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INTRODUCTION 
Chemometrics is the discipline concerned with the ap- 

plication of statistical and mathematical methods, as well as 
those methods based on mathematical logic, to chemistry. 
This review, the tenth of the series, and the eighth with the 
title Chemometrics, covers the more significant developments 
in the field from December 1991 to December 1993. The 
format follows that used in the previous review (A I ) ,  with 
some exceptions. We no longer include a separate section 
called Factor Analysis to account for changes in the literature 
and to better reflect the way in which methods based on 
principal component analysis are used in chemometric work. 
The reader will note an increase in the modeling, calibration, 
and pattern recognition sections, the areas where most of the 
work previously assigned to the section on factor analysis now 
appear. We have also tended to group reviews and tutorials 
concerned with specific chemometric methods under the 
appropriate heading. 

As we have noted in the introduction to previous funda- 
mental reviews, the field of chemometrics continues to enjoy 
steady growth. For this review, almost 20000 computer- 
generated citations were examined, a significant increase over 
the last two-year period. As noted before, hand searches were 
necessary to find papers missed by the computer search; 
amazingly, some 10% of the references listed were not detected 
by the computer search. From an examination of the papers 
found in the computer and hand searches, it was apparent 
that much of the growth in the number of references was due 
to publications produced by authors from outside of the "usual" 
location of chemometrics research. The largest amount of 
work by far originated in the Far East. Papers dealing with 
subjects relevant to chemometrics and published in English 
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from addresses in Japan, China, and Korea have gone from 
a handful in 1988-1990 to about 2000 during 1992-1994. 
Similar, but smaller, increases were seen in works originating 
in the former Soviet Union, Eastern Europe, Central Asia, 
and South America. A large number of chemometric papers 
were published in languages other than English. It should 
therefore come as no surprise that, during the past two years, 

0003-2700/94/0366-0315$14.00/0 
0 1994 American Chemical Society 

AnalyticalChemistry, Vol. 66, No. 12, June 15, 1994 315R 



most of the reviews of chemometrics were published in 
languages other than English. 

An ever-widening array of applications of chemometric 
methods also seems responsible for this increase in the rate 
of growth of the literature of chemometrics. A very large 
number of authors not formally trained in chemometrics have 
published applications of chemometric methods in chemical 
journals during the past two years. These authors include 
those pursuing fundamental research in analytical chemistry, 
a field closely related to chemometrics for historical and other 
reasons. This group has always been a source of papers 
concerning applications of chemometric methods. Over the 
past two years, their interest in chemometrics has increased-a 
statistic which is strongly correlated with the increased power 
of small, desktop computers and the ready availability of 
commercial and other chemometrics software. However, 
analytical chemists are not the only group seeing possibilities 
in using chemometrics to explore data. Even synthetic 
chemists and theoretical chemists have begun to realize that 
chemometrics offers a route to get more from their data. 
Research work has begun to appear from groups who would 
seldom attend a chemometrics seminar, let alone publish work 
in the field. Chemical engineers have also discovered the 
advantages of chemometrics. Over the past two years, the 
number of chemical engineers using routine and not-so-routine 
chemometric techniques has shown a steep increase. This 
review does not include papers from the mainstream chemical 
engineering literature, because the scope of this review is 
limited to chemical applications. However, a brief examination 
of papers in chemical engineering journals suggests that their 
inclusion in the next fundamental review may be appropriate. 
The third group with a strong interest in chemometrics are 
the statisticians. Many of the papers appearing chemical 
journals and cited in this review come from authors with formal 
training not in chemistry, but in mathematics and statistics. 
It is therefore not surprising that papers on chemometric 
methods have begun to appear more regularly in the more 
applied statistical journals. At present, statistics journals also 
fall outside of the scope of journals abstracted for this review, 
but a very few papers from the statistics literature which are 
likely to be of special interest to chemometricians are cited 
below. 

