
Multivariate data
analysis as a tool in

advanced quality
monitoring in the
food production

chain

Rasmus Bro*,y Frans van den
Bergy, Anette Thybo{,

Charlotte M. Anderseny,x,
Bo M. Jørgensenx and

Henrik Andersen{

yDepartment of Food Science, Royal Veterinary and
Agricultural University, DK-1958 Frederiksberg,

Denmark (e-mail: rb@kvl.dk)
{Department of Horticulture, Danish Institute of

Agricultural Sciences, DK-5792 Aarslev, Denmark
xDepartmentofSeafoodResearch,Danish Institute for
Fisheries Research, DK-2800 Kgs.Lyngby, Denmark

{Department of Animal Product Quality, Danish
Institute of Agricultural Sciences, DK-8830 Tjele,

Denmark

This paper summarizes some recent advances in mathe-
matical modeling of relevance in advanced quality mon-
itoring in the food production chain. Using chemometrics –

multivariate data analysis – it is illustrated how to tackle
problems in food science more efficiently and, moreover,
solve problems that could not otherwise be handled before.
The different mathematical models are all exemplified by
food related subjects to underline the generic use of the
models within the food chain. Applications will be given
from meat storage, vegetable characterization, fish quality
monitoring and industrial food processing, and will cover
areas such as analysis of variance, monitoring and handling
of sampling variation, calibration, exploration/data mining
and hard modeling.
# 2002 Elsevier Science Ltd. All rights reserved.

Introduction
There is an increased public and political focus on

food production. Safety, nutritional value, eating qual-
ity, ethical, environmental, economic and social aspects
are all issues that the food industry needs to be aware of
and respond to. This is a result of the fact that most
food industries produce low profit products, the ever
rising wages in most industrialized countries, and the
ever ongoing changes in life style. Increased information
and purchasing power have triggered the latter, hereby
making customers increasingly sophisticated, demand-
ing and powerful. This leads to a necessity for efficient
tools in monitoring, optimization, characterization,
speciation and general handling of raw materials, pro-
cesses intermediates and final products. Together with
prediction of quality throughout the production chain,
this becomes a must for the food industry to be compe-
titive at the global niche markets of the future.
Optimal utilization of available data obtained

throughout the production chain is an important aspect
of developing the tools necessary to fulfill the above
mentioned demands. Often, the food industry performs
a number of different measurements throughout the
process, typically for specific, dedicated purposes. This
generates a large amount of data, which is seldom used
outside its direct scope. Rather, it is used distinctly for
one specific purpose. However, it can be of great interest
to combine all available information in order to extract
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even more relevant information from the collected data.
Moreover, introduction of alternative measurements
will also be necessary to accomplish the future demands,
especially in relation to the prediction of quality. For
example, on-line or in-line spectroscopy is a promising
area where non-destructive and cheap measurements
can be made providing multivariate and very general but
accurate information on different chemical and physical
properties of the samples measured (Archibald & Kays,
2000; Bro, 1998; Colquhoun, 1998; Engelsen, Mikkel-
sen, & Munck, 1998; Isaksson, 1990; Munck, Norgaard,
Engelsen, Bro, & Andersson, 1998; Scotter, C., 1994;
Scotter, C.N.G., 1997; Shibata, Ono, & Hirano, 2000;
Simpkins & Harrison, 1995).
In this paper, examples will be given on how

advanced multivariate data analysis can be helpful in
analyzing complicated data sets obtained from mon-
itoring production at different steps in the food pro-
duction chain. The focus will not be on the mathematical
aspects of these methods, but rather on the practical
results obtained. The examples thus serve as illustrations
of the benefits that can be obtained by utilizing multi-
variate data analysis on food related data. Emphasis is
on the areas: visualization, optimization and calibration;
all three are of importance in relation to developing tools
ensuring optimal control in future food production.
The findings reported here were acquired in an ongo-

ing project named Advanced Quality Monitoring invol-
ving several partners with quite distinct disciplinary
backgrounds in Danish food research tradition. The
paper illustrates the necessity of joining forces to solve
complicated food chain related problems by modern
scientific methods.

