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In this paper the purpose and use of centering and scaling are discussed in depth. The main focus
is on two-way bilinear data analysis, but the results can easily be generalized to multiway data
analysis. In fact, one of the scopes of this paper is to show that if two-way centering and scaling are
understood, then multiway centering and scaling is quite straightforward. In the literature it is
often stated that preprocessing of multiway arrays is difficult, but here it is shown that most of the
difficulties do not pertain to three- and higher-way modeling in particular. It is shown that
centering is most conveniently seen as a projection step, where the data are projected onto certain
well-defined spaces within a given mode. This view of centering helps to explain why, for
example, centering data with missing elements is likely to be suboptimal if there are many missing
elements. Building a model for data consists of two parts: postulating a structural model and using
a method to estimate the parameters. Centering has to do with the first part: when centering, a
model including offsets is postulated. Scaling has to do with the second part: when scaling,
another way of fitting the model is employed. It is shown that centering is simply a convenient
technique to estimate model parameters for models with certain offsets, but this does not work for
all types of offsets. It is also shown that scaling is a way to fit models with a weighted least squares
loss function and that sometimes this change in objective function cannot be performed by a
simple scaling step. Further practical aspects of and alternatives to centering and scaling are
discussed, and examples are used throughout to show that the conclusions in the paper are not only
of theoretical interest but can have an impact on practical data analysis. Copyright © 2003 John

Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Definitions

It is important to have a concise terminology for scaling and
centering. The following convention is based on sugges-
tions from the literature [1-4]. The term ‘an offset’ —also
sometimes called an intercept—is used for a part of the
model that is constant across one or several modes. An R-
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component bilinear model of a data matrix X (I x J) with
elements x; may be written in terms of scalars or in matrix
notation as

R
X=00T +E & Xjj = Z d)i,.H]‘, +&ij (1)
r=1

where @ (I x R) and © (J x R) hold the parameters ¢;. and
0;, respectively and Greek letters are used to indicate
population parameters. The matrix E holds the unknown
errors. Offsets may be constant across the first mode (rows).
The model associated with such offsets is

R
X=00"+1p " +Ee xy =Y ¢0, 1+ (2)
r=1

where p (J x 1) holds the constant terms y; (j=1,...,]), and 1
is a one-vector of suitable size (I x 1 in this case). Again the
Greek letter p indicates a population value. Offsets may
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Autoscaled

Figure 1. Example of centering and scaling using sugar process data (see text).

also be constant across the second mode (columns). The
underlying bilinear model with offsets across the second
mode reads

R
X=00" + p1" +E = Xij = Z birbjr + 1+ (3)
r=1

where the vector p (I x 1) is now holding the offsets y;
(i=1,...,0). Offsets may also be constant across columns and
across rows, yielding

R
X=00" +11" +E& xj=) ¢yl +ute; (4)
r=1

in which the single constant p is the same for all elements of
X. Such a situation may arise for example in chromatogra-
phy or capillary electrophoresis, where a constant offset in
the detector may appear owing to the way in which the
detector zero-level is determined.

Thus for bilinear models there are two basic types of
offsets: constants across one mode (columns or rows) or
constants across both modes. Combinations of such offsets
may also appear, as seen for example in analysis-of-variance
settings.

As will be shown below, offsets are often handled by first
centering the data and subsequently fitting the bilinear
model. If the data are centered by subtracting the column
average from every element in the column, this is referred to
as centering across the first mode. Mathematically it can be
expressed as

I

Yij = Xj == (5)
where y;; is an element of the centered data matrix. If m
(J x 1) is a vector holding the jth column average in its jth

element, then centering across the first mode can also be
expressed as

Y =X—1m’! (6)

where 1 is an I-vector of ones and Y is the matrix holding the
centered data. Subtracting the row average from each
element in a row is referred to as centering across the second
mode and can be expressed as

J
yij = % — ] 7)
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or, using m (I x 1) as a vector holding the ith row average in
its ith element,

Y=X-mi" (8)

In general, centering across one mode is also called single
centering, and performing for example a centering across the
first mode and then a subsequent centering of the outcome
across the second mode is called double centering. The term
slab centering, which is sometimes seen in the literature,
refers to centering by subtracting, from each slab in a three-
way array, the overall average of that slab. For two-way data
this simply corresponds to subtracting the average of all
elements.

For scaling, another terminology is used. When a matrix is
scaled such that each row is multiplied by a specific scalar, itis
called scaling within the first mode (y;; = x;w;). If each column is
multiplied by a certain scalar as in traditional autoscaling, it is
referred to as scaling within the second mode (y;; = x;w;). In
matrix notation, scaling within the first mode can be written as

Y = WX 9)

where Wis an I x I diagonal matrix holding the scalar w; in its
ith diagonal element. Scaling within the second mode can be
written as

Y = XW (10)

whereWisnow a ] x Jdiagonal matrix holding the scalar w;in
its jth diagonal element.

An example of centering and scaling is shown in Figure 1.
The data are from a sugar factory (see Reference [5] for more
information). The variables shown are ash (1), color (2), color
type (3), turbidity (4), grain sizel (5), grain size2 (6), SO, (7),
invert (8), floc (9), insoluble residue (10) and amino-N (11),
which are all measured in different units of different
magnitude. Each line in a plot is the status (‘spectrum’) of
these 11 variables at a certain time. Ninety-seven times are
shown. The raw data are shown on the left side. The different
ranges of these variables will manifest themselves in a
subsequent modeling of the data, where the variables with
little variation will not be modeled to any significant degree.
Centering (across the first mode) will not remove these scale
differences but will move the variation of each variable to the
zero-level. As the differences in scales between variables are
arbitrary, it is useful to scale the data so that each variable
has the same initial standard deviation (and remove
different measurement units). This can be achieved by
scaling the centered data within the second (variable) mode.
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The corresponding autoscaled data are shown on the right
side of the figure. It is seen that the variation of each
processed variable is comparable for the autoscaled data.
The outlying sample in the lower part of the plot, however,
leads to too dramatic a downweighting of, for example,
variable 1 and should hence be excluded before preproces-
sing is carried out.

It may seem strange that different words are used for
scaling (within) and centering (across). The explanation for
this is as follows. Centering is performed across a mode in
the sense that one offset is subtracted from every element in a
certain vector, i.e. the data are centered across the elements of
one mode. The same holds for three-way data; the average
value is subtracted from each element of a vector. Scaling is
performed by multiplying all elements in the array contain-
ing a certain variable (or object) by the same scalar. For two-
way data, scaling therefore also pertains to vectors, but e.g.
for three-way data this means that a whole slab (correspond-
ing for example to the I x K matrix of the jth wavelength in a
spectral three-way array) has to be multiplied by the same
scalar. Thus scaling is performed within the elements of one
mode.

In the following, much use will be made of the notion of
‘fit" or ‘model fit". In general terms this means what portion
of the data is fitted by the model. This can be expressed by

X=X+E

11
e IXIP =B P an
X XP

where X contains the data, X contains the fitted values of the
data using the model, and E contains the residuals. The
symbol ||A|| denotes a norm of A, here taken to be the
Frobenius or Euclidean norm (square root of the sum of
squared elements of A). The R statistic can take on values
between zero and one, where one means perfect fit and zero
means no fit. The fit may also be expressed in percentages
between 0% and 100%.

1.2. Leading Principles

There are two leading principles in this paper. The first
principle is parsimony. It is preferred that a model is as
simple as possible. This means that if two models give the
same fit, the model using the fewer parameters is preferred.
This idea goes back to William of Ockham who lived in the
Middle Ages and stated that a minimum number of
assumptions should be adopted to explain a phenomenon
[6]. This principle is known as ‘Ockham’s razor’. In statistics
the notion of parsimony is formulated in statistical decision
theory [7], and in chemometrics it was introduced as the
‘parsimony principle” [8].

The second principle is that centering in this paper is not
considered to estimate offsets but to remove offsets. Estimating
offsets is a different issue than removing them, and
estimating offsets has its own properties and problems.

1.3. Outline of paper

In the main part of the paper, only two-way (bilinear) models
are considered, because most results generalize straightfor-
wardly to multiway models. Section 2 is concerned with two-
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way centering, Section 3 with two-way scaling, and Section 4
with the combined use of two-way centering and scaling.
Section 5 explains the discussed results in terms of multiway
models, and finally in Section 6 some conclusions are drawn.

