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Data from ripening experiments of herring carried out at three Nordic fishery research institutions in
the period 1992-1995 were collected and analyzed by multivariate analysis. The experiments were
carried out at different times, with different stocks as raw material, using different types of
treatments and analyzed in different laboratories. The question considered here is whether these
data can be assumed to be one homogeneous set of data pertaining to ripening of salted herring or
whether data from different labs, stocks, etc. must be considered independently. This is of
importance for further research into ripening processes with these and similar data. It is shown in
this paper that all data can be considered as one homogeneous data set. This is verified using
resampling where latent structures are compared between different sample sets. This is done
indirectly by testing regression models, that have been developed on one sample set, on other sample
sets. It is also done directly by monitoring the deviation in latent structure observed between
different sample sets. No formal statistical test is developed for whether samples can be assumed to
stem from the same population. Although this can easily be envisioned, it was exactly the need for a
more intuitive and visual test that prompted this work, developing different exploration tools that
visually make it clear how well the data can be assumed to derive from the same population.
Subsequently analyzing the data as one homogeneous group provides new information about factors
that govern the ripening of salted herring and can be used in new strategic research as well as in

industrial practice. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Salted herring products are of importance for the pelagic fish
industry in the Nordic countries. The raw material for the
production is herring ripened by salting in barrels for several
months. The production is mainly based on tradition and
human experience [1]. Although considerable research has
been carried out in the Nordic and European community,
knowledge of the main factors governing the ripening
process is still limited. During ripening, the herring develops
a unique taste and texture. A proteolytic degradation of
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muscle proteins, releasing peptides and free amino acids,
and the effect of salt on proteins are believed to contribute
considerably to the sensory development. It is well docu-
mented that both digestive and muscle proteases participate
in proteolysis during ripening [2-5]. However, it is unclear
whether the digestive proteases only accelerate the process
or lead to specific sensory characteristics. For example,
herring salted without intestines also ripens [6]. Small
peptides, free amino acids and free fatty acids are released
during ripening [4,7] and are believed to contribute to the
taste of the salted herring, but no direct link between these
compounds and taste has yet been proven. The sensory
development is also influenced by other factors such as the
salting process [8] and the herring stock used [9].

Several Nordic institutes within fisheries research have
been involved in collaborative projects in this field during
the last decade. These institutes have carried out a number
of salting experiments using herring from different stocks,

Copyright © 2002 John Wiley & Sons, Ltd.



82

R. Bro et al.

caught in different seasons, etc. A tremendous amount of
data are thus available. The data considered here come from
storage/ripening experiments with salted herring that have
been collected at the Danish Institute for Fisheries Research,
Department of Seafood Research, Denmark (abbreviated
Denmark/Den in the following), the Icelandic Fisheries
Laboratories, Iceland (abbreviated Iceland/Ice) and NOR-
CONSERYV, Norway (abbreviated Norway/Nor) in the
period 1992-1995. The results reported here are part of a
larger project described in a separate report [10].

Collective analysis of all existing data from these different
institutes has never been carried out before. Combining the
data may make it possible to retrieve more detailed
information about the ripening process. Some institutes have
focused on sensory evaluation of products, others on
chemical or physical descriptions of the ripening process.
Only by combining the data from different locations can the
full picture be obtained. For example, making predictive
models between common variables measured in all countries
(pH, protein, etc.) and specific variables of e.g. sensory
attributes, enzymatic variation, peptides or similar may
make it possible to understand the variation in sensory
quality on a more fundamental level. This may e.g. lead to a
better understanding of the ripening process, development
of inexpensive indicator variables of industrial importance,
better means for controlling and monitoring the ripening, etc.

These overall aims, however, are not specifically dealt
with here. In this paper the first step is taken in this meta-
analysis by scrutinizing the measurements which have been
carried out in the three countries involved.

