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Abstract

In Part 1 of this series, a new simplified expression was derived for estimating sample-specific standard error of prediction in inverse

multivariate regression. The focus was on the application of this expression in multilinear partial least squares (N-PLS) regression, but its

scope is more general. In this paper, the expression is applied to a fluorescence spectroscopic calibration problem where N-PLS regression is

appropriate. Guidelines are given for how to cope in practice with the main assumptions underlying the proposed methodology. The sample-

specific uncertainty estimates yield coverage probabilities close to the stated nominal value. Similar results were obtained for standard (i.e.,

linear) PLS regression and principal component regression on data rearranged to ordinary two-way matrices. The two-way results highlight

the generality of the proposed expression.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is considered good analytical practice to report a

result together with an estimate of its uncertainty. For

example, when fitting a line through scattering x–y points,

it is desirable to construct the familiar confidence and

prediction bands using well-known expressions from basic

statistics. Interestingly, calibration methodology differs

greatly when moving to more complex data structures,

i.e., multivariate and multiway data. Beyond univariate

calibration, the only generally accepted approach to pre-

diction uncertainty is to use an overall measure such as

root mean square error of prediction (RMSEP), hence for

any prediction the uncertainty is set to a constant value [1].

Clearly, a negative aspect of this global uncertainty esti-

mate is that it does not yield realistic prediction intervals.

However, the required sample-specific prediction uncer-

tainty estimates are available for latent variable (LV)

methods in general, see Ref. [2] for a review of various

proposals. Very recently, a simple and user-friendly ex-
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pression for standard error of prediction (SEP) has been

derived and tested on multiway models using Monte Carlo

simulations [3]. It performed well for standard (i.e., linear)

partial least squares (PLS) regression applied to near

infrared (NIR) data sets [4]. The purpose of the current

work is to:

� demonstrate the practical utility of our simple expression

on fluorescence data, and
� identify the conditions that are critical for reliable use of

the proposed methodology.

2. Theory

Since a detailed discussion of the proposed expression

is given in Part 1 [3], we restrict ourselves to pointing out

the relationship with variations of RMSEP, as well as

another expression for sample-specific SEP. These relation-

ships may lead to a better understanding of the properties

of our proposed expression. To simplify the presentation,

we have found it convenient to slightly adapt the earlier

notation.
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2.1. Prediction uncertainty on the global set level

Current practice is to characterise (multivariate or multi-

way) prediction uncertainty on the set level. An RMSEP-

value is calculated as the root mean squared difference

between predictions and reference values. It is important

to stress that this procedure is only sound when the noise in

the reference values is negligible compared with the true

prediction uncertainty. The reason for this is that prediction

errors are defined with respect to the true quantities, rather

than noisy reference values. Consider the ideal situation

where one has the perfect model and noisy reference

values—a mental experiment. Of course, this limit is not

practical, but adding noise to the reference values as

described by DiFoggio [5] and Coates [6] can always

approach it to some extent. Clearly, the predictions should

be perfect and the only contribution to RMSEP would

originate from the measurement error in the reference

values. In this extreme case, RMSEP would just estimate

the standard deviation (square root of the variance) of the

measurement error of the reference value—it would not

relate to the true prediction uncertainty at all! Thus, in

general, the presence of this spurious error component leads

to a so-called apparent RMSEP [5]:

RMSEPapp ¼
1

I

XI
i¼1

ðŷi � yref ;iÞ2
" #1=2

ð1Þ

where I denotes the number of samples in the test set, ŷi is

the prediction of property y for sample i and yref,i is the

associated reference value. A simple but effective correction

for the spurious error component leads to a so-called

corrected RMSEP [5,7]:

RMSEPcor ¼ ½MSEPapp � VDy�1=2 ð2Þ
where VDy is an estimate for the measurement error variance

associated with the reference method. This correction has

been used successfully for NIR [8] and Raman [9] applica-

tions. If knowledge on VDy is lacking, it can be set to zero

and the more pessimistic apparent RMSEP is then obtained.

2.2. Prediction uncertainty on the individual sample level

Characterising prediction uncertainty on the set level is

the best way to answer important questions like ‘‘how good

is my calibration?’’ It is therefore logical, for example, to

monitor changes in the (set level) RMSEP when optimising

a calibration model (spectral pre-treatment, factor selection,

etc.). However, as noted before, this procedure does not lead

to sample-specific prediction intervals with good coverage

probability. The American Society for Testing and Materials

(ASTM) has recognised the need for a sample-specific SEP

[10] and recommends using the expression originally pro-

posed by Höskuldsson [11]:

SEPapp;i ¼ ½ð1þ hiÞMSECapp�1=2 ð3Þ
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where hi symbolises the leverage for sample i and MSEC

stands for the mean square error of calibration. This expres-

sion is implemented in certain commercial software [12].

