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Abstract

While both Tucker3 and PARAFAC models can be viewed as latent variable models extending principal component ana-
Ž .lysis PCA to multi-way data, most fundamental properties of PCA do not extend to both models. This has practical impor-

tance, which will be explained in this paper. The fundamental difference between the PARAFAC and the Tucker3 model can
be viewed as the difference between so-called low-rank and subspace approximation of the data. This insight is used to pose

Ž .a modification of the multi-linear partial least squares regression N-PLS model. The modification is found by exploiting
the basic properties of PLS and of multi-way models. Compared to the current prevalent implementation of N-PLS, the new
model provides a more reasonable fit to the independent data and exactly the same predictions of the dependent variables.
Thus, the reason for introducing this improved model is not to obtain better predictions, but rather the aim is to improve the
secondary aspect of PLS: the modeling of the independent variables. The original version of N-PLS has some built-in prob-
lems that are easily circumvented with the modification suggested here. This is of importance, for example, in process moni-
toring, outlier detection and also, implicitly, for jackknifing of model parameters. Some examples are provided to illustrate
some of these points.q2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Some properties of two-way models do not extend
straightforwardly to multi-way models. In this paper,
the difference between fitting low-rank multi-way
models and fitting subspace-based multi-way models
is discussed. A low-rank model is defined here as a
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ˆ Ž .modelM I=J that minimizes the sum of squares
Ž .of the residuals when fitted to a data matrixX I=J

but subject to the model being of a predefined rank.
In case of a bilinear model, this can be stated as

ˆ 25 5min XyM

5 T T T 5 2smin Xy t p q t p q . . .qt p , 1Ž .Ž .1 1 2 2 F F

where F is the rank of the model. As long as thet’s
andp’s are required to be independent, the model will
be of rank F per definition, because rank can be de-
fined as the minimum number of bilinear rank-one
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terms necessary to describe the matrix. A subspace
model, on the other hand, is defined here as a model
that maximizes the variation retained in the joint

Ž .subspaces of dimensionF used to define the model.
Ž . ŽThese subspaces are given byT I=F andP J=

.F . Subsequently, the model is defined as the joint
projection of X onto the subspace spanned in the
row-mode byT and in the column-mode byP. This

ˆleads to a definition ofM as satisfying

T2 2q qˆ5 5 5 5min XyM smin XyTT X PP , 2Ž . Ž .

where the superscript ‘q’ means Moore–Penrose
pseudo-inverse. For two-way analysis, the low-rank
and the subspace approximation leads to the exact
same model which is also equivalent to a principal

Ž .component analysis PCA model. This is not so for
multi-way analysis. The difference for multi-way
models is related to the difference between the de-

w xcomposition models PARAFAC 5,11 and Tucker3
w x17 . The background and some important conse-
quences of this difference will be explained.

The insight above is used to develop a modified
model for multi-linear partial least squares regression
Ž . w xN-PLS 4 . In recent years, this method has gained

w xmore impact 2,8,13–15,22–24,33 . It was originally
w xdeveloped by Bro 4 , and it was later shown that the

predictions obtained in the case of three-way data are
identical to the method earlier suggested by Stahle˚
Ž w x.see Refs. 9,30,32 . The exploratory aspects differ
though, because the latter model introduces an or-
thogonalization of the score vectors. This particular
orthogonalization explicitly leads to a two-way un-
foldedrmatricized model. This makes interpretation
of the model more difficult. Alternative multi-linear
regression model such as Multi-way Covariates Re-
gression have also appeared in the literature more re-

w xcently 3,31 .
Although N-PLS is a generalization of the two-

way PLS regression method, there are certain issues
which do not generalize and may appear problematic
in certain settings. These problems relate to the model
of the three-wayI=J=K array X rather than the
prediction part.

Ž .1 Perfect fit problems: In the current N-PLS, a
trilinear model of the independent data arrayX is
used. However, due to the sequential nature of the

algorithm, such a trilinear model cannot fit, e.g. a
rank-F trilinear data array withF components even
in the noise-free case. This is opposed to the two-way
case, where such data are perfectly fit. Another way
of stating this is that the subtraction of rank-one terms
during deflation ofX in the original N-PLS does not
necessarily lower the rank ofX which it does indeed
for two-way PLS. For noise-free data, the score and
weight matrices of the modelwill span exactly the
spaces spanned by the data, but the trilinear model
will not fit the data exactly. This leads to problems
of how to interpret and use the residuals of theX
model. It also leads to problems if the residuals are
to be used, e.g. for estimating uncertainties, because
high residuals do not necessarily imply inadequacy of
a sample.

