,....K ®)

This model is actually much simpler than the non-decom-
posed three-way interaction model. Whereas the model d;j
consists of IJK parameters, the one-component model in
Equation (5) consists of only I+ ]+ K parameters. If the
model fits the data well, a substantial reduction in complex-
ity has been obtained and interpretation is simpler because
there are fewer parameters and because relative effects are
expressed separately for each factor.

The decomposition of the three-way array into one
trilinear three-way interaction term is the starting point for
three-factor GEMANOVA. If the data are higher-order, e.g. a
four-way array arising from a four-factor factorial design, a
four-way quadrilinear model is used (abjcid;). In a study of
enzymatic activity of polyphenol oxidase [12] a five-factor
experimental design was evaluated. For these particular data
it was found that the five-way array of responses of
enzymatic activity, ym, could be excellently modeled by a
five-way interaction term of the form abjcdse,,. Thus a simple
and interpretable model was obtained. However, it cannot in
general be expected that a response array can be modeled by
one simple interaction term. Therefore in GEMANOVA the
analysis proceeds by adding new terms to the model until a
satisfactory fitting model is obtained.

There are many possible ways to add effects to a model.
For the model in Equation (5) it can be the case that the
addition of a main effect for the first factor is feasible, thus
leading to a model

Yijk = aibjck + di + tij

. . _ (6)
i=1,....1, j=1,...,], k=1,...,K

It is also possible to add an overall offset, a two-way
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interaction or further develop the three-way interaction by
adding a new trilinear term:

Yix = aibjcr + diejf + tij 7)

i=1,....I, j=1,...,], k=1,...,K
In practice, terms are added in such a way that it leads to the
highest increase in fit (possibly corrected for the complexity
of the term and possibly evaluated by cross-validation or
similar methods). The search for additional effects is then
conducted by adding either a trilinear (three-way interac-
tion), bilinear (two-way interaction) or main effect or a global
offset to the current model. This is continued until additional
terms do not help in improving the model. In Equations (5)-
(7) the actual content of the different parameters, e.g. a;, will
change from model to model, but the notation is maintained
in all models for simplicity. When a new effect is added to a
model, the whole model as such has to be refitted in order to
obtain the least squares solution.

3.3. Technical aspects

Finding the useful effects has been presented here in a
stepwise approach. This sequential search for optimal
models cannot be guaranteed to lead to the globally optimal
solution because the effects are not independent. It is of
course also possible, although computationally demanding,
to search for an appropriate model by trying all possible
combinations of effects.

In assessing the significance of different postulated
models, it is possible to correct the fitted sum-squared errors
by the number of parameters in the model (subtracting one
for each independent scale). This provides approximate
mean squared errors, but as the validity of the approxima-
tion is uncertain, it is generally advised to defer this
approach and instead use e.g. cross-validation. That is, the
postulated model is fitted IJK times, each time leaving out
one element. As the elements/experiments are usually
independent, the fitted model and the left-out elements are
also independent. The left-out element can be predicted from
the fitted model parameters, and an independent estimate of
the residual is obtained. The residual sum of squares
obtained from cross-validated residuals requires no correc-
tion for degrees of freedom and can be used to evaluate
whether one postulated model performs better than another.

Fractional factorial designs can also be modeled by
GEMANOVA models. The response of a factorial design
with R factors on I levels can be described as an R-way array
with dimension I in each mode. If the number of levels
differs for the different factors, the appropriate dimensions
differ as well. The response of a fractional factorial design
with R factors on I levels can likewise be described as an R-
way array with dimension I in each mode. In this case,
however, some of the elements in this array will be missing.
Therefore a fractional design can be handled exactly as a
factorial design as long as the algorithm used to fit the model
can handle such missing elements. The algorithm proposed
in the Appendix does so.