1.4. Notation

The following notation is used in this paper. Two-way data
are held in an I x | matrix X with typical elements x;;. Three-
way data are held in an I x | x K matrix X with typical
elements x;3. Such a three-way array is often rearranged to
an I x JK matrix X! */® by concatenating the K third-mode
frontal slabs after each other, ie. X!/ =[X; X, ...X«],
where X; is the I x | matrix obtained by fixing the third mode
of X at k. This operation has been referred to in a number of
ways (e.g. unfolding), but it has been suggested to use the
term matricizing to avoid confusion with other techniques
[2]. The matricized array is often just denoted X instead of
X IR if no confusion is possible. The letter Y is used for
preprocessed data and X is used for a model of X (be it two-
or three-way). The number of components in a model is
called R.

The letter m is used for calculated offsets (e.g. averages)
and p is used for true offsets (population values). The letter w
is used for a scaling parameter. The letter P is used for a
projection matrix related to centering. Usually its dimension
will not be specified, because it follows from the context.
Similar rules apply for the diagonal matrix W holding the
weights associated with scaling the array.

The Kronecker product is denoted ®, the Hadamard
(element-wise) product is denoted » and the Khatri-Rao [9]
product, which is the column-wise Kronecker product of two
matrices, is denoted ©. The use of these special products
makes it possible to express most three-way models with
two-way (matricized) arrays [10]. For example, a PARAFAC
model of an I x | x K array X can be expressed as

XK = A(C®B)! + ETIK) (12)

where A (I xR), B (] xR) and C (K x R) are component
matrices and E holds the residual unexplained variation.
This notation is equivalent to the model

R
Xijk = > airbjrc + eiji
2 1)

i=1,...,], k=1,....K

2. TWO-WAY CENTERING

In order to understand when and how centering works, it is
important first to consider the goals of centering and to
realize how these goals are achieved in practice. These
aspects are described in this section.

2.1. Reasons for centering

As stated by Harshman and Lundy [1], quite subjective and
qualitative reasons are often given for performing centering.
It is possible to formulate rational reasons for centering on
scientific grounds. Basically, centering should be performed
only if there are common offsets in the data or if modeling
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such offsets provides an approximately reasonable model.
Thus centering is performed to make interval-scale data
behave as ratio-scale data, which is the type of data assumed
in most multivariate models. Said more simply, centering
should make a difference. This difference can manifest itself
as:

(i) reduced rank of the model;
(ii) increased fit to the data;
(iii) specific removal of offsets;
(iv) avoidance of numerical problems.

Re (i). If a model of the raw data requires, say, R+ 1
components to describe the data well, whereas a model of
the centered data requires only R components, then
centering is sensible, because the model of the centered data
only has R(I 4 ]) + ] parameters. The | parameters pertain to
the calculated averages, assuming that centering is per-
formed across the first mode. The alternative of fitting the
(R + 1)-component model to the raw data would lead to a
model with (R + 1)(I + ]) parameters and thus would violate
the parsimony principle. Re (ii). In some situations the rank
of the appropriate model is not reduced upon centering, but
if the fit of the model of the centered data is significantly
improved, then naturally introducing extra parameters is
useful. It is possible to heuristically consider the offsets
introduced by centering as one extra ‘half’ component of
which either the scores (centering across first mode) or the
loadings (centering across second mode) are known a priori
to be equal to one. This holds in the sense that the fit of a
model with R components is poorer than the fit of a model
with R components and offsets, which again is poorer than
the bit of a model with R + 1 components. Re (iii). Centering
can remove certain offsets. In some situations the offsets as
such are of interest, in which case it is interesting to estimate
these. This can usually not be achieved by centering. Re (iv).
In certain algorithms it may be useful to center the data in
order to minimize algorithmic problems. For fitting a
bilinear model using principal component analysis, it is
known that the ratio of the two largest eigenvalues is related
to the convergence rate of the power method (and related
techniques such as NIPALS). For PARAFAC it is also known
that if some components are strongly correlated, as
evidenced through Tucker’s congruence coefficient [11],
then the fitting procedure may be complicated by so-called
swamps. For both situations it holds that centering across
certain modes can be helpful in minimizing the cause of the
problem, because the resulting optimization problem is
related to a different model with different (and hopefully
better) properties with respect to numerical problems.

2.2. How centering works

2.2.1. Centering can remove offsets because it is a

projection step

The following discussion pertains to centering across the

first mode (ordinary column centering) but is readily

applicable to centering across the second mode as well.

Understanding that centering is a special projection step

within one specific mode explains why it eliminates constant

terms in the data (see Appendix I for details on projections).
If the vector m holds in its jth element the average of the jth

Copyright © 2003 John Wiley & Sons, Ltd.
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column of X, then m can be expressed as
m = (1/DX"1 & m" = 17/1)X (14)

where 1 is an I-vector of ones and X (the data) has size I x J.
Then centering X across the first mode (column centering)
amounts to

Y =X—-1m' (15)
where Y (I x ]) contains the centered data. As
1m" = (117 /)X (16)
the centered data can also be expressed as
Y=X-1m" =X - (117/1)X

=[1-@11Y/D)X=(I-P)X=PX 17)

where PX=P[xy, ..., ] =[Pxy, ..., Pxj], and x; is the jth
column of X. The matrix (117/I)=P is a symmetric and
idempotent (I x I) matrix and is thus an (orthogonal)
projection matrix (See Appendix I). This shows that the
column averages are the orthogonal projections of the
columns of X onto the direction of ones, i.e. the direction
given by the vector 1. The centering matrix I —(117/I) = P* is
the projection matrix onto the nullspace of 1" which equals
range(1)" (where range(-) is the range of a matrix). Stated
otherwise, centering may also be interpreted as providing
the residuals after regressing the columns of X onto 1. It
follows that centering may be viewed as the projection of the
data onto a space with the common offset (given by the I-
vector 1) removed.

Mathematically, centering is a projection onto the null-
space of 1T and it is worthwhile to keep this in mind.
Suppose that the true model of the data contains offsets
across the first mode. Then the model can be written as

X=00"+1u" +E (18)

Projecting these data onto the nullspace of 1" leads to
P*X =P*0@" + P+1u’ + P'E = (19)
P'X=Y=P' 00" + P'E (20)

where PYX =Y is the matrix holding the centered data, and
the matrix PLlpT vanishes, as 1 has no residuals when
projected onto itself. The part P*®@" is a bilinear model
with scores P*® and loadings ©. Thus, instead of fitting the
bilinear model and the offsets to the original data, it is only
necessary to fit the bilinear model to the centered data Y with
true structure P*®®" + P*E. Centering also leads to models
with residuals with zero column averages (centered across
the first mode), because these are also projected onto the
nullspace of 1%, as is clear from Equation (20).

If ® and O are non-negative, then non-negativity
constraints can be imposed on the model for X. When X is
centered, e.g. across the first mode, such a constraint is not
meaningful for ® anymore, because centering destroys the
non-negativity of ® (but not of ®).

2.2.2. Centering across several modes

As mentioned earlier, centering across a given mode is called
single centering. Single centering an array across one mode
that has previously been single centered across another
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mode is called double centering. Performing several single
centerings (for multiway arrays, as many can be performed
as the number of ways) is unproblematic, in the sense that
centering across one mode leaves the ‘centeredness’ intact in
other modes [1]. Further, the order of centering is imma-
terial. This means that if the data are first centered across the
first mode, and subsequently the centered data are centered
across the second mode, then the average of every column
and every row will be zero. This follows because centering
across the first mode can be written as P;-X, where P} is the
centering operator for the first mode. Centering across the
second mode can be written as XPf. Thus double centering
can be written PILXP]L, and hence (i) the order in which
centering is performed is immaterial and (ii) the double-
centered array will have both column and row average zero,
because PILXPIL can be viewed as centering the matrix XPIL
across the first mode or centering the matrix P;-X across the
second mode.