Ž .2 The regression part of N-PLS does not imply a
trilinear model of X: Regression is, per definition,
related to subspaces. A regression model is defined as

Žthe regression of one or more dependent possibly la-
.tent variables onto a certain subspace. This also

holds in situations where the model is calculated se-
quentially. The outcome of a regression model is a set
of regression coefficients that are defined as the co-
ordinates of the vector being regressed expressed in
terms of the basis onto which it was regressed. The
fundamental aspect of a latent variable regression
model is therefore related to selecting an appropriate
subspace for the regression, because, with respect to
predictions, it is only the choice of subspace that
matters. Hence, the regression aspect of N-PLS does
not imply that the model ofX must be trilinear, but
only that a suitable subspace is wanted.

Ž .3 Uniqueness problems: The current N-PLS
model is unique in a mathematical sense meaning that
the parameters are identified for a given set of data
and a given number of components. For other mod-
els, however, uniqueness usually carries a broader
and more important meaning as well. Two-way PCA
and PLS and multi-way Tucker models are known to
provide models of the independent X-data that are
unique up to scaling, permutation and rotations. This
implies that these models uniquely identify the sub-
spaces of the data. The multi-linear PARAFAC model

Ževen identifies the axes in the subspacesunique axes
.property . An important additional implication of

these different types of uniqueness properties of PCA,
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Tucker3 and PARAFAC is that the uniqueness has
repercussions not only for the data at hand, but also

Ž .for the population from which the samples data are
drawn. If the subspace in a PCA model is uniquely
identified and reflects underlying latent phenomena
specific to the population, then it follows that an-
other PCA model fitted to new data from the same

Žpopulation will span the same subspace up to the
.noise . Likewise, for PARAFAC, if the axesrcom-

ponents are uniquely identified and pertain to phe-
nomena specific to the population, then the same axes
are found when the model is fitted to different sam-
ples from the same population. However, for N-PLS,
no such implications can be made. The N-PLS model

Ž .of X is a tri- or multi- linear model, which means
that, like PARAFAC, it has no rotational freedom.
However, unlike PARAFAC, the components found
from any particular set of data will differ from those
found from another set of samples from the same
population eÕen in the noise-free case. This is be-
cause the criterion used for finding each component
Ž .maximum covariance is not only pertaining to the
space covered by the significant variation but also the
actual specific amount of different phenomena in any

Ž .chosen set of sample for finite sample sizes . For
example, if the samples in a given data set mainly
contain high amounts of analyte and low amounts of
interferents, the first component is likely to reflect
primarily the analyte variation. If the model is fitted
to another set of samples from the same population,
which mainly contains interferents at high levels and
analytes at low levels; then, the first component will
differ from the aforementioned, mainly describing the
variation of the interferents. Note that this is not a
problem in two-way PLS where only the subspaces of
X are claimed unique. For two-way PLS, the actual
components would also differ in the above-men-
tioned example, but the subspaces spanned by the
complete model would be the same up to noise. For
the original N-PLS, the axes will differ in both cases.

Ž .4 Jackknifing assessment of parameters is im-
possible: Jackknifing as a means for assessing the
stability of the estimated parameters was recently in-

w xtroduced for two-way PCA and PLS 21 . Jackknife
analysis of the model parameters ofX in the original
N-PLS model, however, is not possible. Even though
the model is unique, the scores and loadings will
change when estimated from different subsets as a

Ž .consequence of 3 . This even holds in the noise-free
case. As the model ofX in N-PLS has no rotational
freedom, there is no way of, e.g. transforming solu-
tions towards a common solution as it is done in the
two-way models. Moreover, the jackknife assess-
ment of the model parameters should be done in terms
of subspaces and not unique axis, because the sub-
spaces are the essential entities in the regression

Ž .model, as argued under 2 .
These are the problems dealt with in this paper. In

the following, it will be assumed that the indepen-
dent variables held in theI=J=K three-way array
X have a three-way structure. The three-way array
will also sometimes be shown unfoldedrmatricized
w x16 to a two-way matrix. This matricized version of
the data is calledX and will always be anI=JK
matrix. Thus, the first mode is always maintained as
the rows, and the second and third mode combined
into the column-mode of the matrix. In the follow-
ing, it is assumed that the dependent variable is uni-

Ž .variate,y I=1 . The situation with multivariate de-
pendent variables follows immediately from this.