In some cases, effects are sought which do not simply
correspond to a multilinear component with fixed loadings.
For example, it may be useful to have a traditional

Copyright © 2002 John Wiley & Sons, Ltd.

interaction effect of the type a; where the effect has two
indices rather than one index as in the GEMANOVA models
discussed thus far. Such effects can also be estimated but
have not been implemented in the GEMANOVA algorithm
offered here.

The algorithm used to fit the GEMANOVA model is based
on a PARAFAC alternating least squares algorithm. The
inclusion of lower-order interactions, however, makes the
estimation non-trivial compared to standard PARAFAC. In
GEMANOVA it is not possible to estimate different effects in
a model independently as it is in ordinary analysis of
variance. Many times in ordinary analysis of variance the
effects are constrained to be independent by construction.
These constraints are inconsequential for the fit of the model.
For the GEMANOVA model, however, applying such
constraints will either change the model or simply reduce
the fit. This is related to the fact that the PARAFAC model is
unique up to scaling and permutation [24-26]. Details of the
algorithm are given in the Appendix.

4. RESULTS FROM TRADITIONAL
ANALYSIS OF VARIANCE

A traditional analysis of variance was performed on the data.
The factors are storage time (x;), temperature (x;), oxygen
(xx), light (x;) and muscle (x,) which is qualitative. The
response color is held in yjj,,. The data were scaled and
centered and all cross-products and interactions added.
After removing insignificant variables, the following ANO-
VA model was obtained through cross-validated partial least
squares regression (two components):

Yijkim = W+ ax; + bxj + cxy + dxix; + exixy + tijkim
i=1,...,I, j=1,....J, k=1,...,K, 8)
I=1,....L, m=1,..M

where

e color at storage level i, temperature j, light level k, oxygen
level I, muscle m: Yijxim,

e overall offset: ,

e storage main effect: g,

e temperature main effect: b,

e light main effect: ¢,

e interaction between storage and temperature: d,

e interaction between storage and light: e,

o residuals: tjj,.

This model is fitted well and provides good cross-
validated errors as shown in Figure 1. The correlation as
well as the root mean squared error of cross-validation
(RMSECYV) is provided, where the RMSECV is defined as

I ] K L M

SN Wi — Fijem)

i=1j=1k=11=1m=1

RMSECV = T )

The summation is only performed over those elements in the
array for which the experiments have been performed.

It is evident from the effects shown in Figure 2 that an
increase in the level of any of the significant factors leads to a
decrease in color. This is in agreement with expectations, as
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Figure 1. Results of leave-one-out cross-validation using the
model in Equation (8) and data averaged over replicates (324
samples).

color is known to deteriorate with increasing time, tempera-
ture and light exposure [2,27].

It is also evident that storage time has the largest effect on
color in the given experimental domain and that light has a
relatively low effect. Oxygen is excluded from the model
because it does not have any significant effect. This is
somewhat surprising, since general practice is to maintain a
high level of oxygen (>70%) because lower levels are
assumed to lead to excessive degradation of quality/color.
Muscle does not have any significant effect either.

With three factors and two interactions, visualization of
the total experimental domain is difficult. Even though all
effects have the same sign and response surfaces can be
drawn, several of these have to be made for a fixed setting of
one factor when plotting the response surfaces for the two
remaining factors. In fact, the difficulty of visualizing and
communicating the results to a broader, less technical
audience initiated this search for a more accessible model
for these experimental data.

-2

-4

1 1
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Before continuing with the GEMANOVA results, the
results of some alternative traditional models will be briefly
discussed. The GEMANOVA model intrinsically treats all
factors as qualitative factors, yielding an effect for each level
of a factor. It is reasonable, therefore, to consider the outcome
of a traditional ANOVA model where all factors, not only
animal, are treated as qualitative. Such a model leads to
similar predictions (RMSECV =1.81) as those described
above but using more parameters. The same effects are
found except that the interaction between storage and light
exposure is not significant, but the model is much more
difficult to interpret, especially owing to the interaction
between storage and temperature, which requires 15 par-
ameters.