2.2.3. Centering is a two-stage procedure for a least
squares fitting problem

Consider a two-way data set which is generated as
X=20" +1p" + E (21)

where ®is[ x R, ® is | x R and p is | x 1. It follows that the
data can be modeled by a bilinear model plus a common
offset for each variable/column plus additional unmodeled
variation held in the residual matrix E. This is the model
assumed to be a valid approximation in most bilinear
methods in chemometrics. The least squares loss function for
the above model is

[X — (ABT 4+ 1n")]|]? (22)

and this function is to be minimized directly over A, B and n,
with A, B and n being of the same dimensions as ®, ® and p
respectively. The matrices A, B and n contain estimates of @,
©® and p respectively, but it is intrinsic to the problem that
these estimates do not uniquely recover the underlying
parameters. For example, ® and ® can, at most, be found up
to a rotation. As shown above, however, the parameters can
be estimated in two steps. Centering the data across the first
mode will remove the offsets p, and the bilinear model is
subsequently fitted to the centered data Y, thus minimizing
the loss function

Y - cD|)? (23)

only over C and D which are of the same dimensions as A
and B above. It holds that

min||X — (AB” + 1n")||> = min||Y — CDT|>  (24)

i.e. the fit of the model fitted directly and the fit of the
bilinear model fitted to the centered data will be exactly the
same (see proof in Appendix II) even though the actual
parameters will usually differ. This is an important result,
because it guarantees the optimality of the model even if the
offsets are calculated separately from the bilinear par-
ameters.

The solution for minimizing Equation (22) directly is not
unique for n. That is, the two-stage solution of centering first

Copyright © 2003 John Wiley & Sons, Ltd.

and then fitting the bilinear part gives one solution of many
to the problem in Equation (22). Therefore centering removes
p, but m is not necessarily an estimate of p.

This non-uniqueness is explained in short. Centering
involves subtracting from each column its column average.
The matrix

PX = POO" + P1u" + PE (25)

holds in each row the vector m" containing the average value
of each column of X (P is 117 /1, as above). If the part P®®" is
a matrix of zeros, then m will be an estimate of the true
offsets p (with error PE), because

P1p’ =1u" (26)

by definition. However, POO" will only be a zero-matrix if ®
is orthogonal to P and/or ® = 0 (assuming that ® and © have
full column rank). That is, P® = 0 or ®"P = 0. Thus the offsets
will only equal the true offsets if the column space of @ is
orthogonal to 1 (meaning that @ is centered already) or if
0 =0.

2.2.4. Rank reduction and centering
In some cases, centering reduces rank, and in some cases it
does not. Column centering of X (I x ]) reduces the rank of X
if and only if 1 erange(X), where range(X) is the range of X
(see Reference [12], p. 156, and Reference [13]). Intuitively
this is understandable. Centering is a projection. If the axis
on which the projection takes place is a part of the range of X,
then the residuals of this projection do not have this direction
available anymore. Hence the rank of the matrix of residuals
is lowered by one. This simple fact has several repercussions
for centering across the first mode (column centering).

The following can be said about the noiseless case.
Suppose that X (I x ]) is noiseless and can be modeled as

@T

HT

X=00" +1u" = [0 1] (27)

where @ is [ x R of full rank and ® is | x R. Assume that

@T

W

has full rank R + 1, which will be fulfilled for real data.

For Y, the column-centered X, two cases can be distin-
guished.

1. 1 € range(®) = rank(X) =R = rank(Y)=R — 1.

2.1 ¢ range(P) = rank(X) =R+ 1 = rank(Y) = R.

Hence in both cases the rank of X is reduced by one. The
reverse also holds: if for the noiseless case no rank reduction
of X is obtained upon column centering, then model (27) is
not valid. To summarize, in the noiseless case there is a
simple relation between the validity of model (27) and rank
reduction upon column centering.

In the case with noise added, things are less simple.
Suppose that X (I x ]) also contains noise and the model for X
is
T

X=00"+1p" +E=[® 1] +E (28)

W’
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If I>], then in general 1 ¢ range(X). Although 1 € range
(‘noiseless” X), this property is destroyed upon adding noise
to X. In the case I <] and if X has full rank I, then 1 is by
definition in the range of X, whether or not there exists an
offset term 1uT. Hence in the case with noise there is no
simple relationship anymore between the validity of model
(28) and mathematical rank reduction upon column center-

mg.

2.3. When centering does not work

Viewing centering as a projection step rather than as a simple
subtraction of averages has more than theoretical impor-
tance. In practice, situations often occur where subtraction of
averages does not work and may in fact lead to models that
fit the original data more poorly than if the data had not been
preprocessed. This will be shown in the following for two
different problems: handling missing data and modeling a
single common offset.

2.3.1. Handling missing data

When data are missing, centering by subtracting averages
from columns or rows does not lead to elimination of offsets.
Rather, the offsets have to be eliminated simultaneously with
the fitting of the bilinear part [14]. This is so because the
equivalence between subtracting average values and pro-
jecting onto the nullspace of vectors of ones no longer holds,
as the projection cannot be calculated with missing elements.
As an example, consider the matrix XD shown below:

(10 207 [ 59 1187

75 15 34 78
XD =11 21, YV=|-31 -62

15 3 —26 —52

L 05 1] | 36 —7.2]

T 7 207 r7 0 1187

7 15 ? 7.8
X = |1 21, YP=| 0 -62| (29

15 3 05 —52

105 1] |05 —7.2]

This is a rank-one matrix and will remain so even after
centering across the first mode. The averages of the two
columns are 4.1 and 8.2 respectively and the centered matrix
reads as Y in Equation (29), which is also a rank-one
matrix.

Consider now a situation in which the first two elements
in the first column are missing. The data then read as X®®.
This data set is naturally still perfectly modeled by a rank-
one bilinear model, as no new information has been added.
The averages of the two columns are now 1 and 8.2
respectively and subtracting these values leads to the
centered matrix Y®. This matrix cannot be described by a
rank-one model. This is easily realized by only looking at the
last three rows. This is a rank-two submatrix, and the
addition of the first two rows cannot change this. Thus, by
subtracting averages from the data with missing elements,

Copyright © 2003 John Wiley & Sons, Ltd.
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the structure of the data has been destroyed and meaningful
results cannot be expected. Prior centering no longer leads to
elimination of the true offsets as centering ordinarily does.

Centering is really an extension of the bilinear (or multi
linear) model where offsets are assumed to be present in the
model of the data. Data with missing elements constitute one
situation in which such a model cannot be fitted in a least
squares sense using centering. An alternative to eliminating
offsets by preprocessing is given in Section 2.4.

2.3.2.  Subtracting the grand mean

The traditional centering across the first mode easily leads to
the belief that subtracting averages with the same structure
as the offsets will generally eliminate these offsets. This
holds for offsets constant across one mode, but it does not
hold in general.

Consider a data set structured as a bilinear part plus a
constant identical for all elements; that is, all elements have
the same common offset, as also shown in Equation (4). It
might seem natural to remove this offset by initially
subtracting the grand mean m from the data. However, this
will not simplify the subsequent modeling of the data, and,
in fact, it obscures interpretation of the model, because such
a centering leads to artificial mathematical components that
also need to be modeled.

To explain this, assume that X is perfectly described by a
bilinear part plus a common offset:

X=00" +1/1}u (30)

Centering by removing the overall mean of all elements of X
can be written as

Y = X — P)XP, (31)

where Pj is the projection matrix of 1;(= 1]1]T /]) and Py is the
projection matrix of 1;(= 1;1} /I). Then P,XP; is a matrix of
the same size as X holding the overall average of X in all its
elements. Inserting the true model of Equation (30) in
Equation (31) leads to

Y = 00" + 1,1y — P;(@O + 1,1} )P,
= 00" +1,1fpu — P OOP; — P11/ P
= 00" + 1,1 — P®O'P; — 1,1
= 00" - P,00'P,
= 00" —1/1}s (32)

The scalar s is the overall average of the true bilinear part
®OT. Even though the overall mean u has been removed, a
new common offset s has been introduced into the
preprocessed data, and hence the same number of compo-
nents is still necessary for modeling the data. Depending on
the true parameters in the underlying model (®®"), the
model fitted to the preprocessed data may therefore explain
less or more of the original data than if the data had not been
preprocessed! Clearly, preprocessing the data by subtracting
the overall mean is generally not useful.