2. Theory

2.1. Subspace approximation Õersus low-rank ap-
proximation

Principal component analysis is an optimal repre-
sentation of a matrix with respect to several different
criteria. One interpretation of PCA is to consider it as
the best low-rank approximation of a matrix in a least
squares sense. Another entirely equivalent view is to
see it as the best approximation of the data within a
joint low-dimensional subspace. Intuitively, these two
properties seem equivalent, and indeed this is true for
the two-way case. For three- and higher-way data,
however, the two criteria lead to two completely dif-
ferent models: the PARAFAC and the Tucker3
model.

The best low-rank approximation of a three-way
array is a PARAFAC model. This is so because the
definition of rank coincides with the definition of the

w xPARAFAC model 18 . For a given arrayX of size
I=J=K and rankF, a PARAFAC model describ-



( )R. Bro et al.rChemometrics and Intelligent Laboratory Systems 58 2001 3–136

ing the array is given by three component matrices:
Ž . Ž . Ž .A I=F , B J=F , C K=F with typical ele-

mentsa , b , and c , respectively. These elementsi f j f k f

satisfy

F

x s a b c , is1, . . . ,I ; js1, . . . ,J ;Ýi jk i f j f k f
fs1

ks1, . . . ,K ; 3Ž .

which can also be written in terms of matrices as

TXsA C(B . 4Ž . Ž .
w xThe termC(B is the Khatri–Rao 27 product de-

fined as the column-wise Kronecker product of the
w xtwo matrices 6 . Thus,C(B will be of size JK=F

and thef th column will equal the Kronecker product
of the f th column ofB and ofC.

It is interesting and counter-intuitive that even
though the PARAFAC model is the least squares
low-rank trilinear solution, the model does not incor-
porate all the variation ofX within the joint sub-
spaces ofA, B, andC. To explain this, consider, as
an example, an ordinary two-way PCA model. The
PCA model is a low-rank approximation ofX be-
cause it can be written in terms of independent rank-
one contributions, the number of which defines the
rank of the model

XsTPTqEs t pTq t pTq . . .qt pT qE.1 1 2 2 F F

5Ž .

The part of the data that is within the joint subspaces
defined byT andP can be found by projectingX onto
these subspaces. This part of the data can be written
as

Tproj q qX sTT X PP 6Ž . Ž .

and it holds that

Tq q TTT X PP sTP . 7Ž . Ž .

which can easily be verified by inserting the result of
Ž . Ž .Eq. 5 into the left-hand side of Eq. 7 and noticing

that E is completely annihilated by the projectors
TTq andPPq in contrast toTPT which remains un-
affected. For the three-way case, the PARAFAC
model is the best low-rank approximation of a three-

way array. A PARAFAC model can be written in
terms of the matricized three-way array as

TPARXsX qEsA C(B qE. 8Ž . Ž .
The part ofX within the joint subspaces defined by

Ž .A, B and C is calculated analogously to Eq. 6 by
projectingX onto AAq in the first mode, ontoBBq

in the second mode and ontoCCq in the third mode.
Using matricized notation and the Kronecker prod-
uct, m, this can be written

Tproj q q qX sAA X CC mBB . 9Ž . Ž .
Ž .Although less transparent than Eq. 6 , the above

simply states that the three-way array is projected
q Ž . qonto AA I= I hence transformed intoAA X.

