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A new diagnostic called the core consistency diagnostic (CORCONDIA) is suggested for determining
the proper number of components for multiway models. It applies especially to the parallel factor
analysis (PARAFAC) model, but also to other models that can be considered as restricted Tucker3
models. It is based on scrutinizing the ‘appropriateness’ of the structural model based on the data
and the estimated parameters of gradually augmented models. A PARAFAC model (employing
dimension-wise combinations of components for all modes) is called appropriate if adding other
combinations of the same components does not improve the fit considerably. It is proposed to choose
the largest model that is still sufficiently appropriate. Using examples from a range of different types
of data, it is shown that the core consistency diagnostic is an effective tool for determining the
appropriate number of components in e.g. PARAFAC models. However, it is also shown, using
simulated data, that the theoretical understanding of CORCONDIA is not yet complete. Copyright ©

2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The parallel factor analysis (PARAFAC) model [1-4] is
gaining widespread use e.g. in the field of chemometrics,
especially owing to its highly attractive uniqueness property.
In certain applications of curve resolution [5,6] and second-
order calibration [7,8], this uniqueness of the PARAFAC
model is essential for solving the problems. A major practical
obstacle in the use of the PARAFAC model is how to deter-
mine the appropriate number of components. Fitting a single
model can be time-consuming, especially because refitting
from different starting points is usually essential for assuring
convergence to the global minimum. The use of resampling
techniques such as cross-validation is often either unfeasible
or unattractive because of the heavy computations involved
and owing to the non-sequential fitting of the PARAFAC
model. Therefore a diagnostic based on single analyses for all
relevant dimensionalities seems to be called for. Simply
comparing fit values (scree-like plots) and searching for a
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point where the increase becomes too small is often not easy,
because the increases typically tend to decrease gradually,
without a clear jump. In the present paper a diagnostic is
suggested that is also based on single analyses but, in
contrast to fit values, usually gives clear differences for
different models.

First the relation between the PARAFAC model and the
Tucker3 model will be described. By expressing the
PARAFAC model as a special case of the Tucker3 model, it
will be shown how to use a certain Tucker3 core for assessing
the appropriateness of a PARAFAC model using the core
consistency diagnostic (CORCONDIA). This diagnostic was
originally presented in a less developed form by Bro [9] and
implemented in the N-way Toolbox for Matlab [10]. It has
subsequently been used in several research papers [11-13].
However, as of yet, there has been no formal scientific
description of the method and its merits. This paper formally
introduces the diagnostic and evaluates how it performs in
different settings.

Only three-way models will be considered here, but the
method extends straightforwardly to higher-order models as
well. Recommendations will be given for how to use and
interpret CORCONDIA and also for handling some special
cases. Finally it will be shown, using simulated data and a
large body of real data sets, that CORCONDIA can indeed be
an effective additional tool for judging model complexity.

Copyright © 2003 John Wiley & Sons, Ltd.



2. THEORY

2.1. Background
Consider a three-way F-component PARAFAC model. The
structural model can be stated as

X=A(C®B) +E (1)

The matrix X is an Ix]x K data array X matricized
(rearranged) to an I x JK matrix, the first | columns being
the first horizontal slab of X, etc. The matrices A (I x F), B
(J x F) and C (K x F) hold the parameters of the model, and E
(I x JK) holds the residual variation not explained by the
model. The operator © is the so-called Khatri-Rao product
[14], which is equivalent to a column-wise Kronecker
product [15]. The PARAFAC model may equivalently be
stated in the form of a restricted Tucker3 model [8,9,16,17] as

X = ATP(C @ B)" (2)

where the core array T) is a binary array with zeros in all
places except for the superdiagonal, which contains only
ones; that is, tzr=1 for d=e=f, else tyr=0. The two-way
matrix TP is the F x FF matricized three-way core. It is
assumed that the components are scaled such that every
loading vector within a component has the same sum of
squares. Thus it holds for the columns that ||agd| = [|bgd| = ||c/|
for every f=1,...,F. In practice, this reparametrization of
the model may be built into the algorithm performing
CORCONDIA and thus does not have to be considered by
the practitioner.

Assume that a PARAFAC model has been fitted. The
model is given by the parameter matrices A, B and C and the
core array T. An appropriate PARAFAC model is a model
where the components primarily reflect (low-rank) trilinear
variation in the data. We will define what this means more
explicitly below. Note that even though the model is
appropriate it may not be the preferred model. Other
alternative structural models or PARAFAC models using
other preprocessing may provide better representations of
the data. In this paper the aim is to develop a tool for finding
the most appropriate complexity of a PARAFAC model, not
paying attention to whether the PARAFAC model as such is
the best structural model. Additionally, several PARAFAC
models with different numbers of components may be
appropriate and, in fact, this is mostly the case. The most
reasonable model, though, is the one that comes last in the
sequence of models (starting from the one-component
model) and that is still appropriate. This follows naturally,
because if two models with different numbers of compo-
nents are both appropriate, the one with fewer components
fails to describe some of the low-rank trilinear variation.
Having a tool for determining appropriateness is therefore
the only thing needed for determining the necessary number
of components, as the appropriate model with the highest
number of components must be the sought model.

A PARAFAC model is called appropriate if the component
matrices defined by the model only span variation in the
data that is component-wise trilinear. In other words, a
PARAFAC model is considered appropriate if adding
interactions between the components from the different
modes does not improve the PARAFAC model. If adding
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interactions will improve the fit relatively much, this may be
caused either by the fact that the components used are
unsystematic (because unsystematic components will con-
tribute more or less equally in all combinations in which they
are used, and not only in the combination implied in the
PARAFAC model) or that the data should actually be
modelled by a Tucker3 model rather than PARAFAC. In
both cases the PARAFAC solution is indeed ‘inappropriate’.
The term “degree of appropriateness” will be quantitatively
defined after first introducing an essential part of the
assessment of appropriateness, namely the calculation and
properties of a Tucker3 core for given PARAFAC component
matrices.