Visualization
Exploratory data analysis is an often neglected but

highly useful discipline (Andersson, 2000; Munck et al.,
1998; Tukey, 1977; Weihs, 1993). Usually, data analysis
is performed as a confirmatory exercise, where a postu-
lated hypothesis is claimed, data generated accordingly
and the data analysed in order to either verify or reject
this hypothesis. In effect, no new knowledge is obtained
in confirmatory analysis except the possible verification
of a prior postulated hypothesis. Confirmatory analysis,
though, is highly useful in many forms of traditional
quality control.
In contrast, using exploratory analysis, the data are

gathered in order to represent as broadly and well as
possible the problem under investigation. The data are
analysed and through the, often visual, inspection of the
results, hypotheses are suggested on the basis of the
empirical data. Thus, the aim in exploratory analysis is
broader than in confirmatory analysis. Rather than
defining the whole problem mentally and merely verify-
ing these mental constructs through data and analysis,
the empirical real-life observations of the problem are

used to obtain knowledge of the underlying character-
istics. This gives an increased possibility for obtaining
new, different and interesting information about the
problem, possibly leading to new hypotheses. Conse-
quently, exploratory data analysis is an extraordinary
tool in displaying thus far unknown information from
established and potential monitoring methods, which
subsequently can be used to establish solid measuring
methods of importance in food quality control. Two
examples will be given on how to use dedicated mathe-
matical models combined with relevant advanced mea-
surements to extract, display and understand important
underlying causes and effects in different food problems.

Characterizing water distribution of food samples by
low-field NMR
The distribution and mobility of water in complex

systems such as muscle-based food are important for
perceived eating quality and in many cases also for
suitability for processing and storage. In the muscle,
water may e.g. be bound tightly to proteins, encom-
passed by the muscle fibrils, in the cytoplasm or sarco-
plasm, or in the extra-cellular fluid.
Low-Field Nuclear Magnetic Resonance (LF-NMR)

transverse relaxation measurement is the method of
choice when the task is to probe the state of water in
samples from such food systems. Although it is possible
to imagine a large number of possibilities (for example,
water–protein interactions) and consequently an almost
continuous distribution of water mobilities, it turns out
in practice that a few compartments or pools of water
can be identified from the LF-NMR transverse relaxa-
tion signal (Pedersen, Bro, & Engelsen, 2002). This
signal is a weighted sum of mono-exponential decays,
the number of which equals the number of different
pools. The weights are proportional to the pool size
(amount of water) and the relaxation times are a func-
tion of the characteristic water mobilities. These para-
meters therefore provide a useful picture of the states of
water in a given sample. From the matrix of pool sizes
(each row representing a sample and each column a
pool) one can often predict quality-related properties by
multivariate calibration methods.
Traditionally, the LF-NMR transverse relaxation

signal has been treated by curve fitting methods. A set
of parameters is obtained independently from each
sample. The main problem is the highly correlated
parameters, and if the number of components is not
known, over-fitting is a realistic risk. Comparisons
between samples are also impeded by the fact that the
resulting relaxation times may differ profoundly among
samples so that it is not obvious whether the compo-
nents are comparable at all. It is therefore practical to
stabilize the model fit by forcing a set of components to
be common to all samples, if such a set can be assumed
to exist. The number of components obviously depends
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on how close the relaxation times are. The samples will
thus differ in the relative amounts of the various com-
ponents which are linear parameters that can be deter-
mined analytically.
The most difficult task is to find the set of common

relaxation components. Here, modern developments in
multi-way chemometrics have provided a powerful tool:
parallel factor analysis (PARAFAC) combined with a
data rearrangement that will result in tri-linear data
(Pedersen et al., 2002; Windig & Antalek, 1997). The
PARAFAC model is a mathematical model that, under
certain mild conditions, can separate measured signals
into the underlying contributions (Bro, 1997; Harsh-
man, 1970; Harshman & Lundy, 1994). This method
was recently applied to the study of water states in pre-
frozen cod stored in modified atmosphere at +2�C
(Jensen, Guldager, & Jørgensen, in press). It was possi-
ble to identify four pools of water and to determine how
the water distribution changed during frozen storage
dependent on the temperature (�20 or �30�C; Fig. 1).
Moreover, the distribution during cold storage could be
observed to change in a way only slightly dependent on
the storage temperature. Combined with other methods
such as microscopy and calorimetry, measuring the
water distribution as described provides new insight in

those changes in the muscle that lead to quality dete-
rioration during storage.