These common data are mainly simple physicochemical
measures reflecting overall properties of the ripening
process. The salting process is mainly characterized by the
variation of salt and water in herring and brine over time.
This variation is caused by an extraction of water from the
herring as a consequence of the dry salting, followed by a
diffusion of salt into the herring. This variation is thus
assumed to form a strong basic trend in all data sets.
However, differences in analysis methods, stocks, treat-
ments, etc. may cause systematic differences between the
data from the three countries. Thus the data may not be
directly comparable. It is the primary aim here to evaluate
this problem first and then subsequently explore the data.
Specifically, the following issues are considered.

1. Investigate if variables are coherently measured and
sampled across countries/laboratories.

2. Investigate if the data of different fish analyzed in
different countries can be described by the same model,
such that conclusions pertaining to the data of one country
can be transferred to experiments from other countries as
well.

3. Investigate if the data reveal patterns of interest to the fish
industry for understanding the effect of different treat-
ments and possibly for obtaining inexpensive quality
indicators.

If the data sets presented here can be combined into one
data set, it suggests that fundamental results from the data
can be assumed to be generally applicable for similarly made
salted herring.

Copyright © 2002 John Wiley & Sons, Ltd.

Table I. Overview of stocks and treatments of herring in the three
different countries. For abbreviations see text

Country Stocks Processing
Iceland I B,C F G

Norway A, N B,F, G, Fs
Denmark AL K B, G

2. DATA: RIPENING EXPERIMENTS AND
ANALYSES CARRIED OUT

Data from a total of 20 ripening experiments (Denmark, 10;
Iceland, Seven; Norway, three) with a total number of 46 trial
groups have been analysed. The experiments have been
carried out in the period October 1992-November 1995. Four
different stocks were used: Kattegat herring (K), Icelandic
summer spawning herring (I), Atlanto Scandic spring
spawning herring (A) and North Sea herring (N). Five
different types of raw material processing were examined in
the ripening experiments: beheaded (B), beheaded and
gutted (G), fillets (F), skinned fillets (Fs) and clipfish (C).
The different stocks and treatments were not distributed
evenly between the three countries, as evidenced in Table I.
All salting and storage have been done according to the same
normal industrial practice in the three countries (see earlier
reports [5,6] for details concerning this aspect). All ripening
experiments have been carried out at 5 °C.

The present data mainly contain simple chemical and
physical analyses that are measured by all three laboratories.
These data form the common axis around which to draw
inter-country conclusions. The variables are primarily basic
measures of overall properties of the brine and the fish, such
as analyses of proximate composition. Table II describes the
variables. Names of variables are written as abbreviations.
The last letter in most of the variable names refers to whether
the variable has been measured in brine (B) or in fish muscle
(M). For some variables almost a third of the observations are
missing, but for most variables only a few observations are
missing. The missing variables are generally randomly
missing; that is, no overall objective caused specific analyses
to be skipped. For some pH measurements it is known,
though, that these were skipped at certain points in an
experiment time owing to stabilization of the pH. This aspect
has not been pursued further here. Mostly, practical time
considerations simply prevented all analyses from being
performed.

The variables have been measured to give an overall
description of the raw material, final product and physical
and chemical changes taking place in the herring during the
ripening process and, furthermore, to ensure that samples
taken for analyses during a ripening experiment are
comparable and representative.

Throughout this report, all data are scaled to unit variance
and mean-centered across samples. All analyses are carried
out in Unscrambler® 7.5 (CAMO ASA, Norway) and
MATLAB® (The Math Works, Inc.). One extreme sample is
removed, leading to a sample set of 265 samples. Occasion-
ally, a few samples are also removed in specific models for
various reasons (e.g. owing to many missing elements).
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Table Il. Explanation and abbreviations of variables used

Abbreviation Parameter Description

ProteinM Protein, muscle Raw material/ product

ProteinB Protein, brine Solubilization of protein fragments and salt-soluble protein
AshM Ash, muscle Salt uptake (salt content generally 1% lower than AshM)

pHB pH, brine

Previous studies have concluded that deviating pH values can indicate foul ripening
Level of small nitrogenous compounds and protein degradation products that are

solubilized in brine. Smell of brine is a traditional quality parameter

TCAB Trichloroacetic acid-soluble nitrogen, brine
TCAM Trichloroacetic acid-soluble nitrogen, muscle
TCAIndexM Trichloroacetic acid index, muscle
TCAIndexB Trichloroacetic acid index, brine

Water Water, muscle

Fat Fat, muscle

Level of protein degradation (caused by enzymes)
Level of protein degradation relative to total protein content
Level of protein degradation relative to total protein content

Raw material/product

These samples will not be reported here for brevity. The
time-zero samples are left out, as these behave significantly
differently from the remaining ones (though similarly across
countries).