Let the loading matrices A, B and C contain the PARAFAC
components for the three different modes. To see if these
components alone describe the data almost as well as does
the model involving interactions of these components (as
modelled in Tucker3), we fit the full Tucker3 model to the
data, but using the components found by PARAFAC, by
minimizing

o(G) = HX—AG(C@B)THi (3)

over G (which is the matricized version of the F x F x F core
array G). This idea also underlies the so-called PFCORE
procedure [18], but PFCORE is used mainly to understand
why a PARAFAC model does not fit as well as expected.
Here the core array G that minimizes ¢(G) is used to study
quantitatively fo what extent interactions play a role in
describing the data. The optimal G minimizing ¢(G) can be
obtained upon writing Equation (3) as

7(G) = |[vecX — (C ® B ® A)vecG|[: (4)

which comes down to a straightforward regression problem.
Thus the optimal G can be determined as

vecG = (C® B ® A) vecX (5)

where the superscript ‘+’ indicates a pseudoinverse. To
understand CORCONDIA, the following simple lemma is of
importance.

Lemma

For a perfect-fitting PARAFAC model the Tucker3 core G
based on the PARAFAC loading matrices will be identical to
the superdiagonal array of ones, I, if the loading matrices
have full column rank.

Proof
Let the PARAFAC model
X=A(CoOB) =AT(C®B)" (6)

be a perfect-fitting PARAFAC model of X. Let G be the least
squares Tucker3 core given the loading matrices A, B and C;
that is, the minimum of Equation (4). As the intrinsic core T
provides a perfect-fitting model, we have

a(T) = ||[veeX — (C®B® A)VecTle:: 0 (7)

which clearly gives the absolute minimum of Equation (4).
As the problem of minimizing Equation (4) has a unique
solution (provided that A, B and C have full column rank, as
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is assumed here but which will be relaxed later), the Tucker3
core G will be identical to the superdiagonal binary array T if
the PARAFAC model fits perfectly. QED

The situation where the loading matrices do not have full
column rank is important e.g. in second-order calibration.
This situation, however, is covered by means of restating the
model as a kind of restricted Tucker3 model as will be shown
in Appendix L.

2.2 The core consistency diagnostic

The Tucker3 core array can be considered as the regression
of the three-way array onto the subspaces defined by the
component matrices or, alternatively, the co-ordinates of the
part of the three-way array within these subspaces. The
Tucker3 core is thus per definition the optimal representation of the
data array with respect to the subspaces defined by the components,
whereas the PARAFAC model specifically disregards any
variation associated with off-superdiagonal core elements. If
the data, for example, consist of purely random variation, the
regression onto any subspace will provide a core array with
regression coefficients/elements all of similar magnitude.
For very collinear component matrices the regression
coefficients will be correlated but nevertheless span varia-
tion of similar size, because all directions contain variation of
similar size. Regression coefficients of an array holding
systematic low-rank trilinear variation, on the other hand,
will be large only for the superdiagonal core elements of the
Tucker3 core array if the loading matrices reflect this trilinear
variation. Stating that a specific PARAFAC model is valid
implies that the dimension-wise trilinear combinations of
components are the only entities needed for describing the
data and that interactions between the components do not
contribute considerably. Then an unconstrained Tucker3
core array must be mainly superdiagonal.

The principle in CORCONDIA is to assess the degree of
superdiagonality or, in fact, the similarity between the
implicitly imposed superdiagonal array T of ones and the
least squares-fitted G for a series of models with a gradually
increasing number of components, starting from the one-
component model. The last model in this series for which the
Tucker3 core array is still similar to T will be the adequate
number of components to use provided that the data can be
modelled by PARAFAC at all.

A simple way to assess if G and T are similar is to monitor
the distribution of superdiagonal and off-superdiagonal
elements of G. If the superdiagonal elements are all close to
the corresponding elements of T and the off-superdiagonal
elements are close to zero, the model is appropriate. If, on the
other hand, this is not the case, then either too many
components have been extracted, the model is mis-specified
or gross outliers and/or noise disturb the model. One may
quantify the similarity between G and T as

core consistency = 100 1 —

i.e. the percentage of the alikeness expressed by one minus
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the sum of squares of the elements of G — T divided by the
sum of squares of the elements of T, which equals F. This is
called the core consistency as it reflects how well the Tucker3
core fits to the assumptions of the model.

It is important to realize that the principle behind
CORCONDIA is quite different from using residual-based
methods such as e.g. in the scree test. Residual methods are
almost entirely based on assessing the magnitude of the
residuals as compared with the magnitude of the variation
described by the (components of the) model. Thus no real
assessment of the appropriateness of the structural model is
investigated. CORCONDIA, on the other hand, does not
focus on the magnitude of the noise as such. CORCONDIA
utilizes the fact that a valid PARAFAC model only spans a
very limited part of the available space. An I x | x K array
can be described as a point in an IJK-dimensional space, and
an F-component PARAFAC model is situated within an F>-
dimensional subspace defined by the space spanned by
C®B®A. However, owing to the definition of the core array
being superdiagonal in PARAFAC, the model is actually
constrained or assumed to be within an F-dimensional
subspace only (corresponding to the superdiagonal part of
the core). Hence the PARAFAC model is a very constrained
model even within the subspaces of which it is defined. It is
this restriction that CORCONDIA specifically investigates
the appropriateness of, by using the fact that non-PARAFAC
structure will distribute more or less evenly across the entire
P-dimensional subspace.

The core consistency is always less than or equal to 100%
and may also be negative. A core consistency close to 100%
implies an appropriate model. The closeness to 100% is to be
understood relative to the changes compared with models
with fewer components. As a rule of thumb, a core
consistency above 90% can be interpreted as ‘very trilinear’,
whereas a core consistency in the neighbourhood of 50%
would mean a problematic model with signs of both trilinear
variation and variation which is not trilinear. A core
consistency close to zero or even negative implies an invalid
model, because the space covered by the component
matrices is then not primarily describing trilinear variation.
A negative core consistency implies a very inappropriate
model, as more variation is associated with the off-super-
diagonal core elements than with the superdiagonal core
elements. Many examples on the interpretation of
CORCONDIA will be given in the application part of the
paper.