This transformedI=J=K array is then projected
q Ž .onto BB J=J in the second mode. That is, the

I=J=K array AAqX is simply rearranged to aJ
= I=K array M and projected asBBqM. Finally,
this array is rearranged into aK= I=J arrayN and

q Ž . qprojected ontoCC K=K yielding CC N. This
proj Ž .is the projected arrayX of Eq. 9 rearranged ap-

propriately.
However, the projection ofX onto these sub-

spaces doesnot equal the PARAFAC model. The
Ž .expression in Eq. 9 is equal to the so-called Tucker3

w xmodel with loading matricesA, B and C 17 . The
Tucker3 model provides the best model of the data in
terms of the truncated bases, i.e. the best sub-space
approximation. That is, within the subspaces gener-
ated byA, B and C, the Tucker3 model retains the
maximal amount of variation in the model ofX. The
PARAFAC model is a restriction of the Tucker3
model. It also stays within the subspaces defined by
A, B andC but it does not retain all the variation de-

Ž .fined in Eq. 9 .
The Tucker3 model can also be written as

TXsAG CmB qE 10Ž . Ž .
where

Tq q qGsA X C mB 11Ž . Ž .
and is called the core array of sizeF=FF. It is cal-
culated in its matricized version here, but the core is
a three-way array of sizeF=F=F. Inserting Eq.
Ž . Ž . Ž .11 into Eq. 10 directly provides Eq. 9 . This rep-
resentation of the Tucker3 model sheds some light on
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the similarity between the Tucker3 model and the
truncated two-way singular value decomposition
Ž .SVD . The so-called core array,G, corresponds to
the matrix of singular values. In SVD, the matrix of
singular values is diagonal. This means that the pro-
jection or regression onto the subspace coincides with
a low-rank approximation, because only singular
vectors of identical subscripts are multiplied to-
gether. This is different for the three-way case. In the
three-way case, the core array will not be super-diag-

Žonal in general even though the model possesses ro-
tational freedom, none of these equivalent rotated

.models will have a super-diagonal core .
If the core arrayis super-diagonal, then this im-

plies that only loadings vectors with the same com-
ponent number interact. This is then the PARAFAC
model. However, as the core array arising as the re-
gression of the data onto the best-fitting subspace is
not super-diagonal in general, then there is no simple

Ž .relation between low-rank PARAFAC and sub-
Ž .space Tucker3 fitting.

For any set of loading matricesA, B and C—be
they actual solutions to a model or not—the model

Ž . Ž .in Eq. 10 will fit better than Eq. 8 , except in the
case of perfect PARAFAC fit. This is because of the
fact that PARAFAC is a restricted version of Tucker3
and can be seen from the inequality

5 5 2vecXy CmBmA vecGŽ .

5 5 2F vecXy CmBmA vecI 12Ž . Ž .
which holds for any set of appropriately sizedA, B

5 ŽandC whenG is the solution to min vecXy CmB
. 5 2mA vecG . This part corresponds to the fit of Eq.

Ž . 5 Ž . 5 210 and vecXy CmBmA vecI corresponds to
the fit of a PARAFAC model. The inequality follows
because the left-hand side of the inequality can be
seen as a standard multiple linear regression problem
for fixed A, B and C, where the regression coeffi-
cients, vecG, can be found freely, whereas on the
right-hand side, the corresponding parameters are
fixed as the vectorized superdiagonal array vecI with
ones on the superdiagonal.

The difference between the Tucker3 and the
PARAFAC model is very significant and it points to
why it is sometimes difficult to use the PARAFAC
model in practice. The Tucker3 model is, in a sense,
the natural extension of PCA with respect to many of

the intuitively experienced properties of PCA. The
Tucker3 model simply re-expresses the array in terms
of truncated bases. As such, the Tucker3 model will
always ‘work’, in the same sense asany two-way
matrix can be arbitrarily well modeled with a PCA

Ž .model. If the pseudo- rank of the variation in each
mode is lower than the actual dimension,1 then a
Tucker3 modelis valid per definition in the same
sense that a PCA model is for two-way data. The
PARAFAC model, on the other hand, is a very spe-
cial model. It models the data as a restricted version
of the subspace spanned by the component matrices.
It may often not be particularly suited for approxi-
mating an array if the systematic variation does not
approximately follow a trilinear model. For example,
chromatographic data with significant retention time
shifts are often not well modeled with PARAFAC
directly. On the other hand, though, that does not im-
ply that PARAFAC is only applicable for very tri- or
multi-linear data. PARAFAC was developed for and
has been extensively used for data that are very far

Žfrom being trilinear psychometric, sensometric and
.similar data . Even though curve-resolution is not

possible in those cases, the use of underlying tri- or
multi-linear latent variables is a very reasonable ap-
proximation. And indeed, very stable and repro-
ducible structures can often be extracted from such

w xdata 10,12,19,25,26 .