The data used in this paper are also available at http://
www.models.kvl.dk.

3. OUTLINE OF PAPER

The strategy for the multivariate analysis is divided into
several steps, each addressed in individual sections in the
following.

e A method for assessing population homogeneity. An ad
hoc method is developed with which it is possible to
assess whether samples from different subgroups can
be considered to stem from the same basic group
(population) and thus be assumed to vary according to
the same latent variables, i.e. whether the samples are
homogeneous with respect to the latent variation in the
data.

e Assessing population homogeneity for the data. The
method described is then used to assess the given data.

o Further validation of conclusion. Through the use of a
split-half approach it is further shown that the
conclusions reached above are valid.

e Principal component analysis of data. Having ensured
that the data can be described within the same model,
the data are superficially analyzed using principal
component analysis. This is, on a ‘fish technology
level’, the primary aim of this paper, but owing to the
inherent problems, the above chemometric problem
has to be solved before this analysis can be pursued.

4. A METHOD FOR ASSESSING
POPULATION HOMOGENEITY

To see if and to what extent valid information is present in
the data, it is important first to contemplate on the types of
deviations expected between samples from different coun-
tries. Although some of these deviations are not interesting
per se, it is important to be able to evaluate and quantify
them.

Copyright © 2002 John Wiley & Sons, Ltd.

The basic assumption underlying the following discussion
is that within the 10 measured variables there is an under-
lying latent structure that may be approximated by a bilinear
model. Thus the 10 measured variables are manifest
variables expressing the variation in a lower number of
more fundamental latent variables that may be found as
linear combinations of the manifest variables. Therefore a
model of all data may be written as

X=TPT +E (1)

where X is an I x ] matrix holding the preprocessed data (I
samples and ] variables). The matrix P is the loading matrix
and defines the latent variables. It is of size ] x F, where F is
the number of latent variables to be chosen. For each latent
variable f the fth column of P defines this variable as a
weighted sum of all ] manifest variables, the jth element
being the weight applied to the jth manifest variable.

The principal component analysis (PCA) model states
that, indeed, the data are described only by variations of
common phenomena, i.e. the loadings P. These loadings
should reflect the variation induced by the herring and by
the treatment of the herring only. However, it may be
anticipated that several sample-specific variations may occur
as well. Examples could be the following.

e Samples from different stocks may behave differently
and have different biophysiological intrinsic correla-
tions and latent structure.

e Samples taken from the same brine (but at different
times) may have variation in common which is not
shared by samples from other brines.

e Samples of similar types of treatment may have
variation in common that is not shared by samples
treated differently.

e Samples from different countries may have their own
country-specific variation that arises owing to differ-
ences in analytical procedures or in stocks used.

The effects of stocks, brines, treatments and countries are
nested and even partly confounded, e.g. because some
treatments have only been performed in one country.
However, if it can be shown that there is no effect of
different countries, then implicitly it is also shown that there
is no special variation due to stocks, brine or treatments.
Hence, for simplicity, it will first be assessed whether
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samples from different countries can be considered to
behave according to the same underlying latent variables.

Note that it is explicitly excluded to compare the
distributions of the variables here. It can for example be
envisioned that a test be devised for assessing if the data
from the three different countries follow the same multi-
normal distribution. However, this does not make sense in
this situation. The experiments have been designed such that
different seasons, stocks and treatments are used in different
countries (see Table I). Thus it is known a priori that the data
from the different countries do not follow the same
distribution on an empirical/ manifest level. That is, empiri-
cally estimating the distribution of a certain variable in
different countries can give widely different results, because
the experimental design is confounded e.g. with the
countries, laboratories and technician. For example, fat
content in the herring is generally much lower in the
Icelandic samples than in the Danish or Norwegian samples.
This is so because the Icelandic experiments all are carried
out with an Icelandic herring stock that biologically has a
lower fat content than the herring stock used for the Danish
and Norwegian samples. This, however, does not exclude
the possibility that the basic variation in all herring is
governed by the same underlying latent phenomena.