For a one-component model the core consistency is always
100%, because there are no off-superdiagonal elements in a
1 x 1 x 1 Tucker3 core array. Thus from this point of view a
one-component PARAFAC model is always appropriate.

If a data set is modelled by PARAFAC models with an
increasing number of components, the core consistency will
typically decrease more or less monotonically and slowly
with the number of components, because the influence of
noise and other non-trilinear variation increases with
increasing number of components. Note, though, that it is
not intrinsic that the core consistency decreases monotoni-
cally, because there is no direct mathematical link between
estimating the component parameters and calculating the
Tucker3 core. Once the maximal number of appropriate
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components is exceeded, the core consistency will decrease
more dramatically, because some directions in the model
subspace will mainly be descriptive of noise or other
variation, leading to high off-superdiagonal core values.

The number of elements in the data must exceed the
number of elements in the Tucker3 core significantly, other-
wise the elements in the Tucker3 core can become unstable
owing to underdeterminacy. Thus, for very small arrays,
CORCONDIA may not provide useful results.

In Appendix I it is shown how CORCONDIA may be used
for assessing models other than PARAFAC as well as
PARAFAC models with rank-deficient loading matrices,
appearing e.g. in second-order calibration.

The core consistency test is quite powerful for determining
the number of components to use for real data. This will be
exemplified by analysing different PARAFAC models of
several different types of data from the literature. After
having shown results from the use of CORCONDIA on real
data, several studies on simulated data will be used for
illustrating some details of the properties that enable the use
of CORCONDIA. It is also emphasized that CORCONDIA is
an ad hoc tool and its results should always be assessed in
combination with other diagnostics.

3. RESULTS ON REAL DATA SETS

Several real data sets are analysed in this section. The results
of prior analyses given in the existing literature are briefly
described for each data set. It is interesting to note that for
many of the data sets the conclusion from prior analyses
required extensive experience with three-way analysis as
well as deep insight into the problem and the use of time-
consuming resampling techniques. After presenting the
results of the original analyses, the resulting core consis-
tencies and fit values fitting PARAFAC with one to six
components are shown. The algorithm for fitting the
PARAFAC model is based on alternating least squares with
a line search [9,10]. For every number of components, five
randomly started runs of the algorithm are used and the
best-fitting is taken as the solution.

The following results are shown for each number of
components.

1. LOSS: the loss function value (the sum of squared
errors). In all tables the loss function value will be given
relative to the loss function value of the one-component
model.

2. RELFIT: the percentage of explained variation given as

I ] K 2
NI (i — mii)
RELFIT =100{ 1 - - ’; ~
PIDIPIET S
i=1j=1 k=1

3. CORCO: the core consistency — Equation (8).

A fair number of alternative methods could be envisioned
for shedding light on the appropriate number of compo-
nents. However, the loss and fit values are the ones most
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commonly used and are also based on single-fit analysis. It
therefore seems adequate to compare to these.

The real data vary from simple laboratory data with
almost perfect low-rank trilinear structure (amino acids)
over more complicated though probably quite trilinear data
(sugar) to noisy data with no a priori knowledge of reason-
able structure (bread).

3.1. Cars and stars data

Harshman and De Sarbo [19] have given a very thorough
analysis of the so-called cars and stars data. These data
consist of ratings of different brands of cars and different
potential commercial spokesmen (stars) for these cars. By
rating both cars and spokesmen on the same scale, it is hoped
to find a structure in which it is possible to select which
spokesmen would reinforce appropriately a given car. The
data are arranged in a 39 x 25 x 34 array. The first mode is
the set of 39 different adjectives used for assessing the cars
and stars. The second mode is the set of cars and stars and
the third mode is the 34 different persons evaluating the cars
and stars.

Harshman and De Sarbo argue that centring the data
across the first and second modes and scaling within the first
and third modes is feasible. In their analysis an uncon-
strained PARAFAC model of the preprocessed data brings
about three valid components, but there are certain indica-
tions that more components are present. An additional
analysis with orthogonality constraints on the rating mode
loadings gives additional valid components, and through
split-half analysis and visual interpretation it is argued that
at least four components are valid and that more but slightly
unstable components are also present. By reanalysing the
data, we will study if CORCONDIA supports the conclu-
sions of the paper.

From Table I it is easily seen that a three-component
PARAFAC model is appropriate in this case. A three-
component model has a core consistency of 94%, while a
four-component model has a core consistency of only 17%.
Thus it is easy to assess the correct number of components
even though the data are certainly not perfectly approxi-
mated by the low-rank trilinear model. It is difficult to
conclude anything similarly clear-cut from the fit-related
values. In fact, it requires substantive insight and thorough
analysis to reach the same conclusion by traditional analysis,
as evidenced in the original publication.

For the orthogonality-constrained model, Harshman and

Table I. Loss function values relative to the value for a one-
component model, fit values in percentages and core
consistencies versus the number of components in an
unconstrained PARAFAC model of the preprocessed cars and

stars data
Components LOSS RELFIT CORCO
1 1.000 11.73 100.0
2 0.915 19.21 100.0
3 0.843 25.50 93.5
4 0.797 29.62 16.6
5 0.760 32.95 -0.1
6 0.726 35.88 5.8
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Table Il. Loss function values relative to the value for a one-

component model, fit values in percentages and core

consistencies versus the number of components in a PARAFAC

model of the cars and stars data with the scale mode constrained
to have an orthogonal loading matrix

Components LOSS RELFIT CORCO
1 1.000 11.73 100.0
2 0.916 19.19 99.4
3 0.844 25.49 94.4
4 0.802 29.18 87.4
5 0.771 31.94 73.0
6 0.750 33.77 57.8

De Sarbo find that four components can now be fitted and
that there might even be more components in the data. This
somewhat subjective statement is, in fact, precisely stated in
the core consistency values in Table II. Notice that, instead of
a sharp change in the consistency, the values change
gradually from 100% to 58%. That is, there is no clear-cut
correct number of components, simply because models with
an increasing number of components only lose their
appropriateness gradually. Most likely, the reason is that
these data are not that well approximated by a low-rank
orthogonality-constrained trilinear model. In any case the
core consistency confirms the subjective notions experienced
through elaborate analysis in the original work [19], namely
that a four-component model is good but further compo-
nents are also relevant.