2.2. Multi-linear partial least squares regression

The original N-PLS model provides alow-rank
approximation of the independent data and it is
tempting to assume that a low-rank structure must be
present in order for the model to work well. How-
ever, it will be shown that N-PLS is more correctly
seen as a subspace model. This leads to a more effi-
cient model of the independent data. That the N-PLS
model is in fact a subspace model also explains why

1 Ž .The pseudo- rank can, e.g. be assessed for each mode by as-
sessing the rank of the two-way array obtained by unfoldingrma-
tricizing the array such that the mode of interest constitutes the
rows and the two remaining modes together constitute the columns.

Ž .The pseudo- rank of this matrix will equal the dimensionality of
the systematic variation in that mode. In practice, the rank can
sometimes be difficult to assess, but in principle, the useful rank
for each mode can be determined this way.
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N-PLS works well even for data that are not well
Ž .modeled by a trilinear PARAFAC model.

One specific version of the original N-PLS algo-
rithm is shown in Table 1. This algorithm only treats
the situation with univariate dependent variable, but

w xis easily extended to the multivariate case 4,6 . The
algorithm shown here is the one suggested by de Jong
w x9 in which no explicit deflation ofX is performed
in the algorithm. It will be shown later, that this al-
gorithm, which provides predictions identical to the
deflated version, is a useful starting point for a modi-
fied algorithm.

2.3. New multi-linear PLS model

ŽIn N-PLS regression, the subspace set of score
.vectors is found sequentially by adding one compo-

nent at a time. Thus, rank-one trilinear components
are found sequentially. Merely adding these compo-
nents leads to a low-rank trilinear model ofX with
the same structure as a PARAFAC model. This is
similar to ordinary two-way PLS where adding the
successively calculated bilinear components leads to
a bilinear model with the same structure as a PCA
model. It is therefore not surprising that N-PLS, just
as two-way PLS, has been viewed as a low-rank
model. However, as discussed above, there is no re-

Table 1
Ž .The original multi-linear PLS1 algorithm. Takes usually cen-

Ž . Ž .teredX I= JK and y I=1 as input. The algorithm shown is
the original version but without deflation ofX as suggested by de

w xJong 9

Ž .1. fs1; X sX; y s y f : component counter0 0

Determine rank-one model of X -residual
TŽ . Ž .2. CalculateZ J=K as y X 1= JKfy1 fy1

rearranged to proper size
J K3. Determinew andw as the first left and right

singular vectors ofZ
K JŽ .4. Calculatet asX w mwfy1

J J K K5. StoreT :s t; W :sw ; W :swf f f

Regression part
T y1 TŽ .6. b s T T T yf

Deflation
8. y s y yTbf 0 f

9. fs fq1. Continue from 2 until proper description ofy0

lation between a low-rank model and a subspace-
based model for multi-way data. The central aim
in PLS is to find a set of score vectors spanning a
reasonable subspace. Additionally, requiring the
columns to be related only with columns of other

Žcomponent matrices with the same number trilinear-
.ity is a further restriction, not of the regression part

of the model, butof the model of the independent
data.

In N-PLS, the model ofX is given by the score
J Žmatrix T and the loading matricesW second mode

. K Ž .weights andW third mode weights . Assuming a
trilinear model ofX leads to the problems mentioned
in the Introduction. As has been argued here, there is
no reason why the model ofX should be trilinear.
Even if the dataare low-rank trilinear, N-PLS can-
not model the data with a similar low-rank trilinear
model.

In order to devise an improved model, it is helpful
to shortly consider current models and possible alter-
natives. Currently, there are several different algo-
rithms in the literature that all provide identical pre-
dictions but through widely different models ofX.

Ž .1 At one extreme, there is the deflation ap-
w xproach of Stahle 32 using a matricized model ofX˚

by introducing loading vectors of lengthJK. This
approach could also be extended to higher-order ar-
rays and thus work in the same situations as N-PLS.
With respect to predictions, nothing would be lost,
and thus, it is a viable approach. However, it is a
premise of this work, that a non-matricized model is
sought. This especially makes sense because a non-
matricized model is assumed in the calculations of the
scores even in the Stahle approach. More impor-˚
tantly, the use of loadings in each variable-mode en-
ables a simpler interpretation of the model.