As subtracting the overall level does not remove the offset,
another approach must apparently be adopted for handling
situations with one common offset. There are basically two
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Table I. Percentage of variation explained for different models of
raw (left) and corrected (right) data

#LV Raw data Overall average subtracted
1 99.19% 98.05%
2 99.58% 99.08%
3 99.95% 99.67%
4 100.00% 100.00%
5 100.00% 100.00%

different ways of treating the problem. The best way is to
optimize the loss function of the problem directly in a one-
step procedure, rather than trying to use a two-step
procedure where the offsets are first removed (see Section
24.).

Another simpler way of dealing with a constant offset
follows from the observation that the model

X=00" +1/1]u (33)
may equivalently be written as
X =00" +1;u" (34)
where
=T (35)

Posed in this way, it is evident that a model with one
global offset is a special case of the situation treated earlier
where each variable (or sample) has a specific offset.
Therefore the constant offset may be eliminated by using
ordinary centering across the first mode. As the offset is
constant across rows, this centering removes the constant.
An alternative procedure is to center across columns
instead of rows, because the offset is also constant across
columns.

Loadings overall-centered data

Loading

o 25 50
Spectral variable

An example is given for illustration. Consider a spectral
data set. The data have been synthesized according to a
bilinear three-component part plus a scalar offset of one.
Thus the model is

X=00" 4117 (36)

No noise is added. Using principal component analysis to
model the raw data, four components are needed for
describing the variation as expected (Table I, left). Modeling
the data centered by subtracting the overall mean leads to a
situation where four components still have to be used for
describing all systematic variation (Table I, right). In fact, the
three-component model explains less of the original data
after preprocessing in this case.

Even though only three systematic components should be
present, the loading plot (Figure 2, left) clearly shows that the
first four components are ‘spectral’-like. With proper
preprocessing, only three loading vectors will be systematic,
as shown in Figure 2 (right), using centering across the first
mode.

Single centering involves fitting several parameters (I or |
respectively). When there is only one constant parameter in
the true model, as is the case here, a risk of overfitting is
introduced with this approach. It is advisable, therefore, to
center across the mode of largest dimension so that as few
offsets as possible need to be estimated.

To recapitulate, the following rule establishes the ‘correct’
procedure for removing offsets before fitting the model:
centering across one mode removes offsets constant across
that mode as well as offsets constant across both modes [1].
This important rule also extends to multiway data of
arbitrary order. Thus centering across one mode removes
offsets constant across that mode as well as offsets constant
across several modes involving that mode. This general-
ization follows from realizing that multiway models can

Loadings single-centered data

0.5

Loading

Spectral variable

Figure 2. Left. Loading plot from principal component model of the data matrix where the overall average is subtracted. Right.
The first five loadings are shown when the data have been correctly centered across the first mode.
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always be considered as a constrained version of a bilinear
model. Hence offsets constant across an arbitrary number of
modes can always be considered a constrained version of a
model with offsets constant across one mode. Centering
across one of these modes will therefore eliminate the offsets
because of the projection properties of centering.

2.4. Alternatives to centering

Instead of modeling the data in two steps —removing offsets
by centering and then fitting a model to the residuals —it is
possible to fit the model in one step, alleviating the need for
projecting the offsets away. Two examples are given.

The example of missing data (Section 2.3.1) can be fitted
directly in the following way. Assume that the offsets are, for
instance, constant across the first mode and that a principal
component analysis model is sought including offsets across
the first mode. Such a PCA model of the data held in the
matrix X including offsets reads as

X=00" +1p" + E (37)

where pis a J-vector. A very simple way to fit this model to a
data matrix with missing elements in a least squares sense is
by the use of an alternating least squares approach where the
missing elements are continuously exchanged with their
model estimates. Such an algorithm may proceed as
follows.

1. Initialize missing values with reasonable values. Then
the data set is complete and can be modeled by ordinary
techniques.

2. Fit the model including offsets to the (now complete)
data set. For PCA this amounts to centering the data and
fitting the PCA model.

3. Exchange missing values in the data matrix for model
estimates. These estimates will improve the current
estimates and thus provide a data set where the
estimated missing elements are closer to the correct
ones according to the (yet unknown) true least squares
model.

4. Proceed from step 2 until convergence.

This approach can be shown to converge, because it is an
alternating least squares algorithm and hence has a non-
increasing loss function. Upon convergence to the global
minimum the imputed missing data will have no residuals
and hence no influence on the model. The model parameters
computed from the complete data are exactly those that
would have been obtained had the model only been fitted to
the non-missing data directly*. This approach can be viewed
as a simple special case of expectation maximization [15]. For
specific models or specific offsets, other approaches can also
be feasible, but the above approach is general and easily
implemented.

The problem with one common offset (Section 2.3.2) can be
dealt with in the following way. The loss function for a

* If the algorithm for fitting the bilinear part of the model is
iterative, it is useful not to iterate until convergence in each step
2. Instead, only a few iterations are performed before one
proceeds to step 3 where the complete model (AB* + 1m” in the
case of PCA) is calculated and used for obtaining better
estimates of the missing values.

Copyright © 2003 John Wiley & Sons, Ltd.
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bilinear model with constant overall offset is expressed as
X — ®0" — 1,1} u* (38)
Instead of fitting the overparametrized model
X=AB" +1m" +E (39)

in a two-step procedure (see Equation (34)), it is possible to
fit a “correct’ structural model

X=AB" +m11" + E (40)

directly. Instead of | parameters in m, only one parameter m
has to be estimated. The PCA model is used here as an
example, but it may be exchanged with any other structural
model, including a three-way model. Also, other types of
offsets may be used. The loss function may be optimized in
several ways leading to a least squares model [16,17]. A
simple algorithm is based on alternating least squares where
first the offset is set to an initial value. Then the structural
model is fitted to the corrected data X —m11" using an
ordinary PCA algorithm in this case. This provides an
update of the bilinear parameters. Subtracting the new
interim PCA model from the data leads to

X—-ABT =m11T + E (41)

Therefore m may be determined conditional on A and B as
the overall average of X — AB'. By alternating between
updating the loading parameters and the offset, the model
parameters will be estimated upon convergence.

In a three-way context using a PARAFAC model, an
auxiliary benefit is that the offsets may often be uniquely
determined owing to the uniqueness of the PARAFAC
model.

2.5. Summary

Offsets are part of the model hypothesized for the data. Some
offsets can be removed by centering before fitting the
remaining part of the model. This removal of offsets involves
fitting additional parameters. Proper centering is defined as a
centering operation that removes the offsets postulated and
does not change the structural model of the data. Proper
centering is always performed across a single mode.
Sequential centering across several modes is allowed. Hence
proper centering can always be written as PiX, XI’]L or
P,LXP]L, depending on whether centering is performed across
the first, second or both modes. Here Pf is an I x I matrix
defined as I —(117/I), where I is an I x I identity matrix and 1
is an I-vector of ones. The matrix P]L is defined similarly. If
elements are missing or other offsets are to be modeled, this
has to be done using a one-step modeling approach where
offsets and other parameters are considered simultaneously
(usually using iterative algorithms).

3. TWO-WAY SCALING

Unlike centering, scaling does not change the structure of the
model. Scaling is used to change the weights given to
different parts of the data in fitting the model. Although
scaling is important, it usually has a much less dramatic
influence on the fitted model than centering, as long as the

J. Chemometrics 2003; 17: 16-33

23



24 R. Bro and A. K. Smilde

Raw data

23
o)
<

-0.5 ' : ;

200 300 400 500
Wavelength/nm

; Raw data
s 0
® 08 @@
: $
3
c
8 0.6
§ .
& o ©
@
I 0.4 °
x O o

0
0]
0.2

0.5 1 15 2 25 3 3.5
First principal component

Scaled data
[72]
o0
<
200 400 500
Wavelength/nm
; Scaled data
: ‘ ‘ 0
< o
T 08 0@
= 0
8 (555@
c
8
2 0.6 ,
c
o o)
@
© 04 0
x U 0
0
o)
0.2

50 100 150 200 250 300
First principal component

Figure 3. Influence of scaling on fitted model.

model and scaling are reasonable [18]. Some issues related to
scaling are discussed by Paatero and Tapper [19].