3.2. Chromatographic data

Fifteen samples of thick juice from different sugar factories
were introduced into a Sephadex G25 low-pressure chro-
matographic system using 0.02 M NH4Cl/NH; buffer (pH
9.00) as carrier. In this way the high-molecular-weight
reaction products between reducing sugars and amino
acids/phenols are separated from the low-molecular-weight
free amino acids and phenols. The high-molecular-weight
substances elute first, followed by the low-molecular-weight
species. Aromatic components are retarded the most. The
sample size was 300 ul and a flow rate of 0.4 ml min~* was
used. Twenty-eight discrete fractions of 1.2 ml were sampled
and measured spectrofluorometrically on a Perkin Elmer
LS50B spectrofluorometer. The column was a 20 cm long
glass cylinder with an inner radius of 10 mm packed with
Sephadex G25 fine gel. The water used was doubly ion
exchanged and millipore filtrated upon degassing. The
excitation-emission matrices were collected using a stan-
dard 10 mm by 10 mm quartz cuvette, scanning at 1500 nm
min " with 10 nm slit widths in both excitation and emission
monochromators (250-440 nm excitation, 10 nm intervals;
250-560 nm emission, 4 nm intervals).

The size of the four-way data set is 28 (fractions) x 20
(excitation) x 78 (emission) x 15 (samples). For each sample,
28 excitation-emission matrices are measured, one for each
fraction collected. Owing to retention time shifts, the elution
profiles shift from experiment to experiment, as discussed at
length in the original publication [20]. However, by rearran-
ging the data into a three-way structure where one mode is a
combined mode consisting of the original sample and

Copyright © 2003 John Wiley & Sons, Ltd.

Table lll. Loss function values, percentage of variation explained

and core consistency for a one- to a six-component three-way

PARAFAC model of the chromatographic data using non-
negativity constraints on all modes

Components LOSS RELFIT CORCO
1 1.000 73.65 100.0
2 0.280 92.63 100.0
3 0.087 97.70 86.2
4 0.037 99.02 93.5
5 0.023 99.41 21.6
6 0.016 99.57 12.2

elution modes, a unique PARAFAC model may be fitted
which is not affected by possible retention time shifts. On
fitting three-way PARAFAC models to these data, the results
in Table III are obtained. CORCONDIA suggests that four
components are appropriate. This may also perhaps be
deduced from the fit values, but with less confidence. In the
original publication [20] it is shown that four components are
indeed appropriate, as judged from split-half analysis [19]
and from analysis using slightly different models.

3.3. Sugar data

Sugar was sampled continuously every eighth hour during 3
months of operation of a sugar plant in Scandinavia to give a
total of 268 samples, of which three were discarded as
extreme outliers. The sugar was sampled directly from the
final unit operation (centrifuge) of the process. The sugar
was dissolved in unbuffered millipore-filtrated water (2.25 g
per 15 ml) and the solution was measured spectrofluorome-
trically in a 10 mm by 10 mm cuvette on a Perkin Elmer
LS50B spectrofluorometer. Raw non-smoothed data were
output from the fluorometer. For every sample the emission
spectra from 275 to 560 nm were measured in 0.5nm
intervals (571 wavelengths) at seven excitation wavelengths
(230, 240, 255, 290, 305, 325 and 340 nm). The array to be
modelled is thus 265 x 571 x 7. Bro [21] argues that four
components provide a good model. One of the components,
however, is found to be partly governed by random and
Rayleigh scatter-related variation in the low-wavelength
area. By means of split-half analysis it is concluded that a
non-negativity-constrained model with additional uni-
modality constraints on the emission mode loadings circum-
vents the problems and provides a valid four-component
model. The same model is fitted here.

In Table IV the results are given. In the original work,
elaborate and computationally expensive analyses were
necessary for establishing the right dimensionality. Indeed,
it is difficult to decide on the number of components from
the fit values. They point to three or perhaps four com-
ponents. The core consistency gives results that are in line
with the original conclusions [21], namely that four
components are valid though somewhat unstable.

3.4. Bread data

Five different breads were baked in duplicate to give a total
of 10 samples. Eight different judges assessed the breads
with respect to 11 different attributes in a fixed vocabulary
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Table IV. Loss function values, fit values in percentages and core

consistencies versus the number of components in a non-

negativity-constrained PARAFAC model of the sugar

fluorescence data. Additionally, unimodality constraints are
imposed in the emission model loadings

Components LOSS RELFIT CORCO
1 1.000 94.14 100.0
2 0.249 98.54 99.9
3 0.080 99.53 81.9
4 0.023 99.87 60.4
5 0.012 99.93 -0.5
6 0.009 99.95 35

profiling analysis [9]. The data are arranged in a three-way
array (10 breads x 11 attributes x 8 judges). Although a
PARAFAC model can be seen as a reasonable approximate
model incorporating saliencies for each assessor, there is no
fundamental theory stating the nature of the data, and hence
a significant model error is anticipated. The data are also
noisier than e.g. the spectral data treated above. The data are
centred across the sample mode before fitting the model.
This centring removes assessor-specific offsets on the
attribute scales. Using a PARAFAC model, the approxima-
tion is that the judges use the same latent variables, only in
different proportions. Bro [9] assessed that two components
were sufficient for providing an adequate description of the
data.