The leverage is related to the distance of a sample to the

mean of the calibration set data. The calculation of MSEC is

similar to the calculation of the apparent (set level) RMSEP,

i.e., Eq. (1), but now one has to account for the degrees of

freedom of the calibration model. Because MSEC is explic-

itly based on reference values, Eq. (3) leads to an apparent

sample-specific SEP when the reference method is impre-

cise. In other words, Eq. (3) is the sample-specific analogue

of Eq. (1). Clearly, the correction in Eq. (2) can also be

applied on the sample level, leading to our proposal [3]

SEPcor;i ¼ ½ð1þ hiÞMSECapp � VDy�1=2 ð4Þ

which was derived in Part 1 based on an approximation of a

local linearization approach.

Notice that only the leverage reflects the individual

differences. As leverages are simple to calculate this ex-

pression is highly operational. The quality of the expression

is crucially dependent on the quality of the estimate of

MSECapp. Ensuring that the calibration model is sound,

robust and representative is therefore of significant impor-

tance to be able to rely on the use of Eq. (4). This is in fact

similar to the situation in univariate regression. For exam-

ple, a model where the MSEC changes significantly by the

in- or exclusion of one sample cannot be considered to

provide a robust hence reliable estimate of MSEC. Like-

wise, if the cross- or test set-validated mean square error

differs markedly from MSEC, then most likely the estimate

cannot be considered to be appropriate. Some practical

guidelines on how the adequateness can be assessed are

provided in Experimental.

2.3. Validation of proposed sample-specific uncertainty

estimate

Comparing the coverage probabilities of the resulting

prediction intervals with the nominal value would validate

Eq. (4). Unfortunately, this requires error-free reference

values. However, the direct relationship between Eqs. (3)

and (4), ensures that an equivalent test follows from the

studentised apparent prediction residuals,

ti ¼
ŷi � yref ;i

SEPapp;i
i ¼ 1;: : :; I ð5Þ

These should be approximately distributed as Students t

with degrees of freedom ( f ) associated with the MSEC

estimate [3]. In particular, the standard deviation should be

close to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f =ðf � 2Þ

p
. As SEPapp does not rely on the actual

reference measurements in the validation set, the measure-

ment errors in these are of no consequence for the

evaluation.
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2.4. Checking validity of the regression model

For a specific regression model it is possible to verify

whether the approach for estimating the sample-specific

SEP (Eq. (4)) is appropriate. As described in Part 1, the

formula is based on a local linearization and the validity

of this first-order approximation can be tested. In this

paper a noise-addition approach will be used for this

purpose. From a principal component analysis (PCA)

model of the predictor (spectral) data, the noise level in

X can be determined. Adding different multiples of this

level of random Gaussian noise to X leads to different

realizations of the regression vector, and associated pre-

dictions of y. If the first-order approximation is valid, the

standard error in the regression vector and hence in the

predictions should increase linearly with the noise added.

The presence of linearity can then be verified formally or

visually in simple manners as will be shown in the

experimental part. Test set predictions are used for assess-

ing linearity as fitted values can led to spurious results

when performed in an unsupervised fashion (fixing the

number of components). Noise is added to both the

calibration and the test data.

R. Bro et al. / Chemometrics and Intel
Fig. 1. The pure excitation and emission spectra for the five fluorophores

used in the data set.
3. Experimental

3.1. Generation of the data

The data set used in this paper is part of a larger data

set prepared for the study of several topics in fluorescence

spectroscopy. The part not used here is characterised by

specific artificially induced problems (e.g. co-varying

components). The selected analytes have very similar

excitation and emission spectra (see Fig. 1). Consequently,

the calibration problem is fairly difficult.

The fluorescence spectra of 131 samples were recorded.

Five different analytes were used: catechol (Sigma, approx.

99%), hydroquinone (Riedel-deHaën, min. 99.5%), indole

(Riedel-deHaën, min. 99%), L-tryptophan (Merck, min.

99%) and/or DL-tyrosine (Sigma, min. 98%). All samples

were mixtures of 2 to 4 of these fluorophores. The concen-

tration ranges of the fluorophores in the samples are stated

in Table 1.