Another obvious model to consider is a model where the
logarithmic transform of the response is used instead of the
response itself. Such a model is also of similar quality
(RMSECV =1.79) and with similar interpretation as the
model discussed in detail above. Thus the logarithmic
transform does not provide any gain in interpretability
compared to the model of the non-transformed data. That
such seemingly different models provide similar quantita-
tive results again stresses that there are many routes to take
and that statistical significance of the model and/or its
effects is not necessarily the only aspect to consider. The
usefulness of the model is also related to how well it can be
interpreted and understood by the practitioner using the
results.

5. RESULTS FROM GEMANOVA
MODELING

5.1. Determining the appropriate model

Even though the original set of responses makes an eight-
(storage x temperature x oxygen X light
x animal x left-right muscle x replicate x colorL/a/b), the

way array

averaged data set used for analysis is a five-way array where
the animal and left-right muscle modes have been con-
catenated and only a-color is used. The a-color is thus a

1

Storage (a) Temperature (b)

|
Light (c)

!
Store*Temp (d)

Store*Light (e)

Figure 2. Significant effects in analysis-of-variance model of color. Effects are shown in
terms of scaled and centered factors and response.
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J. Chemometrics 2002; 16: 294-304



300 R. Bro and M. Jakobsen

Table lll. Results from leave-one-out cross-validation of different GEMANOVA models using data averaged over the five replicates (data
5x3x3x3x86)

Model No. of parameters RMSEC RMSECV P CV Type

abicrdien, 20 2.84 2.97 0.89 Multiplicative

abicidie,, + fi 23 2.55 2.73 0.92 Multiplicative + mainyygen
abicrdien, + fi 23 2.50 2.67 0.92 Multiplicative + mainygp
abicd, + ey, 20 1.60 1.75 0.97 Multiplicative + main,nimai
abicdie,, + f; 23 1.58 1.74 0.97 Multiplicative + mainemp
abicrdie, + fi 25 157 1.74 0.97 Multiplicative + maingorage
abicidien + fu 26 1.38 1.58 0.97 Multiplicative + main,nimal
abicidie, + figjhkr,sm 40 1.28 1.50 0.98 Multiplicative

function of storage time, temperature, oxygen, light and
muscle.

In establishing the GEMANOVA model, it is necessary to
determine which effects to include. This is done by first
evaluating different alternatives to a one-component five-
way PARAFAC model. From this, different alternative
effects are added, and in Table III the results from different
GEMANOVA models are listed. The average prediction
error is given in terms of the RMSECV performed as a leave-
one-out cross-validation where each of the 324 elements is
left out in turn. The root mean square error of calibration
(RMSEC) using fitted values and the correlation are also
given in the table.

It is seen that a simple one-component GEMANOVA
model yields an unsatisfactory RMSECV of 2.97, while the
five last models in the table all have acceptable RMSECV
values.

While the two last models have lower errors, the model
abjcid; + ey, is an interesting alternative. The RMSECYV error
of this model is similar to the traditional ANOVA model and
it has few parameters. In this model there is one multi-
plicative effect of storage, oxygen, temperature and light, but
not dependent on muscle, and there is second effect of
muscle only. This model is chosen for further investigation
because it turns out to provide a convenient and intuitive
understanding of the main variation in the data. Two
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Figure 3. Results of leave-one-out cross-validation using the
GEMANOVA model in Equation (10).
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alternative models have lower RMSECYV values, but for the
two-component model a so-called degeneracy is observed,
meaning that the parameters are not well defined [28,29]. In
that model the first and second effects of any of the modes
(e.g. a; and f; in Table III) are almost identical in shape. The
other alternative model is similar to the suggested one, but in
addition to the independent muscle effect there is a
contributing muscle effect in the multiplicative term.
Although this refinement leads to a better model in terms
of RMSECYV, the improvement is not assessed to warrant the
added complexity of the model.