The danger inherent in the expansion of chemometrics to 
areas as diverse as chemical engineering and statistics on the 
one hand and traditional chemistry on the other lies in that 
the “core” of chemometrics has become harder to discern. 
Unlike other, more traditional areas of analytical chemistry, 
for example, chemometrics is not inextricably associated with 
a particular instrumental method for measuring chemical data. 
Multivariate mathematical methods are as suited for analysis 
of economic trends, for example, as chromatographic traces. 
The computer, when used with general software for math- 
ematical data analysis, is equally adept at examining data 
from a chemical process or a mass spectrum or relating boiling 
points to chemical structure. This generality has worked to 
the advantage of chemometrics research in the past, when 
methods developed in other fields such as econometrics, 
psychometrics, or electrical engineering could be brought to 
the attention of chemists by publishing the “new” method and 
a small chemical application in the chemical literature. Now, 

however, the increased mathematical sophistication of chem- 
ists, when coupled with easy access to data analysis, has placed 
the field at a crossroads. Research a t  the “core” of chemo- 
metrics can emphasize chemical relevance by focusing on the 
creation of new methods especially suited to the unique aspects 
of chemical data and chemical problems, or it can instead 
focus on more general, sophisticated mathematical methods 
for data analysis and assign less importance to the relevance 
to chemical applications. Both of these directions are apparent 
in the citations extracted during the last two years. 

The breadth of the field makes a comprehensive review of 
chemometrics increasingly difficult. Possibly for that reason, 
the fundamental review published in this journal continues to 
be the most comprehensive collection of chemometrics research 
( A I ) .  With the 1993 edition, the applications reviews 
published in Analytical Chemistry now include a section called 
Process Analytical Chemistry, in which some applications of 
chemometrics receive fairly extensive coverage (A2) .  Wold 
has considered the motivation for, and the likely trends in, 
chemometrics as applied to biomedical and pharmaceutical 
analysis ( A 3 ) .  Other reviews included a summary of recent 
chemometrics research in China ( A 4 )  in English by Yu, and 
a more complete review of the current state of Chinese 
chemometrics (but in Chinese) by Deng (A5) .  

Many other reviews have focused on applications of 
chemometric methods in a particular subfield of chemistry. 
Over the past two years, several subfields of chemometrics 
have been defined as a consequence of these applications, 
usually as new “metrics”. Carlson reviewed the use of 
chemometrics in organic synthesis, an area he calls “syntho- 
metrics” (A6) .  The use of chemometrics in analysis of 
environmental applications was the subject of several reviews. 
Cerda et al. discussed chemometric methods for multicom- 
ponent analysis of complex matrices (A7) ,  while Vogt 
considered the use of chemometrics on environmental data. 
H e  has coined the term “envirometrics” to describe this 
research area (A8) .  Qualimetrics-a subfield of chemometrics 
defined earlier by Martens as one that is concerned with the 
use of chemometric methods to improve quality control and 
quality assurance-was the subject of reviews by Vogt (A9)  
and Tranter (AIO).  The use of chemometric methods in the 
synthesis, analysis, and formulation of pharmaceuticals was 
reviewed by Aanstad et a1 ( A I I ) ,  who call this subfield 
“pharmacometrics”, by Berridge (AIZ),  who provided an 
extensive review, but under a more traditional title, and by 
De Boer ( A I 3 ) ,  who offered a brief overview of the field. 
Kauffman reviewed chemometric methods applied to analysis 
of lipids ( A I 4  and modeling of lipid properties ( A I 4 ,  AI5) .  
NMR spectroscopy is an area where increasing use is made 
of sophisticated chemometric methods. Hoffman and levy 
reviewed modern methods for data analysis in N M R  (AI6) ,  
while Hoch et al. focused on the use of chemometrics for 
analysis of protein N M R  spectra ( A I 7 ) .  Analysis of spectral 
data generated by other spectroscopic techniques was the 
subject of a number of reviews. The use of chemometric 
methods on ultraviolet, visible, and infrared spectra of pigments 
was the subject of a short review by Oka and co-workers (AI8) .  
Barton and Himmelsbach discussed chemometric methods in 
the near-infrared analysis of feed materials, with an emphasis 
on future directions in this research area ( A I 9 ) .  A review of 
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photothermal spectroscopy included a summary of various 
chemometric methods found to be helpful in data reduction 
(AZO). Patonay and Warner discussed the use of chemometric 
methods in their review of the field of multidimensional 
luminescence (A21) .  Boumans considered the impact of 
chemometric methods on the field of plasma spectrometry in 
another review (A22) .  The need for chemometric methods 
for enhancing the selectivity of new optical sensors was the 
subject of a review by Gauglitz (A23) .  Even the most 
sophisticated optical sensors lack adequate selectivity for 
practical analysis, and computer-based data reduction is a 
necessity. Carey discussed the use of sensor arrays with 
multivariate data analysis methods (A24) .  Examples of the 
use of this chemometrically enhanced sensor array to process 
control and pollution prevention were provided. Mass 
spectrometry has long been associated with chemometrics. 
Varmuza reviewed new applications of chemometric methods 
to mass spectral analysis (A25) .  He focused on computer- 
assisted methods for interpretation of mass spectra and on 
analytical applications. Chromatography, normally an area 
where many workers apply chemometrics with good success, 
was the subject of only one review: Munk evaluated the use 
of chemometrics and inverse gas chromatography for the 
characterization of polymers (A26).  Finally, Bear and Brown 
reviewed the use of chemometric methods in electroanalytical 
chemistry (A27) .  