From the fit values in Table V it is almost impossible to
assess the right complexity of the model. It is easily seen
from the core consistency that the two-component model is
suitable. For a three-component model the picture changes.
This model is clearly inferior to the two-component model,
though it does represent some systematic trilinear variation.
Hence a two-component model seems appropriate, but a
weak third component might be present. In this case,
additional analysis would be required to verify if the third
component is valid. However, regardless of the result, the
core consistency suggests that the component is somewhat
unstable.

3.5. Tongue data

Harshman et al. [22] performed an interesting analysis of
data on tongue shapes with respect to a defined grid when
uttering different English vowels. The data were generated
from X-rays taken of five different speakers during their

Table V. Loss function values, fit values in percentages and core

consistencies versus the number of components in an

unconstrained PARAFAC model of the sensory profiling data of
bread samples centred across the sample mode

Components LOSS RELFIT CORCO
1 1.000 35.25 100.0
2 0.784 49.22 100.0
3 0.658 57.40 56.1
4 0.576 62.17 18
5 0.507 67.17 -0.9
6 0.456 70.47 0.5
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Table VI. Loss function values, fit values in percentages and core

consistencies versus the number of components in an

unconstrained PARAFAC model of the tongue data centred
across vowels

Components LOSS RELFIT CORCO
1 1.000 79.30 100.0
2 0.357 92.62 100.0
3 0.280 94.21 -11.2
4 0.214 95.58 244
5 0.165 96.58 0.0
6 0.116 97.61 2.6

pronunciation of the vowels. Details of the experimental
conditions may be found in the literature. The data array has
the size 5 (speakers) x 10 (vowels) x 13 (position in cm on
grid). The data were centred across vowels (R. A. Harshman
and M. E. Lundy, personal communication) and it was found
that two components were definitely present. A possible
third component could not be substantiated, partly because
apparently it was difficult to fit three components reliably.
This in itself is an indication that too many components are
extracted from the data.

As is readily seen from Table VI, the core consistency
verifies that two components are adequate. This may also be
deduced from the loss function value, but with considerably
less confidence.

3.6. Amino acids

This data set consists of five simple laboratory-made
samples [1]. Each sample contains different amounts of
tyrosine, tryptophan and phenylalanine dissolved in phos-
phate-buffered water. The samples were measured by
fluorescence (excitation 250-300 nm, emission 250-450 nm,
1 nm intervals) on a Perkin Elmer LS50B spectrofluorometer
with an excitation slit width of 2.5 nm, an emission slit width
of 10 nm and a scan speed of 1500 nm s~ '. The array to be
decomposed is hence 5 x 51 x 201. In Figure 1, measure-
ments of one of the samples are shown. Ideally these data
should be describable with three PARAFAC components [1].
This is so because each individual amino acid gives a rank-
one contribution to the data.

Non-negativity-constrained PARAFAC models were
fitted with one to six components. Scrutinizing Table VII, it
is seen that both fit-related measures (loss value and relative
fit) point to three components being adequate. This is in
accordance with the theory, as there are three flourescent
analytes in the samples. However, CORCONDIA points
clearly and surprisingly to four components being correct.

In Figures 2 and 3 the normalized loadings of a three- and
a four-component model respectively are shown. It is readily
seen that the three loadings of the three-component model
are also found in the four-component model. These three
loadings resemble the pure spectra of tryptophan, tyrosine
and phenylalanine. The fourth component does not resemble
any of the analytes and, in fact, does not seem to be reflecting
chemical information. The reason for the presence of this
fourth and quite distinct component must be that non-
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Figure 1. Fluorescence landscape of a sample containing only phenylalanine.

Table VII. Amino acid fluorescence data. Results from fitting one-
to six-component non-negativity-constrained PARAFAC models
to the amino acid data without missing elements

linearities or scatter effects cause some additional systematic
variation.

In fact, these data have been investigated at several times
and always using three-component PARAFAC models. Even
for second-order calibration the use of three components has

Components LOSS RELFIT CORCO given satisfactory results. This is so because the fourth
1 e 6616 1000 component has a very low variance. The variance of this
5 0540 88.17 997 fourth component is only 0.03%, as compared with 50.7%,
3 0.002 99.94 99.8 25.5% and 16.2% for the three ‘chemical’ components.
4 0.002 99.95 93.1 Therefore the bulk variation is not affected significantly by
2 8881 Zzgg 5;; the fourth component, and this is also the reason why
i . . traditional tools based on magnitude of residual variation
have difficulties in detecting this fourth component. It is also
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Figure 2. Loading vectors resulting from fitting a three-component PARAFAC model to the amino acid data.
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Figure 3. Loading vectors resulting from fitting a four-component PARAFAC model to the amino acid data.
The fourth suspicious component is shown with a thicker line.

not likely that such a component can be detected e.g. using
split-half analysis, because it is an idiosyncratic manifesta-
tion of non-trilinear variation in the five specific samples.
Using other samples could possibly lead to a different but
valid fourth component.

As an explanation for our finding, it is important to notice
in Figure 1 the Rayleigh scatter in the left part, which is not
multilinear in its nature [23]. It is situated around a diagonal
of corresponding emission and excitation wavelengths.
Additionally to Rayleigh scatter, the emission below the
excitation wavelength does not vary according to the
multilinear model, since the emission intensity is zero (up
to the noise) regardless of excitation. In fact, the emission
mode loading of the fourth ‘spurious’ component resembles
the Rayleigh scatter. To avoid such spurious results, the
lower part of the data (emission below excitation wave-
length) as well as the part corresponding to Rayleigh scatter
should not be used in fitting the model. Rather these
elements must be set to missing values in the three-way
array in order not to bias the model.

When all appropriate elements of the array have been set
to missing, the values in Table VIII are obtained. Clearly,
CORCONDIA now correctly identifies that there are three
trilinear components in the data.

In Table VIII it is seen that a six-component solution has a
quite high core consistency, but this is preceded by two very
low values. Hence the choice here clearly is to take three
components.