Hence it is determined that an adequate and simple
GEMANOVA model for these data is given by

Yijkim = aibjckd) + em + ijkim
i=1,...1, j=1,...., k=1,...,K
I=1,...,L, m=1,...M (10)

where the notation is as before. In Figure 3 the predictions
obtained from cross-validation are shown. Note that this
model has a completely different structure from the ANOVA
model. Hence these two models, although of similar
predictive quality, have widely different structures. A choice
between them is thus mainly based on which one offers the
most understandable description of the variation in the data.

5.2. Interpretation of the GEMANOVA model
In order to interpret the model, the parameters are depicted
in Figure 4. Here the parameter 4, i =1,...,5, is the storage
effect, bj, j = 1,2,3, is the temperature effect, ¢, k= 1,2,3, is the
light effect and d, | =1,2,3, is the oxygen effect. The separate
muscle effects e, are shown in Figure 5. The interpretation of
the model is simple. The multiplicative term in Equation
(10), abjcid,, is zero, thus absent, at time zero owing to a;
being zero. Thus the initial level is given specifically by the
separate muscle effect. Every muscle has a starting color
level of approximately 32 as shown in Figure 5 and, as can be
seen, the estimated muscle effect is almost identical to the
initial color measured. For all other settings of the factors the
estimated response is simply the starting level plus the
product of the four effects read from ordinates in Figure 4.
Some important points easily deduced from the plot are as
follows.

e The effect of storage is zero at time zero. This is not a
constraint imposed in the model, but an empirical finding
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Figure 4. Parameters from multiplicative effect in GEMANOVA model. The estimated
response at specified levels of the four factors equals the product of the corresponding
effects plus the muscle term, which varies between 31 and 33.

from the estimated parameters. It confirms that the model
is sensible and that it provides a physically intuitive model
of the data.

e Any change in color is negative, hence a decrease from the
starting point, because the product of the four parameters
aibjcid; consists of one negative number (storage) and three
positive numbers.

e The changes are relative. For example, going from
temperature 2 to 8°C, it is seen that the loading b; increases
from 1.2 to 2.4 Therefore the temperature effect will be that

35

the overall decrease is twice as high at 8°C as it is at 2°C,
regardless of all other factors.

e The relative effect of temperature is linear.

e The effect of light is small, but there seems to be a small
increase (hence decrease in color) with amount of light.
The significance of this effect is treated below.

o The effect of oxygen is insignificant, thus supporting the
surprising conclusion from the traditional analysis of
variance that even a value as low as 40% oxygen does not
significantly alter the color development during storage.

Animal/sample effect

T — 1
SD- L
25| ,
sl .
15| '
101
)| :
o 2 3

Muscle

Figure 5. Muscle effects for each individual muscle. The reference color at time zero is
given first in each set of bars, then the effects estimated from the six individual models,
Equation (11), and finally the effects found in the model of all data, Equation (10). As can be

seen, all three coincide nicely.
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Figure 6. Parameters for light and oxygen effects from six
individual GEMANOVA models of data for each muscle.

It is important to verify whether the increasing effect of
light is real and whether the absence of the oxygen effect is
real. This can be verified e.g. by estimating the model from
independent data sets. The data were split into six
subgroups by taking as one data set all elements x;j,, for
m=1, etc. That is, the data from each muscle are modeled
separately. These six data sets are independent and from
Equation (10) the model of each with m fixed is seen to follow

Vi = aibjcrd) + e + tijn

(11)

where the subscript on e is now removed because in each
model there is only one muscle.

The difference now being that the model is estimated for
fixed m, a four-way model is fitted with one constant term e.
This is then done six times, one for each subset of data. The
resulting six estimates of the effects of oxygen and light are
shown in Figure 6. From the similarity of these independent
models it is observed that there is a slight but significant
(linear) increase from the light effect, while there is no
oxygen effect.