Many reviews of chemometric methods also appeared. 
However, most of these focused on a particular method, and 
these papers are referenced below, under the appropriate 
heading. Some reviews are actually more tutorial in nature, 
and these are listed in the Tutorial section below. The use of 
chaotic systems in chemistry, and chemometric methods for 
dealing with them, was the subject of a review by Bishop 
(A28) .  Kalivas reviewed his work with undergraduates in 
chemometric research (A29) .  

Chemometrics continues to be stressed as an essential part 
of the teaching of analytical chemistry, especially by European 
authors and groups. The subdiscipline concerned with 
analytical chemistry of the Gesselschaft der Deutscher 
Chemiker published a position paper on the nature and 
importance of chemometrics to analytical chemists (A30).  
They see the field of chemometrics as no less than the 
theoretical basis of analytical chemistry. The relationship 
between chemometrics and analytical chemistry was on many 
minds as the result of a competition to define the scope and 
direction of analytical chemistry, proposed by Grasserbauer 
in Fresenius’ Journal of Analytical Chemistry (A31) .  Many 
of the responses to this challenge were published in a subsequent 
issueof that journal (A32). Interestingly, most of the responses 
were from Europe or Asia, and most of them mention 
chemometrics very prominently. Many stressed information 
as a result from analytical chemistry, rather than just data. 
Grasserbauer reflected on the scope and direction of research 
in analytical chemistry in reporting the decision of the 
committee concerning the award (A33).  In his opinion, the 
needs for a curriculum in analytics/analytical science/ 
analytical chemistry include a significant background in 
advanced data analysis. The relationship of chemometrics to 
metrology, informatics, and analytical chemistry was also 
examined by Shaevich ( A M ) .  Postma and Kateman applied 

some of the methods of chemometrics to representing analytical 
procedures. They described a formalism for analytical 
methods, based on information theory (A35).  

Despite the strong interest in chemometrics by analytical 
and other chemists, courses in chemometrics remain fairly 
uncommon. Teaching of chemometrics-to analytical chem- 
ists, synthetic chemists, chemical engineers, or whom- 
ever-probably remains the rate-limiting step in the advance- 
ment of the field. As the newer workin chemometrics becomes 
more mathematically sophisticated, it becomes more difficult 
for those with inadequate preparation in mathematics to enter 
the field or even to read the recent literature of chemometrics. 
The need to offer more introductory and intermediate 
instruction in chemometrics remains, both to train those using 
the software packages and to find ways of bringing a constant 
flow of new workers into the field. For the present, short 
courses, tutorials, and recent texts continue to be the main 
routes for students as well as practicing chemists to learn 
about chemometrics. 