4. ON THE PROPERTIES OF CORCONDIA

Any diagnostic for assessing the number of components is
based on certain implicit or explicit assumptions. Hence any

Copyright © 2003 John Wiley & Sons, Ltd.

diagnostic can also be misleading in certain situations. It is
therefore of importance to have an idea about when
CORCONDIA can be expected to provide reliable results
and especially when it cannot. This is particularly important
in the case of a diagnostic such as CORCONDIA, which is an
ad hoc diagnostic and therefore should be used only as an
additional indication together with other diagnostics.

It is intuitively tempting to assume that the interesting
behaviour of CORCONDIA when too many components are
computed is due to there being no support for more
systematic variation in the data, hence that pure i.i.d. noise
is being fitted by the additional components. However, it is
interesting that simulations indicate that this is not what is
actually causing the behaviour. This is important because it
points to properties of trilinear analysis that have not yet
been alluded to in the literature and may be beneficial to
investigate in more detail in the future.

To illustrate the behaviour of CORCONDIA, some results
on ideal trilinear data with i.i.d. noise will first be described.
Data according to the PARAFAC model were made with

Table VIII. Amino acid fluorescence data. Results from fitting
one- to six-component PARAFAC models to the amino acid data
with missing values

Components LOSS RELFIT CORCO
1 1.000 68.57 100.0
2 0.293 90.81 99.9
3 0.001 99.96 99.4
4 0.001 99.98 28.2
5 0.001 99.99 13.7
6 0.000 99.99 62.8
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four components and an array of size 10 x8 x 9, and
increasing amounts of Gaussian i.i.d. noise (10 different
data sets for each of three noise cases) ranging between small
(10%), medium (25%) and large (50%) amounts of noise.
Similar results to those reported here were obtained also for
smaller noise levels. All component matrices were chosen to
be orthogonal, hence ATA=1, B'B=1 and C'C =1 Thirty
data sets were constructed and models were fitted by
picking the best-fitting of five models using an alternating
least squares algorithm with a convergence criterion of 10~°.
The results in terms of core consistency are shown in
Appendix II (Table X). From the CORCONDIA values the
correct dimensionality will always be chosen based on
choosing the number of components before the first abrupt
decrease from close to 100%. Note, though, that some models
with five components get very high core consistencies
(>90%) compared with what was seen in the analyses of
real data. Although the relative change leaves no doubt that
five components are too many, it is of concern that invalid
models get such high core consistencies. This is especially
interesting because this phenomenon has not yet been
observed for real data.

Several other simulation studies were carried out, includ-
ing studies where the component matrices were not
orthogonal, studies where the noise was not ii.d., but was
correlated and/or systematic (e.g. bilinear noise), and
studies where the component matrices had higher correla-
tions. The results from these studies were similar to the ones
presented here. These results strongly indicate that none of
the real data have characteristics close to the simulated data
and that results obtained on data simulated in this way
cannot be taken to be indicative for PARAFAC results on real
data.

A first indication of the reason for this can be obtained by
hypothesizing the following characteristics of real data.
Assume that a data set is of approximately trilinear
structure. The data consist of a trilinear part plus some
random, possibly i.i.d., noise. The crucial part, however, is
that, in addition to these two parts, the data also consist of
minor deviations—model error—from the trilinear model.
For example, if one component vector in a spectral data set
corresponds to the pure absorbance spectrum of a chemical
analyte, it is very reasonable to assume that the spectrum
may be subject to minor differences when observed in
different samples or on different occasions. Similar devia-
tions can be anticipated for almost any kind of data, whether
the data are bilinear, trilinear or have a different structure.
Another characteristic that may be anticipated for real data is
that the variations in the different underlying phenomena
will likely not be completely independent of each other. A
minor dependence between real phenomena can occur
owing to the properties of the system but also on a mathe-
matical level, because failing to describe one phenomenon
perfectly affects the residual variation, which again affects
the estimation of other components.

How can such phenomena be incorporated into simulation
studies? One simple way of adding errors approximating the
above is the following. Let the initial data follow the model

A(COB) ' +E (9)

Copyright © 2003 John Wiley & Sons, Ltd.

where E holds the actual random noise (e.g. i.i.d.). In order to
simulate the above-mentioned interactions and model
errors, let the total data set have the form

X=A(CoOB)' + AG(C®B)' +E (10)

where G (F x FF) is a core array with small random
numbers. This core array adds different random combina-
tions of the ‘true’ trilinear component vectors, which is a
reasonable way to simulate that minor model errors appear.
It is crucial to be aware that this by no means can be expected
to be a perfect model of model error. On the contrary, it is
well known that many types of model errors are not just
simple linear combinations of the true parameters. However,
the proposed model of model errors does capture a reason-
able aspect of model errors as described above, namely that
there are often dependences between the phenomena
observed.

It is almost explicit in the term model error that it cannot
be described well. The hope with the above data structure is
that the added variance can be a reasonable first approxima-
tion of how model errors influence model fitting. If results of
analysing data with such errors can explain the differences
between results on real data and simulated trilinear data,
then this hypothesized model of model error can be
considered useful for getting a first indication of why the
differences occur. Indeed, it will be shown that this model
does provide results that are similar to the ones observed for
real data; furthermore, it will be shown that the adequacy of
the model of model errors can be empirically verified from
the real data.

By letting ||G||r be small compared with | A(C ® B)"||, it is
ensured that the primary variation in the data follows the
PARAFAC model. Adding the model error term may seem
to imply that a Tucker3 rather than a PARAFAC model
should be used to model the data. Indeed, if this structure of
the data is a reasonable model of real data, then in theory a
Tucker3 model will be more reasonable. However, first of all,
it is not expected that this model of model error is perfect. It
is merely a reasonable approximation which is useful to
illustrate some points in PARAFAC modelling which have
not yet been considered. Furthermore, for sufficiently small
numbers in G the variation in the Tucker part of the model
will be too small to be reliably modelled. In any case the
interesting aspect here is not to develop a theoretically
correct model. Any model will have deficiencies in model-
ling real data. The interesting question is therefore whether
empirically validated PARAFAC models can be assumed to
lead to the observed CORCONDIA results due to the
structure defined in Equation (10). In order to verify this, a
study was conducted using the amino acid data as a starting
point. A three-component model was fitted to the raw data,
yielding components A, B and C. A synthetic data set was
created from these estimated components as

X=A(COB) + AG(C®B)' +E (11)

where [[AG(C ® B)"|? and ||E||* are describing the combined
effect of model error and random noise. The Tucker3 core
was assigned random Gaussian numbers. The combined
magnitude of noise was set to 5% of the variation in the
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model part, and two different proportions of noise were
investigated. Seventy realizations were tested where 90% of
the noise was due the Tucker3 part, and 70 realizations were
tested where 90% of the noise was due to the ii.d. error. A
five-component model was fitted to the 140 data sets in order
to assess the effect of fitting too many components.