The samples were prepared through several dilution

steps with deionised water. First, a small amount of each

analyte was weighted and transferred to a container. It was

further diluted into standard strength, before they were

mixed and diluted to the desired concentrations. The

prepared samples were then measured by a Varian Eclipse

Fluorescence Spectrometer. The settings for the instrument

were: slit widths 5 nm (for both excitation and emission),

emission wavelengths 230–500 nm (recorded every 2 nm)

and excitation wavelengths 230–320 (recorded every 5

nm), scan rate 1920 nm/min and a PMT (photo multiplier

tube) detector voltage of 600 V. The sample was excited
with lowest energy (highest excitation wavelength) first

and then up to the highest energy excitation. Every sample

was left in the instrument for a total of five replicate scans.

The total recording time for one sample was approximately

15 min.

Everyday a standard was run before and after analysis

in order to ensure that there was no drift in the

instrument.

3.2. Outlier detection and wavelength selection during

calibration

Eq. (4) only accounts for the effect of random noise in

the data as well as the model [3]. Consequently, it is crucial

for the analyses performed here, that the calibration model is

well behaving. The term well behaving is difficult to

quantify, but it means that the model is primarily reflecting

the systematic variation foreseen in new samples. This can

be quantified by assessing how close the model fit is to the

(cross-) validated fit or by influence analysis. In line with

this requirement, it is of importance to remove abnormal and



Table 2

Measurement uncertainties in the equipment used in the preparation of the

samples

Parameter Amount Uncertainty

Weight 0–1 g 0.0001 g

VolumeC,1 250 ml 0.23 ml

VolumeC,2 100 ml 0.1 ml

VolumeC,3 10 ml 0.038 ml

VolumeP,1 10 ml 0.03 ml

VolumeP,0.5ml 0.5 ml 0.0075 ml

VolumeP,1ml 1 ml 0.008 ml

VolumeP,2.5ml 2.5 ml 0.015 ml

Table 3

Uncertainty in the reference value for the different analytes with varying
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extreme samples as well as irrelevant variables. Such out-

liers and irrelevant variables deteriorate any sound statistical

evaluation of the model and lead to misleading statistics.

Outlying behaviour can come from: pollution in the sample,

irregular behaviour of the instrument, incorrect sample

preparation, extremely high or low concentration of an

analyte, etc.

One method for outlier detection is based on initial PLS

analyses, and the visual inspection of the T vs. U-score

plots. These plots describe the relationship between X and

Y. For a good prediction model with relevant variables,

these plots should be approximately straight lines indicating

a predictive relation between X and Y. If a sample diverges

significantly from this line compared to the other samples, it

is an outlier—its relationship between X and Y is different

from the rest.

Prior to analysis, part of the recorded data was removed

in order to avoid any scattering effects that are present in

fluorescence spectroscopy [13]. The emission wavelength

ranges 230–296 and 422–500 nm were removed, together

with the excitation wavelength ranges 230–240 and 300–

320 nm. This reduced the landscapes from 136	 19 (emis-

sion	 excitation) down to 62	 10. Further, only the first

replicate measurement of each sample was used in this

analysis.

3.3. Calculation of the measurement error in the reference

values

The samples were prepared in several dilution steps.

Consequently, there are several uncertainties to be accounted

for upon estimating the final uncertainty of the reference

values. In order to calculate the uncertainty induced by the

different dilution steps, the following error propagation

formula has been used:

rðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ
q¼1

By

Bxq

� �2

rðxqÞ2
vuut ð6Þ

where ‘r’ denotes the standard deviation in the associated

variable, ‘B’ symbolises a partial derivative, Q is the total

number of parameters with uncertainties and xq ( q = 1,. . .,
Q) is a parameter of y.

The steps involved in making the solution were as

follows: an amount of solid was weighed and transferred

to a 250 ml container, 10 ml of this was taken out using a
Table 1

Concentration ranges for the analytes

Analyte Concentration in 10� 6 M

Catechol 0–87.0

Hydroquinone 0–22.5

Indole 0–5.46

Tryptophan 0–7.44

Tyrosine 0–12.14
pipette, and transferred to a 100 ml container and 0.5 to 2 ml

of this was taken out using an adjustable pipette and

transferred to a 10 ml container.

An example of the uncertainty for one of these steps is as

follows:

rðVnewÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BVnew

BVold

� �2

r Voldð Þ2þ BVnew

BvolP

� �2

rðvolPÞ2 þ
BVnew

BvolC

� �2

rðvolCÞ2
s

Z

rðVnewÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volPrðVoldÞ

volC

� �2

þ VoldrðvolPÞ
volC

� �2

þ VoldvolPrðvolCÞ
volCð Þ2

 !2
vuut ð7Þ

where Vnew and Vold denote the new and old concentration,

respectively, volP is the volume of the pipette used to

transfer the analyte, and volC is the volume of the new

container. Estimates of the measurement uncertainties for

the different steps are most often given on the measuring

equipment itself (see Table 2).