3.1. Reasons for scaling
Scaling is used for several reasons. Some important ones are:

(i) to adjust scale differences;
(ii) to accommodate for heteroscedasticity;
(iii) to allow for different sizes of subsets of data (block
scaling).

Re (i). It is quite common to use, for instance, autoscaling
(centering across the first mode and scaling to unit standard
deviation within the second mode) to let the variance of each
variable be identical initially. Thereby all variables have the
same variance, and as the subsequent fitting of a model is
performed so as to describe as much systematic variation as
possible, every variable has the same initial opportunity of
entering the model. This type of scaling is especially useful
when the variables are measured in different measurement
units (e.g. Pa, °C, ...) Re (ii). The ordinary least squares fitting
of a model is statistically optimal in a maximum likelihood
sense if the errors are homoscedastic, independent and
Gaussian. If the variances of the distributions are not the
same, though the same within e.g. a specific variable, it is
possible to accommodate the fitting procedure accordingly
by initially scaling the data within the variable mode. By
scaling each variable with the inverse of the standard

Copyright © 2003 John Wiley & Sons, Ltd.

deviation of the residual variance, the fitted model will be
optimal in a maximum likelihood sense. Re (iii). When the
data are made up of several subsets of very different sizes, it
may sometimes be advantageous to scale each block
separately in order to ensure that all the different blocks
are allowed to influence the model. Consider for example a
situation in which 5000 wavelengths are measured in an
infrared spectrum (absorbance between 0 and 1), and one
variable is given for the temperature. Owing to the huge
difference in number of variables (5000 and one respec-
tively), the total variance of the infrared spectra will be
tremendous compared with that of the temperature. If no
scaling is applied to adjust for this difference, then the model
is implicitly forced to focus on the infrared data. Explaining
the temperature variable will not lead to a well-fitting model,
unless the model is so complex that it can fit both subsets
simultaneously or the temperature data are in accordance
with the infrared data. If the infrared data and the
temperature data are initially believed to be equally
important, then scaling both subsets to the same total
variance will provide a model that reflects this assumption.
Thus, in this case, scaling is used from an information point
of view to ensure that all important information can enter the
model, irrespective of the variance of the different sources of
information.

It is important to note that even if no scaling is applied, the
data are still scaled by the weight one. Thus scaling (or the
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loss function in general, as will be shown in the next section)
always has to be considered before fitting the model.

All the above-mentioned reasons can be put under the
same heading by the term weighted least squares fitting,
which is a general and broader approach to fitting models
than merely the use of scaling. This will be elaborated on in
the next section.

3.2. How scaling works

Scaling is a subject often treated in conjunction with
centering. However, the purpose of scaling is very different
from that of centering. Scaling is a way of introducing a loss
function other than the least squares loss function normally
used. Therefore scaling does not change the interpretation of
the model and its parameters. As for centering, scaling has to
be performed in a specific way in order not to introduce
artificial structure that needs to be modeled. This becomes
even more apparent when going to three-way models.

3.2.1. Different types of scaling

Scaling is usually performed by multiplying each column or
each row in the data matrix by a scalar. There are two types
of scaling that are relevant for two-way matrices. One is
scaling within the first mode, where every row is multiplied
by a specific number:

Y = WX (42)

where W is an [ x I diagonal matrix with the scaling
parameter for the ith row on its ith diagonal element. This
is the type of scaling used for example in standard normal
variate correction [20-22], where the norm or area of each
row of X is scaled to the same scalar value by using an
appropriate W. It extends easily to multiway arrays, as
discussed in Section 5.2.

The other main type of scaling is within the second mode,
where every column is multiplied by a specific number:

Y = XW (43)

where W is here a | x | diagonal matrix with the scaling
parameter for the jth column on its jth diagonal element. This
is the scaling ordinarily used in e.g. PCA, where the weight
of a specific column (variable) is often chosen to be the
inverse of the standard deviation of the variable. In
combination with centering across the first mode, such
scaling within the second mode is often referred to as
autoscaling in the two-way case.

An example of scaling according to Equation (43) is shown
in Figure 3. One-component bilinear data with huge random
residual variation in the last half of the variables (upper left)
are generated. The resulting X has the spectra (as plotted in
Figure 3, upper left) in its rows. The first principal
component is seen to correlate well with the reference score
generating the data (lower left). However, when the data are
initially weighted as in Equation (43) by the inverse of the
residual standard deviation (upper right), the right part of
the data is downweighted substantially. The correlation
between the true known score (‘concentration’) and the
estimated score of the scaled data is even higher (lower right)
than for the raw data (left). Even in this extreme case the
influence of the noise is not at all as drastic as might be

Copyright © 2003 John Wiley & Sons, Ltd.
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expected. This illustrates that scaling is not as critical as
centering, as long as the scaling is reasonable and the
variables are relevant. Note that the scaling in this example is
not the usual autoscaling using the inverse standard
deviation of the data. Rather, the inverse standard deviation
of the residual variation, for instance, assessed by replicates,
is used.

3.2.2.  Scaling and weighted least squares fitting
Given a data matrix X (I x J) and a model X (I x J), which
may for example be a bilinear model (X = AB"), a standard
approach for determining the model and its parameters is to
fit the model in a least squares sense by minimizing the loss
function

X =X (44)

which can also be expressed as
I ] )
Z > (xj — %) (45)

When the different elements of the data have different
uncertainties or relevances, it is possible to fit the model
using a weighted least squares loss function. In one of its
simplest forms this can be expressed as

(X = X) = W|* (46)

where W (I x ]) holds in its ijth element the weight of the ijth
element of X, and * denotes the Hadamard (element-wise)
product. Often the weight of an element is set equal to the
inverse of the standard deviation of the residual variation. It
is also possible to use more elaborate weights if there are
certain correlations between the residuals [23,24]. The above
weighted loss function can also be expressed in scalar
notation as

I

(x5 — )" (47)
i=1 j=1
In a maximum likelihood sense this loss function is optimal if
the weights reflect the uncertainty of the individual
elements, if there is no correlation between the residuals of
different elements and if the residuals are normally
distributed. If the uncertainty of a given variable is the same
over all objects, the above model turns into

10X = X) = W* = [ (X = X)W (48)

where the weight matrix W is now a diagonal matrix which
holds the column-specific weights in the diagonal. The loss
function may be transformed as follows:

(X = X)W]* = |[XW — XW|]* (49)
In the case of a bilinear model the above reads as
I(X — AB")W||* = | XW — AB"W||* = |XW — AH"|* (50)

Thus, by fitting the bilinear model AH" to the data scaled
within the second mode, XW, in an ordinary least squares sense,
the weighted loss function of Equation (48) is automatically
optimized. This is the basic mathematical rationale behind
scaling. If the sought model X has the structure AB”, then
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fitting a bilinear model to the scaled data provides the model
in the form AH". Thus the score matrix (or a rotated version
of it) is directly provided in A, whereas the loadings of the
problem are found by premultiplying the found loadings H
by W as

BW=H'=B'=HW!=B=W'H (51)

Sometimes, only the scaled data are considered and the
model parameters are not transformed back to the original
domain. The appropriateness of this approach is still,
however, governed by the fact that scaling as outlined above
maintains the bilinear structure assumed reasonable for the
raw data.

There is a direct connection between ||(X — AB")W/||? and
[XW — AH"||>. However, there is no direct connection
between the solution to ||(X — ABY)W]|? and ||(X — TPY)|]?
unless the model has perfect fit. That is, fitting the bilinear
model to scaled and unscaled data represents two different
problems with no direct relation.

3.3. When scaling does not work

When scaling within several modes is desired, the situation
is complicated, because scaling one mode affects the scale of
the other mode. For example, scaling to a standard deviation
of one within both the first and second modes will generally
not be possible, not even using iterative scaling [1]. If scaling
to a mean square of one is desired within both modes, this
has to be done iteratively until convergence [1,4]. Using
mean squares rather than, for instance, standard deviations
for scaling has the attractive property that iterative scaling is
guaranteed to converge in the case where no centering is
included in the iterative scheme [1].