Looking at the muscle effects (Figure 5), it is seen that the
estimated parameters from the six individual models as well
as from the model of all data are estimates of the starting
color for the specific muscle. Thus the GEMANOVA model
is able to capture the small differences in starting color
between the different muscles. The reason why the GEMA-
NOVA model is able to uniquely identify this starting point
is that the model is in fact equal to a constrained two-
component PARAFAC model, which is unique under mild
conditions [26,30]. This is explained in detail in Reference
[31] and is a remarkable aspect of the GEMANOVA model
which is in stark contrast to traditional ANOVA models. In
the traditional ANOVA model the parameters are only
unique owing to ‘arbitrary’” mathematically imposed con-
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straints and it is not possible, for example, to estimate the
offset uniquely from such an ANOVA model. For example,
in a traditional ANOVA model a global offset would be
identical to the average color of all experiments (hence less
than the starting color). On hindsight, one can argue that the
initial color is more suitable as a general offset, but this
hindsight is not required in the GEMANOVA model. The
offset comes out uniquely from the estimated parameters.

5.3. Refined model

The uniqueness properties of GEMANOVA coupled with
the simple interpretation of Figure 5 as well as the constant
level of the oxygen effect suggest the following GEMANO-
VA model for the data. The starting level can simply be
subtracted from the data, and the effect of oxygen can be
removed by fixing it to one in the model estimation. The
absolute level of oxygen in Figure 4 of approximately two is
of no concern when removing the oxygen effect (effectively
by setting it to one). In a multiplicative model this difference
in level is automatically retained in other parts of the
multiplicative term when oxygen is left out. This leads to a
three-way model of the five-way data:

Yijim — My = aibjck + tijam
i=1....I, j=1,....J, k=1,....K,
I=1,...,L, m=1,....M (12)

where y,, is either the actual color level at time zero or the
estimated muscle effect. If y,, is estimated from the data, this
leads to a model close to the above model with an RMSECV
of 1.73, and ifp,, is set equal to the starting color, the
RMSECV is slightly higher. This again supports the
observation that oxygen has an insignificant effect.

The refined model shows that, apart from starting level,
which is sample-specific, the functional shape of the
decrease as a function of the storage time, temperature and
light is a simple one-component PARAFAC model abjc;. This
multiplicative part holds for all samples, whereas the
starting level is specific. It would not have been possible to
deduce these observations directly from the analysis of
variance with traditional tools. It is the specific uniqueness of
the GEMANOVA model that enables the finding that the
muscle effect is simply the estimated color at time zero.

6. CONCLUSION

With the use of the GEMANOVA model, interesting new
and simple results have emerged in the analysis of storage of
beef. Through the appropriateness and uniqueness of the
GEMANOVA model, an intuitive and sensible model is
obtained. The refined model of Equation (12) for color
changes in fresh beef is easy to interpret. E.g.

e The model emphasizes the importance of keeping a low
storage temperature.

e Time of exposure to light has only a minor effect.

o There is no effect of oxygen concentration in the applied
interval from 40% to 80%.

Although the last of these is somewhat surprising, as the
oxygen concentration normally used is 70%-80%, it is in

J. Chemometrics 2002; 16: 294-304



agreement with the results of Jakobsen and Bertelsen [2],
who found a stable interval for color stability between 55%
and 80% oxygen. Reducing the oxygen level opens up the
possibility of using more carbon dioxide or nitrogen and
thereby decreasing other deteriorative reactions in meat, e.g.
lipid oxidation.
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APPENDIX. IMPROVED GEMANOVA
ALGORITHM

There are many ways to implement an algorithm for fitting
the GEMANOVA model. Owing to the complexity of the
problems in this paper, where there are 60% missing data,
special care is needed in order to avoid local minima
solutions. Hence, rather than the simple algorithms used
earlier, a new algorithm was developed which is based on
gradually approaching the true solution by means of simpler
problems that are less susceptible to numerical problems.
The algorithm will be explained in general terms first and
then the important steps are explained in detail.

The basic rationale in the algorithm is that the GEMANO-
VA model can be viewed as a constrained PARAFAC model.
For example, for a three-way data set, one multiplicative
GEMANOVA effect equals one PARAFAC component,
abjcr. If a GEMANOVA effect is sought of the type aicy, then
this corresponds to an ordinary PARAFAC component a;bjci
where the parameters b; j=1,...,]) are all constrained to be
one. Thus GEMANOVA can be fitted by a PARAFAC model
with certain parameters constrained to be one.