Each analyte was present at four levels of concentration,

and can thus be coded from 1 to 4. Since the measurement

error of the weight was constant over its range, and the

relative uncertainty of the last pipette (VP,0.5 ml, VP,1 ml, and

VP,2.5 ml) increased with decreasing volume, the uncertain-

ties varied among the analytes, as well as for the different

concentrations (see Table 3). The relative uncertainties vary

from 0.8% for the highest concentration of catechol, hydro-

quinone and tyrosine, to 2.1% for the lowest concentration

of indole. In the remainder of this paper the lowest reference

uncertainty—0.8%—is used as a lower bound of the uncer-

tainty. This will give the most pessimistic results for the

confidence limits (see Eq. (4)). In this way, the presentation

of unrealistically good results is avoided.
concentration

Analyte Uncertainty in %

Relative concentration

1 2 3 4

Catechol 1.6 0.9 0.9 0.8

Hydroquinone 1.6 1.0 1.0 0.8

Indole 2.1 1.6 1.6 1.5

Tryptophane 1.7 1.1 1.1 0.9

Tyrosine 1.6 1.0 1.0 0.8



Fig. 3. Second (14% variance explained) versus first (68%) principal

component using calibration and prediction spectral data. The plot shows

how the prediction samples extend beyond the space of the calibration

samples.
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4. Results and discussion

Calibration models were constructed using both N-PLS

as well as standard PLS and PCR. Only the results of N-PLS

are shown in the following, but similar results were obtained

for the two-way calibration models.

4.1. Constructing the model

The data set was divided into a calibration set of 35

samples and a validation set of 86 samples.

Initial PLS models were made for each analyte in order to

check for gross outliers. Two T vs. U-score plots—showing

the relationship between X and Y—showed one outlier

each, see Fig. 2, hence the total number of samples were

reduced to 129. Other traditional outlier diagnostics were

also investigated, but no additional gross outliers were

identified. By close inspection of the experimental setup

and the two spectra in question, it was clear that the two

samples were prepared wrongly. For the first outlier, the

amount of catechol in the sample was less than it should be

according to the experimental setup. For the second outlier
Fig. 2. T vs. U plots from PLS of (a) Catechol—PC5, and (b) Hydro-

quinone—PC3, both showing one clear outlier.
the hydroquinone concentration was higher than planned.

So, not only do these outliers make sense from a statistical

point of view, but it is also possible to backtrack and

investigate the actual reason for the outlying behaviour.

Eight additional samples were excluded during specific

model building as potential outliers. These samples were not

extreme outliers as the above-mentioned. For most, reason-

able explanations for the outlying behaviour were possible to

find but not for all. However, in order for the distributional

properties of the uncertainties to be meaningful, even mod-

erate outliers are necessary to remove especially when

validating the method. Thus, given the large sample size,

even some debatable outliers were removed in order to be

absolutely certain that these did not bias the calibration model

or the evaluation of the prediction results. In a more realistic

setting, the decision on which samples to remove could be

different depending on purpose, but in this paper, the main

issue is to show that the formulas work for data of good

quality. Univariate regression statistics do not work well

when influential samples are present, and the same holds in

multivariate regression. The issue here is not finding the limit

for when the formulas work but to show that they do provide

meaningful results for absolutely meaningful data. Hence, we

want to remove (a little too many) objects to make sure that

the results are not due to an unfortunate choice of samples.

The choice of the calibration set size was based on

having enough samples to adequately span the space of

interferents and analyte. The remainder of the samples was

then assigned as the test set. A relatively large test set is

required to verify the properties of the distribution of

studentised prediction residuals. Only tryptophan is dis-

cussed in the following as an example. Its concentration

ranged from 0 to 7.443 Amol/l, but the concentrations were



Fig. 4. Calibration errors as a function of the number of components used.

Fig. 6. Prediction standard errors for test set predictions using N-PLS and

unfold PLS with different levels of noise.
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scaled such that the maximum value was 1 (for convenience

of plotting). The design was purposely chosen so that some

of the prediction samples were slightly outside the region of

the calibration samples. This was done in order to test the

approach in a demanding (extrapolation) situation (Fig. 3).