Ž .2 Other variants of additional loading vectors
could also be introduced. For example, it would be
natural to introduce trilinear loading vectors, i.e.
loading vectors that are estimated given the score
vector. This would provide a better-fitting model ofX

Ž .compared to using the weights as for two-way PLS .
However, the introduction of loadings would not
provide a solution to any of the problems mentioned
in the Introduction. Further, it would complicate the
algorithm numerically and algebraically and would
not lead to orthogonal score vectors, which has tradi-
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tionally been the reason for introducing the loading
vectors.

Ž .3 It is possible to simply skip deflation ofX as
w xsuggested in de Jong’s 9 version of N-PLS. This can

be beneficial and very important, e.g. for numerical
reasons. The non-deflating algorithm provides the
same predictions as the original deflating one. Be-

Ž .cause it is the trilinear model and deflation ofX that
is problematic with respect to modeling ofX, it is
suggested to use the non-deflating algorithm as a
starting point for the improved N-PLS.

It is clear that it is the added constraint of trilin-
earity of the model ofX that is problematic. It is
therefore natural to exchange the trilinear model with
a subspace model instead. In the original N-PLS, the
model ofX is given as

TK JXsT W (W qE. 13Ž . Ž .

This model can simply be exchanged with a model
where no trilinearity is imposed, but where theX data
are merely projected onto the three subspaces de-
fined by T, W J, andW K . This model is defined as

TK JXsTG W mW qE. 14Ž . Ž .

Ž .where the coreG is defined as in Eq. 11

Tq qq K JGsT X W m W . 15Ž . Ž . Ž .Ž .

Using a subspace model ofX will solve all the prob-
lems mentioned and still provide a non-matricized
model, i.e. a model where each set of weights and
scores pertain to one mode only. In practice, the ba-
sic algorithm is maintained without the deflation ofX.
When the weights, scores and regression coefficients
have been determined using the original algorithm,
the residuals in theX space are then found from these

Ž . Ž .parameters using Eqs. 14 and 15 . As this step is
performed after the model has been fitted, it does not
affect the way the weights, scores and regression co-
efficients are calculated; only the way the residuals
are calculated. Therefore, these parameters are iden-
tical to the ones found in the original non-deflating
N-PLS.

3. Practical aspects of the new N-PLS model

The new model and algorithm for N-PLS has a
number of interesting features. Some of the impor-
tant ones will be described here.

3.1. Same regression coefficients and predictions as
the original N-PLS

A practical important aspect of the new algorithm
is how the predictions relate to the predictions of the
old algorithm. It holds that the N-PLS model pro-
duces the exact same regression coefficients and same
predictions as the original N-PLS as nothing is
changed with respect to the prediction part. The only

ˆchange is the actual modelX of X, but as this model
is calculated separately from the main algorithm as
explained in Table 1, the same predictions will be
obtained. As for the original N-PLS, regression coef-
ficients working on the original dataX can be calcu-

w xlated straightforwardly 9,30 and are identical to
these.

3.2. Better fit of independent data

When the number of components is higher than
one, the fit toX will be better for the new algorithm.
It may be possible to construct synthetic cases where
the fits will be identical, but for all practical pur-
poses, the fit will always be better. This does not
necessarily imply that there will be a large differ-
ence. That depends on the data. However, even for
data that are trilinear and perfectly described by
PARAFAC, the original N-PLS model does not man-
age to describe the systematic variation in the data,
which is also shown next.

3.3. Perfect trilinear data are perfectly modeled with
new N-PLS model

Consider a data set that is perfectly trilinear for
which a regression model is built for predicting some
appropriate property. Assume for simplicity that all
Ž .PARAFAC components are necessary for predict-
ing the dependent variable. If the data are rankF, an
F-component PARAFAC model can model the data
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Ž .Tperfectly; sayXsA C(B . It also holds that an
N-PLS model can predict the relevant property using
an F-component model. This can be shown as fol-
lows.

If A, B and C have full column rank, then rank
Ž . Ž . Ž .r X sr X sr A sF.

Proof. The matricesB andC have full column rank;
hence, theirk-rank equalsF and JKGF. The prod-

Ž .uct C(B JK=F has full column rank ifk qkB C
w xGFq1 29 , wherek is the k-rank of B. There-B

Ž .T Ž .fore, C(B has full row rank. Then, the rankr X
Ž . w x Ž . Ž . Ž .sr A sF 20 . Hence,r X sr X sr A sF.