Algorithm GEMANOVA for N-way array of
responses

1. Choose the number of effects, R, and the modes whose
parameters are to be fixed to one for each effect. These
constraints are defined by a binary matrix G (N x R). An
element g,, is one when the rth effect is constant in
mode #.

2. Fit an ordinary R-component PARAFAC model four
times starting from different random starting points.
Pick the best-fitting of these four models and let its
parameters be the starting point for the next step.

3. Fit an R-component PARAFAC model where the fixed
or constant effects are gradually forced towards one.

4. Fit an R-component PARAFAC model where the
constraints of parameters being one are imposed
exactly.

As can be seen, the algorithm is relatively complicated,
involving several steps of fitting models that are gradually
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approaching the final model. This has, however, proven to
be a fruitful approach for difficult problems.

In step 3 the gradual enforcement of the constraints is
implemented in the following way. A weight w defines the
degree to which the constraints are imposed. The higher the
value, the stronger the constraint is imposed. Six models are
fitted ranging from not imposing the constraints at all to
almost imposing the constraints exactly. The value of w
ranges equidistantly in six steps from 0 to SSY/300, where
SSY is the sum of squares of elements in the response array.
Within the algorithm the following special precautions are
taken compared to ordinary alternating least squares
implementations of PARAFAC [14,24]. Before updating the
parameters in a given alternating least squares cycle, all
component vectors for a given effect (except fixed ones) are
scaled such that they have equal norm. Otherwise, the
gradual imposing of constraints lead to ill-defined problems.

The parameters in a given mode are estimated iteratively
and ‘effectwise’, corresponding to estimating one of the
columns in a PARAFAC component matrix at a time. This is
done by subtracting the sum of all other current estimated
effects from the response array and using the residual. Thus,
for updating the gth effect, the residual e;; (adding more
subscripts for higher orders) is defined as

R
eie = Vit — Y_ AirbjrCir
178 (13)

i=1,....,1, j=1,...,], k=1,...,K
The conditional problem is then to find the solution to

eijk = aighjgCig + tijk

. ‘ (14)
i=1,...01 j=1,..7] k=1,...K

with t;; being variation not explained by the interim model.
Estimating the parameters one mode at a time, conditional
on the remaining estimates, is a simple least squares problem
where each parameter is independent of all others [11,31].
For example, estimating the parameters g; (i =1,...,I) can be
based on the least squares problem

E=qal +T (15)

where Eis an JK x I matrix holding the elements e;; properly
arranged, T is the corresponding matrix of unexplained
variation, q is a JK-vector holding the product by, as its
elements and a is an I-vector holding the sought parameters
a;. As can be seen, the optimal estimate for each a; is
independent of the remaining elements of a (see Lemma 1 in
Reference [31]).

Updating the parameters one mode at a time provides an
improved update for the gth effect. If the parameters are not
fixed, an ordinary least squares regression is performed
based directly on Equation (15), and if there are missing
elements in the corresponding column of E, these can simply
be skipped in the equations because of the independence
between the elements in a. If, on the other hand, the
parameters in e.g. a are to be fixed to one, a penalty
depending on w is added for deviating from this value. An
R-vector of ws is appended to E and an element w is
appended to q. This part of the underdetermined system
hence requires wa; = w, hence that a; equals one. Owing to the
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variance in E and q, this will not force a to be exactly one, but
depending on the size of w the constraint is imposed to a

certain degree.

In step 4 the final solution of step 3 is used for an algorithm
imposing the constraints exactly. This algorithm is simple. It
is an unconstrained PARAFAC-ALS algorithm implemented
as indicated above. However, parameters fixed to one are
initially set to one and simply not updated during the
iterations. This will lead to a convergent solution of the
problem.
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