There are several ways to verify if the data can be assumed
to arise from the same common phenomena. It is natural to
seek an ANOVA-like argument for testing this, but this will
not be directly pursued for two reasons: there is no explicit
design behind the data and there is a clear latent variable
structure in the measured data [11]. Although these
arguments do not prevent (M)ANOVA-like testing, we will
show that there is a powerful and directly appreciable way
of verifying the degree of ‘commonness’. This approach also
provides an indirect illustration of a very common misuse of
cross-validation.

A simplified example will be described first to exemplify
how commonness or homogeneity will be evaluated.
Consider a data set where the height, leg length and shoe
size are given for a number of persons. A test is sought to
assess whether subsets of persons (e.g. African, European
and Asian people) all vary according to the same basic latent
variables. Assume that a fourth variable, say weight, is also
given. A calibration model may be built for predicting
weight from the three main variables using a rank-reduced
regression model such as principal component regression or
partial least squares regression (PLS) [12]. In this case,
principal component regression is the appropriate tool to
use, for reasons explained later. Assume, for simplicity and
with no loss of generality, that a one-component PCA model
can describe the independent data (X = tp') and that the
score t is approximately linearly related to the weight. The
validity of such a regression model relies on two key aspects.
The first is that all samples can be described by the same
latent phenomena (in this case only one), and the second is
that the relationship between these latent variables and the
weight is the same for all persons.

Consider now a situation in which this hypothesized
model is determined from persons belonging to different
groups. If all persons behave similarly, then it is possible to

Copyright © 2002 John Wiley & Sons, Ltd.

estimate the score values from persons from a new
independent group from the predefined PCA model load-
ings and subsequently predict the weight of these persons
using the regression model. Consider, on the other hand, a
situation in which the “persons’ in the new group are all pigs.
Disregarding the fact that shoe sizes may be difficult to
obtain, it is quite clear that the persons in this group have a
fundamentally different relation between the variables
height, leg length and shoe size. The small shoe sizes, legs
and heights of pigs will lead to scores that are relatively low.
The first main conclusion is therefore that if the new
subgroup is not of the same fundamental type, then the
PCA model will provide misleading scores (and significantly
high residuals within the PCA model). More important is the
fact that the subsequent regression model will also be
misleading. If a human of say 80 kg gets a certain score from
his/her shoe size, leg length and height, then this score times
the regression coefficient will be approximately 80. How-
ever, since a pig of 80kg gets a much lower score per
definition, the weight will naturally be predicted incorrectly
low. Thus, with this approach, inconsistencies are revealed
in two ways. The PCA model as such may reveal incon-
sistencies or otherwise the subsequent regression model may
reveal inconsistencies.

It follows that one way of assessing homogeneity between
countries for the fish data is to compare the predictions of
some external variable (such as the weight in the above case)
across new countries and across known countries. If the
predictions are of similar quality, no fundamental differ-
ences exist. Oppositely, if the predictions on data from new
countries are significantly poorer than predictions of known
countries or the X-residuals are much higher, then differ-
ences do exist.

It is important to use principal component regression
rather than e.g. PLS. In PLS the stated objective is to include
only the most predictive part of the independent data, which
is why PLS typically uses fewer components than principal
component regression. However, in this case, using only
some of the systematic variation in the independent data
would impede the conclusion that the same basic variation is
present in several types of subsamples. Rather, the conclu-
sion would be valid only for the part of the data used for
prediction in the regression model. Hence there would be a
risk of incorrectly concluding homogeneity in a situation
where the inconsistent part of the data is filtered away by the
PLS model.

5. ASSESSING POPULATION
HOMOGENEITY FOR THE DATA

5.1. Strategy
The specific procedure for testing the data is the following.
The external variable storage time is used as predictand* and

*Distinct curvature in the predictions of storage time indicates a
non-linear relationship between time and the data. This seems
natural, since the biochemical variation must be assumed to level
off in time. The logarithm of time is used instead, excluding the
samples with storage time zero. This leads to predictions with no
obvious curvature.