The adequacy of Eq. (4) depends directly (and almost

solely) on having an accurate estimate of the calibration

error. Recall that Eq. (4) is obtained by propagating random

errors through the model; any systematic error in the model

itself is not accounted for. The presence of significant model

error shows up in, for example, a proper test set or cross-

validated mean square error. If the model error is insignif-

icant, then it follows that MSEC and MSECV should be of

similar size. In case there is a significant model error, larger

deviations are expected. Thus, by monitoring the gap

between MSEC and MSECV, an indication of the validity

of the formula can be obtained.

In this investigation, the number of components was

chosen manually based on a comparison of the cross-

validated and fitted predictions. In Fig. 4, the calibration

(RMSEC) and cross-validation (RMSECV) results are

shown for the current data problem. The prediction results

(RMSEP) are also shown for convenience as well as the

concentration reference uncertainty (SDy) which is situated
Fig. 5. Predictions for calibration (left) and te
almost on top of the 0 axis. A six-component model was

chosen due to the minimum value of RMSECVand also due

to the small gap between RMSEC and RMSECV at this

number of components.

The predictions obtained with the six-component model

are shown in Fig. 5.

To verify that the sample-specific standard errors of

predictions can be trusted it is necessary to test that the

local linearization of the error in the regression vector

estimate is a valid approximation. By noise-addition as

described in Theory, predictions of the test set samples are

obtained for different levels of random noise added. The

noise level was determined from the residuals of a six-

component PCA model of the spectral data. With the added

noise, six-component PLS models were determined and

used to predict the test set samples.

As can be seen in Fig. 6, the standard error increases

linearly with the noise level at least up to twice the intrinsic

amount of noise. After this point, the added noise leads to a

non-linear relation between amount of added noise and
st set (right). Target line superimposed.



Fig. 7. Test set predictions with uncertainty. For each prediction, two

‘confidence limits’ are given (almost superimposed). The left-most is

calculated from Eq. (4), while the right-most is twice the RMSEP. The

uncertainty in the reference value is also shown but is of insignificant

magnitude.

Fig. 8. Studentized prediction residuals calculated using Eq. (5) for (a)

entire test set and (b) zero-concentration samples.
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prediction standard error. Because of the linearity for low

levels of added noise, the local linearization and the equa-

tions for sample-specific standard errors can be assumed to

be valid from this point of view.

Fig. 6 also shows that the predictions from unfold PLS

are more sensitive to the added noise than is the case for N-

PLS. This is in agreement with expectations for low-noise

low-rank trilinear data where the excess free parameters in

unfold PLS are not needed for describing the systematic part

of the data and hence lead to more noisy regression

coefficient estimates.

4.2. Validation of proposed sample-specific uncertainty

estimate

Using Eq. (4), the predictions in Fig. 5 (right) can be

assigned individual uncertainty estimates. In Fig. 7, this

uncertainty is reported as twice the estimated standard error.

Also shown is the prediction interval that is calculated as

twice the RMSEP. In that case, the same interval is obtained

for all samples. For low concentration samples this typically

(though not automatically) leads to too large intervals while

the converse holds for high concentrations.

For the intervals in Fig. 7 the sample specific intervals

vary by 115% as opposed to the constant size obtained from

RMSEP. It is possible to assess how the sample-specific
Table 4

Percentage coverages
error coverage compares with an overall RMSEP based

coverage. The set level RMSEP assumes identical predic-

tion error but as this is not a valid assumption (compare with

the univariate case), a systematic bias is expected from the

RMSEP based coverage. Indeed, the RMSEP-based cover-

age of all samples is too high for low levels and too low for

high levels (Table 4). The coverage based on sample-

specific prediction errors is in better agreement with the

theoretically expected results.

In Fig. 8, the studentized residuals are shown for the

prediction residuals in all and for the zero-concentration

sample residuals. The theoretically expected standard devi-

ation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f =ðf � 2Þ

p
where f = 35� 7 which equals 1.04.

Although not perfect, the empirically observed values are

close. This even holds for the zero-concentration samples; a

result that is important e.g. for determining limit-of-detec-

tion. Clearly a similar approach based on RMSEP would

hold little promise (Table 4).
5. Conclusions

In this paper, the approach for estimation of sample-

specific prediction errors developed in Part 1 has been has

been put to the test. The example shows that when the

assumptions are carefully assessed to be valid, the sample-
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specific errors provide a more adequate and detailed view

on the prediction errors than e.g. obtained from traditional

RMSEP based overall errors. The approach is based on a

local linearization, but in this paper, the direct connection to

earlier approaches to sample-specific prediction errors has

also been highlighted. The obtained results are stimulating

and point to several useful developments, e.g. for limit-of-

detection estimation.
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