I

In N-PLS, each score vectort is a linear combi-
Ž K J.nation of X variables: tsX w mw . When X is

not deflated, then the weights for a new component
are found as the solution of

maxyT IyTTq X w K mw JŽ . Ž .
smaxyT IyTTq t, 16Ž . Ž .

whereT holds the score vectors found so far. Clearly
Žfor the maximizing t, it must hold true that Iy

q.TT t/0. In other words,t must have a compo-
nent outside the column space ofT. As a conse-
quence, the score matrix has full column rank. For an
F-factor N-PLS model, it therefore holds that

Ž . Ž . Ž .rangeT s rangeX s rangeA and the propertyy
can equally well be predicted from the PARAFAC
scoresA, as from the N-PLS scoresT.

In the original version of N-PLS, the trilinear N-
PLS model will not fit theX data perfectly. This is
so because PARAFAC is unique and therefore also
the only rankF trilinear model that can fit the data
perfectly. The original N-PLS model ofX is also rank
F, but as the N-PLS model is not identical to the
PARAFAC model, the fit will be different and, hence,
worse. However, thenew N-PLS model will also fit
the data perfectly because the score and weight ma-
trices span the same spaces as the component matri-
ces of PARAFAC. To see this, observe the follow-
ing. For trilinearX, the data follow the model

TXsA C(B . 17Ž . Ž .
The N-PLS weightswJ andwK follow from the SVD
of ZsBDCT, whereD is a diagonal matrix with the

TŽ q.vector dsy IyTT A along the diagonal. This

Ž . Ž .follows from Eqs. 16 and 17 . Notice thatD, i.e.
the diagonald, changes with every dimension, un-
like B and C. As a result, for any dimensionf, wJ

and wK will lie in the space spanned by the columns
of B andC, respectively. AsZ changes for each suc-
cessive dimension, we conjecture that the dominant
left and right singular vectorswJ and wK do not lie
completely in the spaces spanned by their predeces-
sors, i.e. for the fullF-factor N-PLS model we have

Ž J. Ž K .rank r W sr W sF. While we have no proof
for this conjecture, we can ascertain the weaker con-
dition that for successive components, the composite
weight vectorswK mwJ form an independent set of
vectors. This follows because the composite weight
vectors give rise to the independent set of score vec-

Ž K J. Ž .torsT. So we haver W (W sr T sF which is
a necessary requirement for the above conjecture.
Proceeding from the assumption that the columns of
the N-PLS weight matricesW J andW K are a basis
for the column-space ofB and C, respectively, we

JŽ J.q K Ž K .qhaveW W BsB andW W CsC, as we
haveTTqAsA. As consequence, the Tucker3-type

Ž .Tmodeling of trilinearXsA C(B , projecting X
q JŽ J.qonto TT in the first mode, ontoW W in the

K Ž K .qsecond mode and ontoW W in the third mode,
leavesX completely intact.

A simulated example will be given to illustrate
how the change to subspaces leads to a more reason-
able model ofX.

Let
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Let the 7=5=6 arrayX be given as
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and let the 7=1 vector y be given as

y sr t qr t . is1, . . . ,7;i 1 i1 2 i2

Thus, the independent data are perfectly trilinear. A
two-component PARAFAC model can fitX per-
fectly but using the original version of N-PLS, only
88.95% of the variation inX is explained using cen-
tered data. The fit toy is perfect as expected. Using
the modified version of N-PLS, 100% of the varia-
tion in X is explained. The model of the independent
data are now of a Tucker3-like structure with a core
array with non-zero off-diagonal elements. Centering
these data is not mandatory, as there are no offsets,
but the conclusion remains the same when uncen-
tered data are used.

3.4. Rotational freedom enabling resampling-assess-
ment of parameters

w xAs discussed by Martens and Martens 21 , it is
feasible to investigate the stability of a model by as-
sessing the variability in the parameters when esti-
mated from different subsets. Before assessments can
be made, any mathematical indeterminacies must be
eliminated or fixed. For the two-way PLS model,
there is a rotational freedom in the bilinear model.