J. Chemometrics 2002; 16: 81-88
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Figure 1. Principal component regression model predicting LogTime from data. Country-segmented (left) and randomly three-
segmented (right) cross-validated predictions. Seven principal components used in both cases. The numbers on the samples refer to

the countries (1 =Den, 2 =Ice, 3= Nor).

the data in Table II are used as independent variables. It is
noted that time could also be used as one of the independent
variables. Using time as a dependent variable is sensible
though, because, on one hand, a relatively direct relation
between time and the measured variables is assumed to exist
and, on the other hand, fundamental differences in this
relationship are expected if the data across countries are not
homogeneous. After a thorough analysis of the data having
time as dependent variable, results will also be shown where
time is used as an independent variable and where each of
the variables is left out in turn. Principal component
regression models are built in such a way that as much
variation as possible is explained without sacrificing the
predictive quality of the model. To assess how well e.g. time
is predicted in new samples, all data pertaining to one
country are left out and a principal component regression
model is built from the data from the two other countries.
This model, given by the loading parameters P and the
regression coefficients b (and offsets), is then used for
predicting the time of the individual samples from the left-
out country. This is repeated for all three countries in turn.
The quality of the predictions is an estimate of how well the
model generalizes to completely new samples. This cross-
validation provides a very severe test of the extrapolation
properties of the model.

On the other hand, if some randomly chosen samples are
left out, then samples of similar treatment, country, etc. are
used both for estimating the parameters as well as for
predictions. Thus the quality of random cross-validation
provides a measure of the maximal quality predictions for
the given data. The difference between the quality of country
cross-validation and random cross-validation provides an
estimate of the effect (error) introduced by using the model
on data from a new country. If the quality of the two models
is the same, no country effect is present.

This non-trivial use of cross-validation is of fundamental
importance. It provides a very direct way of performing
analysis of variance/assessment of effects in a sound and
appreciable way. In traditional hypothesis testing, conclu-

Copyright © 2002 John Wiley & Sons, Ltd.

sions are based on an ‘abstract’ mathematical model and on
fitted values. Thus bias can be introduced owing to the use of
an incorrect model structure, and overly optimistic results
can be obtained, because no measure of the inter- and
extrapolation and sampling error is available. Both problems
are overcome here.

5.2. Results

The most important quality criterion is that the regression
model should use most of the information in the indepen-
dent data. Otherwise, any conclusions drawn will only be
valid for a small fraction of the data and hence of no use in
this context. For the present regression models the PCA
model of the independent data uses seven principal
components and describes between 92% and 98% of the
variation in individual variables (validated by cross-valida-
tion). Therefore conclusions drawn in the following can be
assumed to be valid for the whole data set as such.

The random- and country-segmented cross-validated
predictions of time are shown in the plots in Figure 1. As
can be seen in both plots, the predictions are reasonable,
especially given that the chronologically measured storage
time cannot be expected to be exactly the same “biotime’ in
different experiments. Therefore the results are quite
impressive. There seems to be a rather uncertain area at
LogTime 1.5. This could be due to the fact that this is
approximately the time where the chemical changes, as a
result of diffusion of water/salt, are most dramatic. There-
fore this is also the time where most samples have been
measured. Note also, though, that the visual effect of high
variability is mainly caused by the three Norwegian samples
labeled with an asterisk in the lower part of the plots.

In the left-hand plot the cross-validated predictions leaving
out whole countries are shown. It is remarkable that even
though there are differences in treatments, differences in
herring stocks as well as possible differences in analytical
procedures, the predictions obtained for completely new
countries are not much worse than those obtained using
samples from the same populations as used for estimating the
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Table lll. Quantitative results from calibration models for each

variable. Random and cross-country cross-validation results are

shown (RMSECV/correlation coefficient). For pH in brine, no
valid results were obtained

Variable Random Cross-country
pH, brine — —
Protein, muscle 0.64/0.93 0.82/0.90
Protein, brine 0.58/0.94 0.58/0.94
Water 2.00/0.91 2.54/0.87
Ash, muscle 0.67/0.81 0.84/0.68
Fat 1.73/0.96 2.72/0.89
TCAlIndex, muscle 0.96/0.99 1.50/0.98
TCAIndex, brine 5.64/0.94 6.51/0.92
TCA, muscle 0.14/0.99 0.21/0.98
TCA, brine 0.38/0.97 0.37/0.97

model. This is especially remarkable because, in order to predict
samples of new countries, there are only samples from two
other countries for modeling any country-specific variation.