For each fitted model the core consistency was calculated.
Ideally the core consistency should be low for all models,
and indeed this is the case for the data sets with substantial
model error. All 70 models have core consistencies below
zero. However, for data with little model error the core
consistency is higher than 50% for 12 models. The consis-
tency is even close to 100% in several cases. This is clearly not
feasible but is in line with the differences observed between
modelling real and simulated data.

Thus the Tucker3-based model error seems to be useful for
assessing the current discrepancy between ideal and real
data. In order to understand the implication of structured
model error, it is useful to look at some examples of the
estimated parameters in the different models of the
simulated data (Figure 4).

As can be seen in Figure 4, there is a significant difference
between what is obtained in situations with and without
model error. When relatively large model errors are present,
the excessive loadings have a tendency to model the three
real components in such a way that all five fitted components
are linear combinations of the three real components. As a
result, these components are all of similar size (Figure 4,
right). On the other hand, when there is little or no model
error, the model is able to distinguish clearly between real
trilinear phenomena and noise. The two excessive compo-
nents only describe the noise and hence are of small
magnitude. What is the importance of this observation?
First of all, it is evident that CORCONDIA cannot be
expected to work well in situations when there is no model
error. This may seem problematic, but given the applications
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on widely different types of data, it is realized that this may
not be a severe problem, as most real data seem to have
significant model error such that the core consistency
correctly guides the component selection. Furthermore, in
the case of no model error it is typically easy to find the
appropriate number of components, e.g. by simply inspect-
ing the size of the loadings, whereas for the (more realistic)
case of having model error it is more difficult to assess the
appropriate number of components on the basis of the size of
the loadings. Fortunately, in these cases, CORCONDIA
seems to work well.

As stated initially, it is not expected that the model of
model errors given by the core array in Equation (10) is a
perfect model. However, the extent to which it provides a
reasonable approximation of model errors for the real data
can be evaluated. If the model of model error is perfect, then
it holds that, on analysing a real data set with one component
more than adequate, the obtained component matrices must
be linear combinations of the component matrices obtained
with the right number of components. Conversely, for
perfect trilinear data (with added i.i.d. noise), this should
not be the case.

For the real data above, this implied property was
investigated by fitting models with the right number of
components (as defined in Section 3) and with one more
component. Furthermore, the same was done for simulated
data sets based on the same estimated components (with the
right number of components) plus 1% added Gaussian i.i.d.
noise. For the real and simulated data and for each mode (A,
B and C) the prediction of the component matrix (e.g. Ar 4
signifying the first-mode component matrix with one more
component than needed) from Ap was obtained from
multiple linear regression. The quality of the prediction
was given in terms of R? in percentages using normalized
component matrices.

The results are shown in Table IX. The results are not
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Figure 4. Typical examples of emission loadings from five-component models. The top row shows two examples of
estimated emission loadings from data sets with high amounts of model error, while the lower plots show results for
low model errors. The right-most column shows the magnitude of the individual components (the sum of squares of

the elements) for the first data set of each type.
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Table IX. R? values predicting a component matrix with one
additional component from a component matrix with the correct
number of components. Values are in percentages

Real data Simulated data
Data A B C A B C
Amino acids 97 91 91 70 28 49
Cars and stars 74 50 93 60 55 68
Chromatographic 83 97 99 56 52 61
Sugar 100 100 929 37 24 75
Tongue 94 78 96 66 60 87
Bread 75 76 95 79 79 82

perfectly consistent. This is expected, because we do not
purport to have a perfect model of the model errors.
However, looking through the table, it is evident that the
general trend is that, for real data, additional components
tend to be linear combinations of the ‘true’” components,
whereas this is less pronounced for the simulated data.
Hence these empirical observations support the adequacy of
the approximate model of model errors and hence that the
explanation for why the core consistency works so well lies
in the model error. Further work is needed, though, for
elaborating the models of model errors for specific data
types to gain further insight into this. For example, it is very
likely that the appearance of two-factor degeneracies when
overfactoring the model also plays a role in the behaviour of
the core consistency. The core consistency can sometimes
vary dramatically over a few iterations for ill-posed models.
This is not in itself a problem, because these models are
always highly unstable and all have a very low core
consistency. The dramatic changes typically occur because
the regression problem solved when determining the least
squares core is ill-posed, a situation that is expected to arise
e.g. in the situation where there are two-factor degeneracies.

5. CONCLUSION AND DISCUSSION

The core consistency diagnostic aids in choosing the proper
model complexity of PARAFAC models. The core consis-
tency diagnostic provides stronger and often clearer answers
than e.g. inspecting fit values. Further, no a priori assump-
tions regarding residuals are required and no distribution-
ally related degrees of freedom are required. Additionally,
by assessing the size of the core consistency, the diagnostic
also helps in pointing out if the model is strongly stable or
slightly unstable. It has been shown throughout the
examples that it is possible to quantify subjective results
very clearly.

The results shown here for data of quite different natures
indicate that CORCONDIA has versatile applicability, and it
is suggested that it is always used to supplement other
methods for determining dimensionality. Core consistency,
though, should never form the sole basis upon which the
choice of the number of components is made. Other types of
validation (exploratory as well as confirmatory) have to be
used as well.