Iterative preprocessing may seem unsatisfactory, because
it tends to complicate the subsequent evaluation and
validation of the preprocessing, since more than one set of
scaling parameters for each mode has to be used. These
several matrices holding the scaling parameters from each
iteration may be combined, though, into a single matrix [1].
An ad hoc alternative is to skip the iterative preprocessing
and perform only one scaling of each mode. The purpose of
scaling is mainly to bring the levels of variation of different
variables to some sort of equivalent level. Therefore one
iteration of scaling can suffice to scale the data, so that no
part of the data will have an unreasonably large influence on
the subsequent fitting,.

3.4. Alternatives to scaling

As shown in the preceding paragraphs, scaling can be
considered to be a special case of using a weighted least
squares loss function. When more complicated weights are
needed, it is not always possible to fit the model indirectly by
fitting the least squares model to the scaled data. In such
situations an alternative to scaling is to use algorithms that
directly handle a weighted least squares optimization
criterion [10,25,26]. This can be relevant, for example, when
the residual variation is correlated across both rows and
columns [23,27,28].

3.5. Summary

Scaling does not affect the structural model of the data, but

Copyright © 2003 John Wiley & Sons, Ltd.

Two-way data

Figure 4. Two-way array showing the dependence between
centering and scaling.

the loss function used to estimate the model parameters.
Proper scaling is defined as the scaling that can be expressed
in terms of pre- or postmultiplied weights in the loss
function of the model. Hence proper scaling of X can always
be expressed as WX, XW; or W, XW,, where W; and Wj are
diagonal matrices holding, for example, the inverse standard
deviation of the corresponding row or column. If a certain
scale is needed for both modes, then the corresponding
weights have to be found iteratively. Scaling, for example, to
unit standard deviation in two modes is not possible in
general, whereas scaling to unit mean square variation is
possible.

4. SIMULTANEOUS TWO-WAY CENTERING
AND SCALING

A complicating issue in preprocessing is the interdepen-
dence of centering and scaling [29]. Because preprocessing is
mostly performed in one or a few standardized ways in two-
way analysis, the problems are seldom appreciated. It is
important, however, to be aware that not all combinations of
centering and scaling will work as anticipated (see e.g.
Reference [1]). Generally, only centering across both modes
is straightforward, or scaling within one mode combined
with centering across the other mode [1,30], which is exactly
what e.g. autoscaling amounts to.

4.1. Scaling within a mode disturbs centering
across the same mode but not across other modes
Scaling within one mode disturbs prior centering across the
same mode but not across other modes [4]. This holds for
two-way arrays as well as higher-order arrays. The reason
for this is illustrated in Figure 4. The full line shows a typical
column vector and the broken line a typical row vector.
When scaling within the first mode, the elements of any
column are multiplied by different numbers, and hence prior
centering across the first mode is destroyed.

Consider a two-way array X (I x ]). If the array is scaled
within the first mode, this can be expressed as

Y = WX (52)

where Y is the scaled array, W is an I x I diagonal matrix
holding the scaling parameters, and X is the original array.
As can be seen, scaling within the first mode amounts to
multiplication of every row by a scalar. This does not affect
any centering of the vectors across the second mode, because
every element in a row vector is multiplied by the same
number. The average of any row will be the original average
of the row scaled down accordingly, and therefore, if the
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average is zero, it will stay zero. In the first mode, however,
each element in a column is multiplied by a different scalar.
If centering is performed across the first mode, these column
vectors will not necessarily preserve their zero average after
subsequent scaling within the first mode. Mathematically,
the centered matrix P*X becomes WP*X upon scaling. As

1TWP+X £ 0,

the preprocessed matrix is no longer guaranteed to be
centered. Offsets constant across the first mode, however,
will still be removed, because

PL(@O" +1,u") = PLoOT = WP (00" +1;1")
=WPL00" (53)

Note also the interesting fact that if scaling is performed
before centering, the result will be different. In that case the
original offsets will not be removed, but the data will be
centered (yielding centered scores and residuals), because

PrW(@O" + 1;u7) = PrWoO! + Prwiu”

£ PrWooT (54)

This holds because, unlike for P*1, it does not hold that
PW1 is a zero-vector in general.

4.2. Centering across one mode disturbs scaling
within all modes

Centering across one mode disturbs scaling within all
modes. This holds for two- as well as multiway arrays, but
there are certain cases for which it does not hold. One of
these special cases is the situation in which two-way data are
scaled within the second mode to a standard deviation of one
and subsequently centered across the first mode (autoscal-
ing)*. This subsequent centering will not disturb the scaling
within the second mode (though it would disturb scaling
within the first mode had that been performed). The reason
is that the scaling is specifically performed relative to the
center of the data (standard deviations are based on centered
data). Hence any change in offset is immaterial for the
standard deviation. Scaling by means other than standard
deviations will not have this property. In multiway analysis
it is common to use mean squares for scaling instead of
standard deviations, because such scaling more often
converges when implemented in an iterative scheme, and
because scaling by standard deviations implicitly assumes
an offset, which may or may not be present depending on the
structural part of the model.

4.3. Centering across and scaling within the
same mode is problematic

Centering across a mode within which scaling is also
applied, or vice versa, is generally not going to retain all the
properties of the two individual operations, as discussed
earlier. For example, if centering across the first mode and
scaling within the first mode are desired, then setting

Y = WP+X (55)

* Normally, centering would be performed before scaling for
computational reasons, as the averages are needed for scaling by
the inverse standard deviation.
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All elements have the same offset Iy
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Figure 5. Structure of offsets in three-way (trilinear) data when all
elements have the same offset held in the scalar 4. Two
alternative but equivalent ways of writing the PARAFAC model
are shown: the slab notation using submatrices Xy, and the
notation described in Equation (12).

with W being a diagonal scaling matrix and P* a centering
operator, will not lead to a preprocessed matrix in which the
first mode vectors are centered, although possible offsets will
be eliminated. Conversely, setting

Y = PAWX (56)

will not eliminate the original offsets, even though the
preprocessed array will have centered first-mode vectors.
Hence for a specific application a choice has to be made
between these two approaches, depending on why the
centering is applied.

4.4. Summary

Proper centering is a centering operation that correctly
removes the presupposed offsets and does not introduce
other offsets into the data. Likewise, proper scaling intro-
duces the correct weights into the loss function. Stated
otherwise, proper centering and scaling do what they are
supposed to do. Proper centering and scaling can sometimes
be combined. Unproblematic combinations can always be
expressed as

(PEX)W or W(XP+) (57)

where P is the projection matrix that centers the data, and
W is a weighting matrix, both of appropriate size. The
parentheses in Equation (57) indicate the proper order in
which the different preprocessing steps have to be per-
formed. If performed oppositely, offsets will not be removed,
although the data will be centered. Problematic combina-
tions are

WP'X or XP'W (58)

These combinations do not retain all the properties desired
of the preprocessing steps.

5. THREE-WAY PREPROCESSING

The preprocessing of multiway arrays will now be discussed
using three-way arrays as an example. The basic properties
discussed thus far are unchanged. Centering has to be
performed across a specific mode, and scaling has to be
performed by a transformation within a specific mode. Most
difficulties in preprocessing three-way arrays arise because
of the problems outlined so far, which all generalize to
multiway arrays. The problems are sometimes enhanced,
because three-way data are often rearranged (matricized) to
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Figure 6. Structure of offsets in three-way (trilinear) data when all
elements in each vertical slab have the same offset. The offsets
are held in the J-vector 1.

two-way arrays before preprocessing. This is unfortunate,
because it introduces a column mode that is a combination of
two of the original modes. Transformation within or across
this combined mode should be avoided if multiway models
are to be fitted, because the mode is not a ‘real’ mode but
merely a computational construct.

5.1. Centering

5.1.1. Possible three-way offsets and their proper
removal

The observations on centering of two-way data are helpful in
discussing centering of three- and higher-way arrays. If the
basis of two-way centering is understood, then three-way
centering is quite simple. In the following it will be assumed
that the true model of the data is a PARAFAC model plus
possible offsets, but the conclusions hold for any multilinear
model.

Consider a three-way array. Conceptually, offsets may
occur in three different ways, i.e. constant across all modes
(Figure 5), constant across two modes (Figure 6) or constant
across one mode only (Figure 7). In the figures the first-mode
loadings are held in the I x R matrix @, the second-mode
loadings in the | x R matrix ® and the third-mode loadings
in the K x R matrix Q. The matrix Dy is an R x R diagonal
matrix holding the kth row of Q in its diagonal.