The positive result is further verified by building calibra-
tion models for each of the variables in Table II leaving the
particular variable out of the independent set and including
LogTime as independent variable. The results are given in
Table III, which provides more or less similar results to the
ones already given.

The calibration models are based on PCA models that seek
to describe all the systematic variation, and the regression
coefficients for the prediction problems are all of similar
order of magnitude. Thus all variables are important both
with respect to the structure in X and with respect to
predicting time. If there are country- or experiment-specific
variations in the underlying phenomena, it is unlikely that
this will not lead to a substantial change in the scores
calculated from the PCA model. Additionally, this change
would lead to a biased prediction of time. Since the quality of
the predictions is not much worse for the country-validated
problem, it may be concluded that the samples all behave
approximately according to the same latent phenomena.
Any conclusion drawn from one part of the data set may
therefore be expected to hold for the remaining data.

6. FURTHER VALIDATION OF
CONCLUSION

In order to further validate the results, the seven-component
PCA model of the data is investigated in more detail. If the
above conclusion is correct, then the data taken from one
country, with corresponding laboratory, herring stock and
treatments, should vary according to the same latent
variables as the data from other countries. This means that
loadings found from PCA models of different subgroups
should span the same subspace. A way to verify this is to
look at the jackknife estimate of the uncertainty of the
estimates of the loadings [13]. However, even though
powerful, jackknifing introduces a risk of misinterpretation,
because the resampled estimates are not independent. In
order not to introduce any possible error arising on that
account, another approach is pursued here. For the data of
each country a PCA model is fitted, giving three different

Copyright © 2002 John Wiley & Sons, Ltd.

PCA models all independent of each other. The 10 x 7
loading matrices from these three models are then investi-
gated to see if they span the same subspace. This is done by
rotating orthogonally the Icelandic and Norwegian loading
matrices to maximal agreement with the Danish loading
matrix. Thus, if P®® is the loading matrix from the PCA
model of Icelandic samples, and P and PO are defined
likewise, then the optimally rotated P¢®
Let

is given as follows.

M= (P(den))TP(ice) (2)
and
Q=M"(MM")"?2 )

Then the optimally rotated loading matrix P® is given as
[14]

ﬁ(ice) _ P(ice)Q (4)
The resulting three sets of first and second loadings are
shown in Figure 2. As can be seen, the loadings are very
close, confirming that the three subsets of data span the same
variation.

This approach of assessing homogeneity is conservative in
the sense that the three loading matrices are estimated
completely independently, also with respect to treatments,
laboratory, etc. However, there is still a risk that too
optimistic results are obtained, because the PCA models
almost span the complete space (seven components out of 10
variables fitting up to 99% of the variation). If the latter of the
seven components are only indicative of noise, however,
then these latter components would not be possible to rotate
to similar configurations. In Figure 3 the resulting loadings
of the sixth and seventh components are shown. As can be
seen, these are as close to being identical as those presented
in Figure 2.
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Figure 2. Loadings from three independent PCA models of
data from Danish, Icelandic and Norwegian samples upon
orthogonal rotation to maximal agreement.
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Figure 3. Loadings from three independent PCA models of
data from Danish, Icelandic and Norwegian samples upon
orthogonal rotation to maximal agreement.

7. PRINCIPAL COMPONENT ANALYSIS OF
DATA

The data have been shown to be consistent across different
types and represent the same type of basic variation. Any
systematic differences in latent variation arising from the use
of different laboratories, treatments, etc. can be assumed to
be insignificant and therefore the data may be investigated
as one homogeneous group of data.