Combining multiple data sets with multi-block methods
Many data analysis problems can be specified in terms

of blocks. For example, a single block of spectra can be
analyzed by Principal Component Analysis (PCA)
(Wold, Esbensen, & Geladi, 1987) to find the main
phenomena in the set. The same block of spectra can be
used together with a block of quality values to build a
predictive Partial Least Squares (PLS) regression model
(Vandeginste & Massart, 1997) so that the quality can
be predicted in the future directly from the easily mea-
sured spectra. In many research and process questions,
different but distinct sources of information are avail-
able on the same set of objects. Examples are different
analytical techniques (spectroscopy, rheology, wet-
chemistry, etc.) collected on the same samples or the
same parameters measured on the same samples at dif-
ferent stages in a production process. In recent years,
methods have been developed to handle multiple blocks
of this kind (Westerhuis, Kourti, & MacGregor, 1998).
These modeling methods are extensions of well estab-
lished so-called one- and two-block factorial models
such as PCA and PLS.

Fig. 1. 1H NMR relaxation signals and water pools in samples from thawed cod. Intact cod muscle was frozen for three months at �30�C
and subsequently for three months at the temperature indicated (�30 or �20�C). After thawing, the muscle samples were minced and the
spin-spin relaxation signals recorded. From these signals four water pools (marked I–IV) could be identified with pool I being the most mobile
(free) water. The normalized relaxation curves and the relative amount of water in the four pools are shown for each of the two storage

conditions. The figure was constructed from data in Jensen, Guldager, & Jørgensen (2002).
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The concept of multi-block modeling will be illu-
strated using data from a wheat flourmill (Nielsen, Ber-
trand, Micklander, Courcoux, & Munck, 2001). At six
different streams in the mill, samples were taken. A
seventh sample was composed from equal proportions
of the first six. The samples were separated in six size
fractions labeled a–f, where f is the remaining fraction
after separation (see Fig. 2; Berg, 2001). Fast (in-pro-
cess) near infrared (NIR) spectral analysis and slower
(laboratory) chemical composition and laser-scatter size
distribution analysis are collected for all the samples. In
order to emphasize chemical information in the spectra
over the scatter information, a standard normal variate
signal correction is applied to the NIR. After this action
there are four contributors in the factor model: the two
predictor blocks NIR and SNV-NIR and the two
response blocks composition and distribution. The aim
is to create a monitoring-map that will show the position
of future mill samples using only their NIR-spectra. For
this purpose a multi-block PLS model is constructed
that seeks to predict the two blocks of chemical and
distribution data from the two blocks of NIR data (see
Fig. 3).
Fig. 3 provides a visualization of the multi-block

model in terms of the samples marked by their labels. It
is remarkable that an accurate summary of all the indi-

vidual 1437 variables organized in four different blocks
can be given in such a condensed map. Samples that lie
close together are similar while samples that are distant
are dissimilar. It is seen that the horizontal axis primarily

Fig. 2. Building blocks of the wheat flourmill data-set.

Fig. 3. Multi-block monitoring-map for the wheat flourmill data-
set; ‘S’ is SNV-NIR, ‘N’ is NIR, ‘C’ is chemical composition and ‘D’ is

particle size distribution.
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explains the size distribution. Next to the axis, the rela-
tive block contribution is plotted which shows that all
four blocks of data have a considerable contribution in
this direction, moderately dominated by the NIR and
Distribution data. Thus NIR and distribution data
are the ones mainly reflecting size distribution. The
second axis – dominated by the SNV-NIR and
Compositional/Chemical direction – splits of the
samples from location 6, which are known to be
chemically different in composition (Nielsen et al.,
2001). The f-samples are seen to form a separate
cluster in the map.
The essence of multi-block methods is to do data

analysis thinking in terms of building blocks rather than
individual variables. This significantly reduces the risk
of being overwhelmed even when a lot of (different)
data, related to the same set of objects, has to be ana-
lysed. Being an extension of ‘conventional’ factorial
models – PCA and PLS – all their strong features
remain valid, augmented with block-specific (preferably
graphic) information and diagnostics.

Optimization
Optimization is a challenging problem in any process

industry. Optimization can be used to minimize product
quality variability, maximize yield, minimize energy
consumption, etc. In the food industry, optimization is
often based on empirical observations, which do not
take into consideration all processing steps involved. In
a more scientific setting, optimization is often per-
formed in a systematic way through experimen-
tally designed data analysed by so-called analysis of
variance (Hirsh, 1977; Latorre, 1984; Massart et al.,
1988; Montgomery, 1991; Morgan, Burton, & Church,
1989; Stahle & Wold, 1989). Various important
factors are systematically and independently varied
in order to verify their influence and interactions on
the property under investigation. In this section, two
interesting and new applications of optimization are
described.