Regardless of the structure of the offsets, the basic
principle of centering is that the data must be preprocessed,
so that they are projected onto the nullspace of vectors of
ones in a particular mode. For the first mode, projecting a
data array X onto the nullspace of 17, i.e. centering across the
first mode, amounts to

Y = pX(IR) (59)

where P+ =1 —(11"/1). For the second and third modes the

Centered data

Raw data

All elements with same & and j
have the same offset

X, =®D, 0" +1AT+E, FL1,..K
X0 = @(Qo @) + 1(vecA)T + ECI

Figure 7. Structure of offsets in three-way (trilinear) data when all
elements in each vector have the same offset (case three). The
offsets are held in a matrix A (J x K) whose jkth element holds the
offset of the vertical column with second- and third-mode indices j
and k. The vector A, is the kth row of the matrix A.

centering can be performed similarly. As mentioned earlier,
such centering is referred to as single centering. Centering, for
example, across the first mode of an array can thus be done
by matricizing the array to an I x JK matrix and then
centering this matrix across the first mode as in ordinary
two-way analysis:

I
> Xijk
Yijk = Xijk — % (60)

The column mean is subtracted from every element, as
depicted graphically in Figure 8. As can be seen, single
centering is similar in structure to the type of offsets shown
in Figure 7.

Such single centerings performed successively across
two modes are referred to as double centering. That is,
double centering is performed by first centering across one
mode and then centering the outcome across another
mode. The order of centerings is immaterial, but it is
essential that they are performed sequentially. For all three
situations depicted in Figures 5-7 the above centering
across the first mode will remove the shown offsets,
because in all three situations the offsets are constant
across the first mode.

As for the two-way case, only single centering leads to the
properties sought in centering (removal of offsets). Other
types of centering, such as subtracting the overall mean, will
introduce artifacts that have to be modeled additionally to
the inherent systematic variation. This was shown for the
two-way case in Section 2.3.2. Such types of incorrect
centering are often used in three-way analysis. For example,
matricized data are centered across a combined mode. For

Mean values

yd /

Vector of ones

Figure 8. Centering across the first mode. For each column of the raw data a mean
value is calculated and subtracted from each element in the column. Thus a two-
way matrix of mean values is obtained. Note that this centering is identical to
matricizing the data to a two-way structure and centering these two-way data

across the first mode.

Copyright © 2003 John Wiley & Sons, Ltd.
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Figure 9. Incorrect scaling of three-way array. Spectra from one sample measured at
two conditions (slabs one and two). The top plot shows the data before scaling and the

lower plot after a hypothetical scaling.

example, if an array of structure (variables x time x sam-
ples) is centered by subtracting the average calculated across
samples and time, then, in line with the above example,
artificial offsets are introduced and the subsequent model
will have to fit this additional variation as well. This can
obscure validation and exploration of the model and will
lead to models that do not provide overall least squares
solutions.

5.2. Scaling

As explained for the two-way case, scaling is a transforma-
tion of a particular variable (or object) space. Instead of
fitting the model to the original data, the model is fitted to
the data transformed by a (usually) diagonal scaling matrix
in the mode whose variables are to be scaled. This means that
whole matrices instead of columns have to be scaled by the
same value in three-way analysis. For a four-way array,
three-way slabs would have to be scaled by the same scalar.
Mathematically, scaling within the first mode can be described
as

Yijk = WiXijk 1'21,...,1, jZl,...,], kZl,...,K (61)
where Y with elements y;; is the scaled array and, for

instance, setting

W = —F/—— (62)

will scale to a unit mean square within the sample mode.
Using matricized arrays, scaling may be expressed as

YIXIK) — ywix (IXJK) (63)

where W is an I x I diagonal matrix holding the scaling
values in its diagonal. The assumed structural model of the
data is a multilinear model, e.g. a PARAFAC model
X = A(C ©B)". With the above scaling, a similar structural
model, Y = PRO Q)T, will hold for the transformed data,

Copyright © 2003 John Wiley & Sons, Ltd.

because

IY -PR®Q)|” = WX -PROQ)|’
= [WX-W'PROQ)")* (64)

The loss function minimized when fitting a model with a
weighted criterion is

IW(X - ACoB)")|? (65)

and hence it holds that the parameters of this model can be
found by fitting the scaled data and setting

A=W'P, B=Q, C=R (66)

Thus fitting the scaled data provides a solution not only to
the problem posed as fitting a model to Y, but to the problem
of fitting a model to X and where the first-mode loadings
obtained are transformed by the scaling matrix W. As for
two-way scaling, it is emphasized that the found model
parameters have no direct relations to the parameters found
when fitting the model to the raw data in a least squares
sense.

5.2.1. Incorrect scaling of three-way arrays

Scaling has to be applied by transforming the data within a
given mode. It is not appropriate to scale an array within two
combined modes, which can happen, for example, when
autoscaling a matricized array. Such an inappropriate
scaling will lead to the inclusion of artificial components in
the data.

Consider an I x 30 x 2 three-way array with I samples, 30
variables (say spectral), measured at two conditions (e.g. two
different pH values) as shown in Figure 9. In the two top
plots the profiles of the first hypothetical sample are shown
(30 variables). To the left the measured spectrum is shown at
the first condition and to the right at the second condition. As
can be seen, the shape is identical in the two plots; only a
multiplicative factor distinguishes the profiles. In this case,
only one component is necessary for describing this
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variation. If the array is scaled such that different occasions
of the same variable are scaled differently, then the
phenomena can no longer be described by the variation of
one basic profile. This is shown in the lower plots, where the
first three wavelength variables have been scaled differently
in slabs one and two. In slab one they have been scaled by
one and in slab two by 0.01. It is clear that to preserve the
multilinearity of the data, any occurrence of a given variable
must be scaled by the same amount.

To show the influence of incorrect scaling, consider a
synthetic data set with PARAFAC structure

XK — A(C o B)! (67)

where A is a 4 x 2 matrix of random numbers and B and C
are defined likewise. It is not important how these matrices
are generated, as long as they have full column rank.
Consider the following alternative two-component
PARAFAC models.

1. Using X.

2. Using X centered across the first mode and scaled
within the combined second and third modes (auto-
scaled as a two-way matrix X! * /5,

3. Using X scaled within e.g. mode two.

The fit values of these three models always using two
components are given below in percentages of the sum of
squares of the preprocessed data.

1. 100.00%.
2. 98.80%.
3. 100.00%.

As can be readily seen, a two-component model is appro-
priate and should be so even after scaling as in case 3.
However, using ordinary two-way scaling methods as in
case 2 destroys the multilinear structure of the data and
deteriorates the model.

5.3. Simultaneous centering and scaling
The exact same rules for interdependence of preprocessing
steps apply for multiway data as for two-way data (Section
4), also with respect to treating missing data, etc. Any
preprocessed array may be written in matrix notation using
the matricized I x JK data array X and the preprocessed
array Y:

Y = MX(Mg @ M))" (68)

where e.g. M;is an I x I array holding either the centering or
scaling transformation matrix for the first mode or even a
combination of such. The exact content of these transforma-
tion matrices depends on the type of preprocessing chosen,
and in the case of iterative preprocessing, M may be a
product of several matrices [1].

Combined centering and scaling in one operator M is
generally not going to retain all the properties of the two
individual operations (see Section 4.3). If centering across the
first mode and scaling within the first mode are desired,
centering first and scaling afterwards will not lead to an
array in which the first-mode vectors are centered, although
possible offsets will be eliminated. Scaling first and centering
afterwards will not eliminate the original offsets, even

Copyright © 2003 John Wiley & Sons, Ltd.

though the preprocessed array will have centered first-mode
vectors.

Another example based on the guidelines in Section 4 is a
situation in which e.g. scaling within the second and third
modes is desired together with centering across the first
mode. If the preprocessing is performed so that the data are
centered after the weights are determined (iteratively) and
applied, i.e.