Ž .This means that even though possibly noise-free
data are used, scores, loadings, etc., obtained from
different subsets will differ. By the use of suitable
rotations, this problem was alleviated in two-way
PLS. However, the parameters in the original trilin-
ear N-PLS model cannot be rotated. Rotating a trilin-
ear model will result in a lower fit, and, hence, change
the model. For the new N-PLS model, on the other
hand, rotational freedom exists, because the structure
is equivalent to a Tucker3 model. The N-PLS model
of X can be written as

TK JXsTG W mW qE. 18Ž . Ž .
This model has rotational freedom because any set of

Ž . Ž . Žnon-singular matricesQ F=F , R F=F , S F=
.F can be used to rotate the model according to

Ty1 K y1 J y1XsTQQ G W SS mW RR qEŽ .
T Ty1 y1 y1 K JsTQQ G S mR W SmW R qEŽ . Ž .

T
K J˜ ˜ ˜ ˜sTG W mW qE. 19Ž .Ž .

˜ ˜ J J ˜ K K ˜whereTsTQ, W sW R, W sW S and Gs
y1 Ž y1 y1.TQ G S mR . This shows that the weights

and scores can be rotated by appropriate counter-ro-
tation of the core array. The original N-PLS model
equals a restricted version of the new model with the
core array fixed to a super-diagonal array with ones
in the super-diagonal. With such a core array, no ro-
tations are possible because the counter-rotated array
will not equal a super-diagonal array but rather have
elements in all positions. This follows directly from

w xthe uniqueness of the PARAFAC model 18,28 .
Because the new N-PLS model is subspace based,

the rotational freedom allows for the parameters of
the model to be post-rotated. Hence, the stability
across subset estimates can be assessed. The actual
rotation task can be accomplished in several different
ways and is not the subject of this paper. Suffice here
to say that ordinary orthogonal rotations cannot be
used because the weights and scores are not orthogo-
nal in N-PLS.

It will be shown with a real data set that the intro-
duction of rotational freedom enables a more reason-
able ground for parameter comparison. For 268 sugar
samples dissolved in water, a fluorescence landscape
was obtained. The wet-chemical quality parameter
color was determined according to standard proce-
dures. The data have been described in detail else-

w xwhere 7 . An N-PLS model was built using the new
algorithm and three components found to be suitable,
assessed by a segmented cross-validation with eight
contiguous segments and no scaling. Two different
models were fitted: one using the first 10 and last 100

Ž .samples sample set 1 and one using the first 100 and
Ž .the last 10 samples sample set 2 . These two models

approximately span the same type of samples but in
widely different proportions due to the difference in

Žsampling time sample number is also a time scale
reflecting the three months of operation of the sugar

.factory . The emission mode weights of these two
models are shown in Fig. 1. Note that these weights
are identical for both the old and new algorithm. As

Ž .is readily seen, the raw weights are not similar left .
However, using the new algorithm, it is possible to
transform the weights because of the rotational free-

Ž .dom of the model. Upon transformation right , the
weights are indeed very similar indicating that the
subspaces spanned in the two different subsets are
stable. The transformation matrix was obtained by
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Fig. 1. Emission weights from N-PLS model on two different subset of samples. Left, the raw weights are shown with unbroken lines corre-
sponding to sample set 1 and the dashed lines corresponding to sample set 2. To the right, the same weights are shown but upon transform-

Ž .ing ‘rotating’ the sample set 2 weights to optimal agreement with sample set 1 weights.

simply regressing the weight matrix of sample set 2
onto the matrix from sample set 1. This way, the
weights from sample set 2 stays in their own sub-
spaces but are represented so that they are as close to
the weights from sample set 1 as possible.

3.5. Consequences for multi-way dependent data

If the dependent data are also multi-way, then it
follows immediately that the N-PLS model of the ar-
ray Y must also be a subspace model. Even if the de-
pendent data are known to be approximately trilin-
ear, the N-PLS model will not be able to model such
data through a trilinear model. This was indirectly
shown in Section 3.3 where the trilinear independent
data could not be modeled by a trilinear N-PLS
model. Hence, instead of using a PARAFAC-like
model of Y, a Tucker3-like model is used in exactly
the same way as the model ofX is changed. The re-
sult will be a better-fitting model with more reason-
able least squares properties.

4. Conclusion

The theoretical difference between low-rank and
subspace approximation has been described. A logi-
cal implication of this difference is the suggested
modification of the calculation of the model ofX in

N-PLS leading to a model with more well-defined and
sound properties than the original N-PLS model.
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