Visualizing experimentally designed data of meat
storage properties
Modified atmosphere packaging is widely used to

extend the shelf life of fresh meat. One aspect of opti-
mizing the atmosphere is to retain the red color of the
meat, which is favorable for consumer preferences.
Meat color was monitored in an experiment using
Longissimus dorsi muscles of several animals. The fac-
tors varied were storage time, storage temperature, O2
content in headspace, and amount of light exposure.
Red color was measured for different settings of these
factors; the settings being defined through a D-optimal
design because the limited number of samples pro-
hibited a full or fraction factorial design to be used (Bro
& Jakobsen, 2002).

It is characteristic of many biological systems, that the
influence of different factors on certain properties, such
as the color in this case, is not simple. Often, the influ-
ence of one factor is dependent on the level of other
factors. Hence, there are interactions between the fac-
tors. In fact, the interactions may be mainly responsible
for the relation between the factors and the property.
For example, the influence of soil type and fertilizer on
wheat yield is mainly a function of the combination of
the two factors rather than independent functions of
both.
A new model called GEneralized Multiplicative

ANalysis OF Variance—GEMANOVA (Bro, 1998; Bro
et al., 2001; Bro & Heimdal, 1996; Heimdal, Bro, Lar-
sen, & Poll, 1997) has been suggested for analysing data
where interactions are likely to be the main source of
variation. The GEMANOVA model was applied to the
above meat data and the result is illustrated in Fig. 4.
The GEMANOVA model states that the color can be
explained by two independent phenomena: the initial
color of the meat and the degradation of color. The
absolute degradation is thus independent of the initial
level of color. The initial color of the meat is shown in
the lower right part of Fig. 4 where the model estimates
are compared to the actual measured color of the six
different muscles used, showing excellent agreement.
The degradation is given by a three-way interaction
between storage time, temperature and light exposure.
Oxygen is (surprisingly) found to have no significant
effect in the investigated domain. For a specific storage
time, temperature and light exposure, the estimate of
the absolute degradation is found by reading the ordi-
nate of the three corresponding graphs in Fig. 4 and
multiplying these together. Thus at storage time zero
there is no degradation as the storage effect is zero
(upper left). On the other hand, going from temperature
2 to 8�C, it is seen that the temperature effect increases
from 1.2 to 2.4. Therefore, the effect of this change will
be that the overall decrease is twice as high at 8�C as it
is at 2�C, regardless of all other factors.
As can be seen, this multiplicative model of the three-

way interaction generates a model which is easily and
intuitively understood in terms of the underlying pro-
blem. A similar understanding would not be possible
with a traditional ANOVA model.

Characterizing the effect of biological inhomogeneity
with analysis of variance
In many applications, instrumental measurements are

performed at only one specific part of the product due
to the size of the measurement device. The measure-
ments are subsequently related to the overall properties
of the sample. This introduces a random sampling error
that can be reduced by measuring replicates at different
parts of the sample. The number of replicates used
for building the calibration model and used for future
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prediction may not be the same. In such situations,
the predictions can be improved by correcting the
regression coefficients so that they correspond to
the least squares estimate with the number of repli-
cates in the calibration set. The advantage of apply-

ing this correction based on the theory of the
measurement error models is illustrated in Fig. 5
where prediction of water content of fish muscle
from 1H low-field NMR relaxations is used as an
example.

Fig. 4. Results of GEMANOVA model showing the influence of storage, temperature, light and muscle on meat color. Oxygen has no
significant effect.

Fig. 5. (left) Difference in the average prediction error, Root Mean Squared Error of Prediction (RMSEP), between the corrected estimation
and least squares estimation when six replicates are used for calibration and from one to 12 replicates are used in prediction; (right) an
example of the predicted water content versus the measured water content obtained with nine replicates in the calibration set and only one

measurement in prediction (crosses—least squares; circles—corrected least squares).
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The difference between the predicted error obtained
using direct least squares regression and when correcting
for the number of measurements in the prediction set is
largest when only one measurement is used for predic-
tion. When the measurements of the prediction samples
consist of few replicates, there seems to be an advantage
in correcting the regression coefficients. However, this
advantage diminishes when more than approximately
three measurements are used for each sample.
An example of the improved predictions obtained by

the correction is shown in Fig. 5. The model is cali-
brated using samples with nine replicates and validated
on a test set where the samples are measured only
once.