A PCA model is fitted to the data in order to investigate
the nature of the data. A loading scatter plot is shown in
Figure 4 of the two first loadings. Many interesting aspects
are revealed in this loading plot about the interrelations of
the variables. The first two components shown explain 64%
of the total variation, hence this plot is quite descriptive of
the total variation.

For example, it is seen that the variables Fat and Water
appear to be negatively correlated. This is seen by their
position near the same line and far position in opposite
direction of (0,0) [15,16]. Thus, when Water is high, Fat is low
and vice versa. This is easily confirmed by plotting the raw
data as shown in Figure 5. This is a generally well-known
and valid correlation in fresh fish [17] and will therefore not
be regarded as an important finding in this study. Never-
theless, it is a simple and powerful demonstration of how
easily the multivariate data are explored using multivariate
tools.

The variables TCAM and TCAIndexM more or less
contain the same information, as evidenced through their
high loadings and small interdistances. TCAM is the direct
measurement of small nitrogen compounds in muscle and
TCAIndexM is TCAM as percentage of the total protein
content in muscle, which is constantly high, causing the
correlation between the two variables. The correlation
between the brine (TCAB) and the muscle (TCAM) is seen
because part of the TCA measured is muscle protein that is
broken down into smaller fragments. These fragments occur

Copyright © 2002 John Wiley & Sons, Ltd.
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Figure 4. Loading plot from a PCA model of all data except the
time-zero samples. 40% of the variation is explained by the first
component and 24% is explained by the second. Loadings are
normalized, so biplot theory [16] is not applicable.

in the brine as well as in the muscle. The correlation between
TCAB and ProteinB is probably due to the fact that part of
the protein measured in brine comprises low-molecular-
weight peptides and free amino acids that are also measured
by TCAB. While ProteinM varies almost independently of
TCAM, it is negatively correlated with AshM. This negative
correlation could be due to a decrease in measured protein
caused by the increase in salt content in muscle during
storage.

As can be seen, the PCA loading plot immediately
provides an overview of all the variables of the data set.
The simple conclusions drawn from the loading plot are
easily verified, e.g. using a scatter plot as shown in Figure 5.
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Water

Figure 5. Scatter plot of Fat versus Water (time-zero samples
excluded). Correlation is —0.91.
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It is quite difficult to comprehend all the detailed facets of
the data by looking only at the raw data, but the PCA model
provides a condensed simultaneous description of all
variables and samples.

8. CONCLUSION

The success of this investigation has important ramifications
from both an academic and an industrial point of view. Even
though the fish in these experiments come from different
stocks, etc. and have different characteristics, it has been
verified that, fundamentally, all ripened herring can be
described by variations in the same basic latent variables.
This has been shown using specially designed cross-
validation as well as split-half analysis.

The results obtained are only indicative for salted herring.
Even for the raw material for which data are also available,
most of the results do not apply. However, for the particular
population of salted herring it has amply been demonstrated
that the found models and correlations are valid. Combining
the present data with additional sensory and chemical
profiling data available for a subset of the present data can
give new valuable insight into ripening. However, already
the correlations found here are of importance. For example,
the protein in brine is correlated to TCAM (trichloroacetic
acid-soluble nitrogen in muscle), which expresses the degree
of protein degradation in salted herring during ripening.
Protein degradation in salted herring is known to be an
important part of the ripening process, and protein content
in brine may therefore be used as a cheap and fast indicator
for ripening of salted herring. The correlation between water
and fat may also be useful for the industry, because a dry
matter/ash analysis is cheaper and less resource-demanding
than a fat analysis and will at the same time provide
information about the salt content of the product. Both fat
and salt are important process and quality parameters of the
salted herring.

If e.g. the sensory quality determined only for Norwegian
samples can be predicted from the variables measured here,
then sensory quality can thus be approximated by a linear
combination of these variables. To the extent that the
parameters measured here are assumed to provide a full
picture of the factors affecting sensory quality, such a
sensory model can be applied to data from other countries.
Such matters may now be pursued in light of the results
obtained here and are highly relevant because additional
measurements are available from the different countries.
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