Sometimes the core consistency value was seen to increase
again after having been quite low. This by itself has no
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implications for the number of components to choose, as this
is to be based on the last in a succession of sufficiently high
core consistency values. Nevertheless, the phenomenon is
worth noting and may at first seem a bit surprising. Such a
phenomenon may point to the existence of weak structural
components that were simply missed by the preceding
analysis. Indeed, if the components are too weak, they may
simply be undetectable given the presence of noise. An
alternative explanation for the phenomenon could be as
follows. Every data set can be fitted perfectly by a PARAFAC
model provided that a sufficient number of components are
used (usually very many components). For such perfect-
fitting models the core consistency value will by definition
be perfect (see the lemma in Section 2.1). Hence for any data
set the core consistency value starts at 100% for the one-
component model and will then start decreasing. However,
if one continues increasing the number of components, at a
certain point the value of the core consistency will always
increase again. It is expected that such an increase in the core
consistency value will go gradually and may in fact start
with a number of components much smaller than the actual
number of components needed for a perfect PARAFAC fit. In
fact, one may expect the core consistency value to be high as
soon as the fit of the data approximates that of a perfect
PARAFAC fit.

6. COMPUTATIONS

The algorithms have been implemented in MATLAB for
Windows v5.3 (MathWorks, Inc.) and can be obtained from
the Internet at http://www.models.kvl.dk as part of the N-way
Toolbox for MATLAB [10]. All calculations were performed
on a 266 MHz Pentium II Dell Latitude PC with 128 MB
RAM.
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APPENDIX I

CORCONDIA is also useful for assessing the appropriate-
ness of types of models other than the PARAFAC model. Bro
[9,24] suggested the restricted PARATUCK2 model for
modelling certain rank-deficient data. This model was later
generalized to the so-called PARALIND family of models
[25]. One specific type of PARALIND model is defined as

X =AH(CoB)" (12)

which distinguishes itself from the PARAFAC model by the
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introduction of an interaction matrix H. This interaction
matrix makes it possible to have a different column
dimension in A from that in B and C as well as providing
a structural approach to modelling linear dependences in A
(so-called closure). The PARALIND model with the first-
mode model dimension R and second- and third-mode
model dimensions S is equivalent to the restricted Tucker3
model

X = ATR*)(C @ B)® (13)

where the core array T (R x S x S) has a specific structure.
The element

trss = hrs (14)

and all other elements are zero.

The principle for testing the PARALIND model with
CORCONDIA is basically the same as for the PARAFAC
model. For a given model the component matrices of the
model are used for estimating a Tucker3 core. To be able to
compare with a Tucker3 core, the corresponding restricted
Tucker3 core, the elements of which are given in Equation
(14), must be used, just like the superdiagonal array T is used
for the PARAFAC model. The unconstrained Tucker3 G is
then compared with the expected core T, again using
Equation (8).

When some loading matrices in a PARAFAC model do not
have full column rank, the core consistency test does not
work, because the rank of the matrix of independent
variables defining the core regression problem in Equation
(4) is deficient. This is of practical importance when one
mode has a dimension lower than the number of compo-
nents. However, this problem can be easily circumvented.
Assume that the first-mode component matrix A of a
PARAFAC model has dimension 2 x 5, i.e. there are only
two levels in the first mode but five components. Such a
situation occurs frequently in second-order calibration. Let
A, contain two columns of A that are not collinear and let A,
contain the remaining columns. Define a 2 x 5 matrix H as

H=1 A' A (15)

where T is the 2 x 2 identity matrix*. It then holds that the
PARAFAC model

X=A(CoB)" = A{H(C®B)! (16)

i.e. the PARAFAC model can be posed as a PARALIND
model. As all component matrices of this PARALIND model
are of full rank, the model can be tested as an ordinary
PARALIND model. A practical problem is that the core
consistency of the PARAFAC model will depend on how the
columns of A are used for calculating H. However, the
matrix A; defining the first-mode model subspace will span
the same space regardless, so the differences in core
consistency only reflect the variations focusing on different
non-trilinear variation. Hence, if the model is appropriate, it
will produce a high core consistency regardless of how H is
computed. Note also that, although fitting an unconstrained

*One may alternatively use a QR decomposition so as to reparametrize
A by Q and use R instead of H. This makes it possible to automate the
search for columns even in situations where some columns are exactly
identical, as is sometimes the case in second-order calibration.
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Tucker3 core to the original component matrices has an
unidentified solution, this will not be the case for the
transformed problem. Although there are several ways of
transforming the model into the form of Equation (16), once
this model has been chosen, the fitting of the Tucker3 core
array to the transformed problem is an identified problem
owing to the full rank of the involved component matrices.

APPENDIX II

Table X. Core consistency of models using one to five
components for 30 different data sets with four-dimensional
PARAFAC structure with orthogonal components

Components
1 2 3 4 5
Low noise 100 100 99.89 99.60 87.08
100 100 99.89 99.72 87.26
100 100 99.84 99.65 72.25
100 100 99.95 99.73 85.23
100 100 99.69 99.64 96.11
100 100 99.84 99.54 92.48
100 100 99.82 99.68 88.38
100 100 99.78 99.70 85.04
100 100 99.90 99.74 <0
100 100 99.60 99.31 <0
Medium noise 100 100 99.45 99.17 94.82
100 100 98.96 98.58 <0
100 100 99.44 98.29 <0
100 100 99.27 98.28 90.46
100 100 99.14 98.25 <0
100 100 99.29 96.99 <0
100 100 99.26 98.19 <0
100 100 99.58 99.04 <0
100 100 99.04 98.44 57.02
100 100 99.53 98.82 89.83
High noise 100 100 97.91 90.71 <0
100 100 98.22 94.78 74.27
100 100 98.99 92.45 <0
100 100 98.33 94.41 81.86
100 100 93.70 91.24 50.72
100 100 97.89 94.95 <0
100 100 96.93 93.45 9.55
100 100 98.39 92.60 30.91
100 100 98.37 9222 55.44
100 100 98.75 94.88 <0
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