Calibration
Although calibration of sensors and measurements is

a universal task of process operators and laboratory
technicians throughout the food industry, many novel
methods of data handling are interesting supplements to
current technologies. Specifically the use of multivariate
calibration as propagated in the field of chemometrics
can turn measurement signals with no apparent selec-
tivity into models with good predictive performance for
a wide variety of properties (Martens & Næs, 1989).
Three examples will hint on the diversity of potential
applications.

Predicting final product sensory quality from low field
NMR measurements on the raw product
Texture is an important quality attribute for cooked

potatoes. It is closely related to the dry matter content.
The potato product industry is demanding methods that
can predict the final texture of potatoes non-destruc-
tively. This will enable sorting of potatoes in gradings of
various texture qualities with less variability, having a
more appropriate quality for a given final product. This
will increase the quality within products, reduce the

waste, and increase the income as well as the satisfaction
of the consumers.
Low field 1H NMR (LF-NMR) is known to reflect

compartmentalization of water phases and hence tex-
ture in many food products such as meat, bread and fish
mince. For potatoes, a prediction of texture in cooked
potato samples from raw sample measurement by
LF-NMR have shown high correlations for many sen-
sory texture attributes using NMR relaxation curves
(Fig. 6) as well as bi-exponential fit parameters (T2s)
(Thybo, Bechmann, Martens, & Engelsen, 2000; Thy-
gesen, Thybo, & Engelsen, 2001). In a recent experi-
ment, 23 potato samples of different varieties and dry
matter content were investigated. A PARAFAC (see
above) prediction of the sensory attributes was com-
pared with a PLS prediction using NMR relaxation
curves as well as T2s (Povlsen, Rinnan, van den Berg,
Andersen, & Thybo, 2002). The results are given in
Table 1 and show that most of the sensory attributes are
well predicted from LF-NMR. The PLS predictions
seemed to give the best predictions.
LF-NMR is a non-destructive method and hence

interesting for process monitoring of texture in the food

Fig. 6. (left) Low-field 1H NMR relaxation curves of four examples of different potato varieties; (right) prediction curves of mealiness and
moistness using NMR.

Table 1. Prediction of sensory texture attributes using low-field
NMR given by correlation coefficients between measured and
predicted attributes

Sensory texture
attributes

PLS on
relaxation
curvesa

PLS on
bi-exponential
fitting parametersb

PARAFAC on
relaxation
curvesa

Hardness 0.80 0.81 0.66
Cohesiveness 0.84 0.83 0.74
Adhesiveness 0.74 0.63 0.53
Mealiness 0.85 0.90 0.73
Graininess 0.71 0.76 0.62
Moistness 0.85 0.90 0.76

a Four-factor models. b M2 and T2 values used.
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industry. Through multivariate calibration modeling,
quality can be assessed directly and quickly giving more
relevant and time-critical information for controlling
the process.

Prediction of sensory texture attributes from full
uniaxial compression curves on raw material
Uniaxial compression is a destructive instrumental

approach to determining mechanical properties such as

hardness, crispness or springiness. Uniaxial compres-
sion is not considered a rapid instrumental method, but
can be used for (off-line) randomly sampled quality
control.
In uniaxial compression a sample from a potato tuber

is compressed (e.g. 75% at constant velocity). Usually,
two to four parameters are extracted from the com-
pression curves (force and deformation at fracture and
moduli before fracture) and used for further interpreta-
tion and correlation with sensory texture attributes.
Using multivariate data analysis it is possible to use

the full compression curve instead of only a few features
extracted. Compared with the information content of
the four curve features, more information may be found
using the full curves. Prediction of sensory texture
attributes of cooked potatoes from either full curves or
from curve parameters on raw samples are given in
Table 2. Most of the sensory attributes were better
predicted from full curves than from curve parameters.
This indicates that more information is found in the
full curves and that these can replace the traditional
calculation of curve parameters. This may be an

Table 2. Prediction of sensory texture attributes using uniaxial
compression given by correlation coefficients between mea-
sured and predicted attributes