Y = PHX(Wg @ W))T] (69)

then the centering operation will destroy the property of e.g.
suitable mean square error in the second and third modes
(the brackets indicate the proper order of the preprocessing
steps). If, on the other hand, the preprocessing is performed
as

Y = (PXX)(Wx @ W))' (70)

this is not the case. In this case the data are first centered and
then the weights are determined from the centered array
rather than from the raw data. Hence the weights in
Equation (70) are preferred.

5.4. Summary
Proper single centering of a multiway array can always be
expressed as

P+X (71)

where X (I x JKL...) is a multiway array rearranged to a two-
way matrix such that the mode to be centered across is the
row mode. Hence P~ works on the non-matricized mode (I in
this case). All combinations of centering of this form are
proper and will maintain a preprocessed array with offsets
removed.

Proper scaling of a multiway array can be expressed as

WX (72)

where X (I x JKL...) is a multiway array rearranged to a two-
way matrix such that the mode to be scaled within is the row
mode. Scaling e.g. to unit mean square variation within
several modes sequentially will not yield modes within which
the variables or samples have unit mean square variation
unless iterative determination of the weights is used.
Combinations of centering and scaling are unproblematic
only when centering across several modes is desired, or
scaling within one mode combined with centering across
other modes. Centering must be performed before scaling. All
other combinations will only partly fulfil the requirements.
For example, centering across a mode followed by scaling
within the same mode will not lead to zero-average vectors in
the mode, but it will remove any offsets across the mode.

6. CONCLUSION

A number of important features of the common preproces-
sing steps of centering and scaling have been discussed.

e Centering deals with the structural model; scaling deals
with the way in which this model is fitted.

e Centering is part of a two-stage procedure in which offsets
are removed first and multilinear terms are estimated in
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Figure 10. Three-way array. Proper centering must be done across a mode, exemplified
here by proper centering across the second mode. From all elements of a specific row
(fixed jand k) the same scalar my is subtracted. Proper scaling e.g. within the first mode
is performed such that all elements of a specific horizontal slab are multiplied by the same

scalar w;.

the second stage. This is only equivalent to the one-stage
procedure of estimating all parameters simultaneously if
proper centering, as defined in this paper, is used. Proper
centering is shown in Figure 10 (always across one mode at
a time).

e For offsets that cannot be removed by using proper
centering, a one-stage procedure has to be used. This
holds generally for data with missing elements.

e Scaling provides a way to change the objective function by
assuming certain weights. Some weight arrangements can
be dealt with by scaling followed by ordinary least squares
fitting. Only proper scaling is allowed. Proper scaling is
shown in Figure 10. For weighting schemes that cannot be
dealt with by scaling, weighted least squares algorithms
have to be used.

e Incorrect centering or scaling introduces artificial varia-
tion. The amount of artificial variation introduced depends
on the data and leads to models that are suboptimal to their
‘correct’ (least squares) counterparts. This is so because the
artificial variation has to be modeled additionally.

6.1. Two-way results

e Proper centering can always be written as P*X.

e Several centerings can be performed sequentially.

e Proper scaling can always be expressed as WX.

e Several scalings can be performed sequentially, but will
generally need iterations to establish the scaling constants,
and this may not converge.

e Unproblematic combinations of centering and scaling can
be expressed as (PYX)W. Similar results hold for trans-
posed matrices.

6.2. Three-way results

e Proper centering can always be written as P-X, where X is
the three-way array matricized, so that the mode to be
centered across is the first mode.

e Several such single centerings may be performed sequen-
tially across several modes.

e Proper scaling can always be expressed as WX for a
matricized array as above.

Copyright © 2003 John Wiley & Sons, Ltd.

e Several scalings can be performed sequentially, but will
generally need iterations and may not converge.

e Proper combinations of centering and scaling can be
expressed similarly to the two-way case. That is, scaling
does not affect centering across other modes, but centering
affects scaling within all modes.

The appropriate centering and scaling procedures can most
easily be summarized as in Figure 10. Centering must be
done by subtracting scalars from individual vectors of the
array, while scaling must be performed by multiplying
individual slabs.
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APPENDIX I. PROJECTIONS

In this appendix the projection of vectors on other vectors is
explained. In Figure 11 the orthogonal projection of an I-
vector b on an I-vector a is considered. The resulting

Figure 11. Projection of b on a.
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projection b can be expressed in the original co-ordinate
system or in terms of the new basis vector a.

L1. Expression of b in terms of a
The score of b on the new basis vector a is k. The following
equations hold:

couy Ml _ @b
Il falllel
@b)=a"b,  Ja] = (aa) (73)

where the second equation is called the cosine rule for
vectors. Hence
kllall _ (a,b) (a,b) _(a,b)

bt it | = k= = 74
16~ Talllb i~ (@a) 74)

This expression becomes particularly simple when a is
normalized to length one (||a| =1):

k= (a,b) =a'b (75)

Note that expressions like Equation (75) are used in principal
component analysis (PCA), where usually the loading
vectors p are chosen to be of length one and then

X Xip
t=Xp=|:|p=|: (76)
x| X/ p

where X] is a row of X (I x J). Hence the scores of PCA are
just orthogonal projections of the rows of X on p in co-
ordinates of this p.

1.2. Expression of b in terms of the original co-
ordinate system

It is also possible to express b in the original co-ordinate
system. Referring to Figure 11, it holds that b = ka. Hence

o a,b a’ba aa'b aal
b=ka= a= = ==

(a,a) aTa aTa

)b =Pb (77)

aTa
and the matrix P (I x I) is special because

PT=p

T T TaaT T T
aa \ (aa aa aa a‘a) aa

PP=(— )] = =|——)=—=P (78)
a'a/\aTa aTaaTa aTa/ a'a

which means that P is symmetric and idempotent. Then this

matrix is an orthogonal projection matrix [31]. It projects

orthogonally on the vector a. In the case of centering (see
Equation (15)), the vector 1 takes the role of a.

I.3. Orthogonal projections in general
including residuals
A matrix P=AA" (where superscript+ indicates the
Moore-Penrose inverse) projects orthogonally on the
range (column space) of A [31]. It can be checked that
a"=a"/(a'a); hence Equation (78) is a special case of the
general orthogonal projection theorem.

It is also interesting to consider the residuals from the
orthogonal projection of b on A; that is, the vector b*. As

Copyright © 2003 John Wiley & Sons, Ltd.

b = b + b*, it holds that
b* = (I-P)b="P'Db

(PHT =P
PPt =Pt (79)

and P* is again a symmetric and idempotent matrix, i.e. an
orthogonal projection operator. This matrix projects onto the
orthogonal complement of A, ie. onto range(A"), where
range(-) is used to indicate the range (column space) of a
matrix or vector. It holds that range(A™) = nullspace(A"),
where nullspace(-) is used to indicate the nullspace of a matrix
or vector. For every x € range(A™") it holds that A'x = 0, hence
x € nullspace(A"), and vice versa.

APPENDIX II. FITTING A BILINEAR MODEL
PLUS OFFSETS ACROSS ONE MODE EQUALS
FITTING A BILINEAR MODEL TO CENTERED
DATA

Theorem
Given X of size I x ] and the column dimension R of a sought
bilinear model. Then

min| X — (ABT + 1m")||?> = min|[Y — CD"|*  (80)

where Y is the original data X with the column averages
subtracted.

Proof

The proof has been given by Kruskal [32] and Gabriel [33].
Understanding that centering is a projection, it is simple to
prove the above theorem. Let the loss function be

[X — ABT —1m"|? (81)

and partition it into two orthogonal parts
[P4(X — AB" —1m")|* + |[P(X — AB" —1m")|*  (82)

using the Pythagorean fact that the squares of two
orthogonal parts equal the square of the total. This equation
can be further developed to

min||P*X — P-AB"||*> + min||PX — P(AB” +1m")|?
= min||P*X — P*AB"|* (83)

because |[PX — P(AB" + 1m")||*> will be zero by setting
m’ = (17/1)(X — ABT) since 1(1%/I) =P (84)

Setting C = P"A and D = B will therefore provide a solution
with exactly the same fit as would be obtained by
minimizing the original loss function. The solution may be
computed using any bilinear algorithm for fitting a principal
component analysis model of Y. The scores will automati-
cally be centered, because they are linear combinations of the
columns of X. If the columns are centered, so are their linear
combinations.
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