Sensory texture
attributes

PLSR on full
force-deformation
curves

PLSR on 4
curve parameters

Hardness 0.89 0.81
Cohesiveness 0.84 0.82
Adhesiveness 0.78 0.63
Mealiness 0.81 0.76
Graininess 0.77 0.75
Moistness 0.79 0.72

Fig. 7. Sugar samples were taken every eighth hour, dissolved in water and measured spectrofluorometrically. An example is shown upper
left. PARAFAC decomposition of the data provides relative concentrations (lower left), relative excitation spectra (not shown) and relative

emission spectra (upper right). The four concentrations are used for predicting color of the sugar shown lower right.
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advantage as some of the curve parameters (e.g. mod-
uli) are defined in many different ways making the
comparison of results difficult (Thybo & van den Berg,
2002).

Predicting sugar quality from fluorescence-based
mathematical chromatography
In the sugar industry, sugar is manufactured from

either beet or cane. Through a number of unit opera-
tions, the crystalline product is obtained. The main
quality parameters are color and ash content (Nør-
gaard, 1995b). These are used externally for reporting
quality and internally for controlling the last part of the
process. Measuring these parameters requires manual
sampling and wet-chemical laboratory work. It is thus
expensive and there is a certain lag between the actual
sampling and the determination of quality. Having a
cheaper, faster, on-line measurement would be highly
beneficial for process control purposes.
This can be made possible by the use of fluorescence

spectroscopy and indirect multivariate calibration as
first described by Nørgaard (1995a, 1995b). The results
have been further refined over the years. Bro (1999)
showed that the fluorometric data of sugar can be
decomposed into chemically meaningful components
with the use of a PARAFAC model. In this case, fluor-
escence excitation–emission matrices (EEM) as shown
in Fig. 7 (upper left) are measured on sugar samples
dissolved in water. A sample is taken every eighth hour,
the frequency with which the quality parameters are
determined traditionally. In all, 268 samples are taken,
covering the 3 months’ yearly production.
A PARAFAC model of these fluorescence data

directly provides relative concentrations, emission and
excitation spectra of the underlying chemical analytes as
shown in Fig. 7. Thus, the holistic fluorometric char-
acterization of the sugar samples can be expressed by
only four underlying phenomena. This means that dur-
ing the three months, any sugar sample can be fully
characterized with respect to its fluorescence fingerprint
by varying amounts of four different estimated fluor-
ophores. These four relative amounts/concentrations
are shown in the lower left part of the figure. The most
intriguing aspect in this model though, is that the dis-
entangled fluorophores, determined solely from the
direct measurements, can be identified on a chemical
basis. In this case, comparing the emission and excita-
tion spectra with known fluorophores, two of them are
identified as tryptophan and tyrosine, respectively. As in
ordinary chemical chromatography, these findings can
be further substantiated in different ways (Baunsgaard,
Andersson, Arndal, & Munck, 2000; Baunsgaard, Nør-
gaard, & Godshall, 2000).
By multiple linear regression it is possible to make

quantitative models, e.g. predicting the color of the
sugar from the four concentrations found by PAR-

AFAC as shown in the figure. Thus, a quantitative
model is obtained which is much easier to handle than
the standard wet-chemical approach and which has a
chemical basis making it more transparent (directly
related to the four components) and descriptive than the
standard methods.

Conclusion
In this paper we show that the recent advances in

chemometrics, e.g. combined with the use of new on-line
or at-line spectroscopic measurements provide an
important and interesting direction of research.
Through the use of dedicated mathematical models it is
possible to overview huge data sets and complicated
problems in an intuitive and straightforward manner.
Examples have shown the benefit of proper visualiza-

tion in data analysis in e.g. details on the water dis-
tribution of products or modeling of large data-set via
multi-block methods. Also shown are the promising
prospects of optimization in e.g. the parameter estima-
tion for storage and packaging, or the characterization
of in-homogeneity in raw materials for the food industry.
In the last paragraph the potential of multivariate cali-
bration was demonstrated by examples on the prediction
of final product properties from measurements on the
raw material and the use of advanced modeling techni-
ques for process parameter monitoring and prediction.
All these benefits arise from the proper use of

advanced mathematical models and show that explora-
tory, multivariate data analysis guided by visualization
is a fruitful complementary discipline in food research,
and can generate results that either immediately or
readily can be used in combination with existing food
quality monitoring methods or potential measuring
methods at a level which in the future can fulfill the
demands that the food industry is facing with regard to
totally quality control.
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