Short courses on chemometrics are increasingly available, 
and they offer the easiest way for a novice to gain some exposure 
to chemometrics. These range from the brief, two-day courses 
now offered by the American Chemical Society at  national 
ACS conferences to the five-day schools in chemometrics 
offered in Britain each fall by the University of Bristol. Some 
commercial companies are now offering regular short courses 
on specialized areas of chemometrics, too. These include 
vendors of chemometrics software and also consultants. The 
video revolution has made few inroads into the teaching of 
mathematically oriented subjects such as chemometrics, but 
for those who cannot attend a short course, one company now 
offers taped training series on introductory statistics, experi- 
mental design, and quality assurance. Instructors for these 
courses are well-known statisticians, including George Box, 
Serren Bisgaard, Conrad Fung, and J.  Stuart Hunter. 

Cross-fertilization in chemometrics can also come from 
conferences. Major research conferences in chemometrics 
help during the past two years included the fifth Chemometrics 
in Analytical Chemistry Conference (CAC-V) held in Mon- 
treal, Canada, in July 1992, Computer Applications in 
Analytical Chemistry (COMPANA-92) held in Jena, Ger- 
many, in August 1992, the Third Chemometrics Conference, 
held in Brno, Czech Republic, and the Chemometrics and 
Environmetrics meeting (CHESM-93) held in Bologna, Italy 
in August 1993. The Gordon Research Conference (GRC) 
on Statistics in Chemistry and Chemical Engineering con- 
tinued to have a strong chemometric component, reflecting 
an increased interest by many statisticians in chemometric 
methods. Other conferences with a significant chemometrics 
component included ICCCRE 10 in Jerusalem, Israel, and 
the 28th Colloquium Spectroscopicum Internationale, in York, 
England. Yearly conferences in the United States, including 
the EAS Conference, the FACSS Conference, and the 
Pittsburgh Conference also had significant chemometric 
components. Vandeginste reported on the 1993 Pittsburgh 
Conference (A36). His report noted the changed emphasis 
at  PittCon: there is a strong focus by vendors on qualimetrics 
and chemometrics, for it is here that many instrument vendors 
see a chance to add value to their product. 
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Publishing the proceedings of conferences with a heavy 
emphasis on chemometrics is the rule, not the exception. 
Conferences held during the past two years whose proceedings 
were published in Analytica Chimica Acta included CAC V 
and the 6th CIC Workshop on Software Development in 
Chemistry. The proceedings from COMPANA 92 and The 
2nd Scandinavian Symposium on Chemometrics (SSC2) 
appeared in Chemometrics and Intelligent Laboratory Sys- 
tems. The proceedings from the COMPANA conference are 
especially noteworthy because one paper published from this 
conference asked the question “Does COMPANA accomplish 
what it should?” (A37) .  With the number of conferences 
increasing, and the number of workers doing research in 
fundamental chemometrics remaining level, questions of this 
sort seem to be on the minds of many conference organizers. 
For example, several Gordon Research Conferences have been 
scaled back to reflect declines in attendance: the GRC in 
Analytical Chemistry has been suspended for now, while the 
GRC on Statistics in Chemistry and Chemical Engineering 
has been slated to be held every two years, starting in 1994. 

Conferences upcoming in 1994 with significant chemo- 
metrics content include the International Chemometrics 
Research Meeting, to be held in Veldhoven, Holland, in June 
1994, the fifth Snowbird Conference on Chemometrics in 
Analytical Spectroscopy, to be held outside of Salt Lake City, 
UT, also in June 1994, and the 1994 GRC, in July. Many 
journals now offer some sort of calendar section listing 
conferences for those looking for one a t  just the right time and 
location. 

One unusual chemometrics conference to be held in 1994 
has no physical location. The North American Chapter of 
the International Chemometrics Society (NAmICS) will hold 
the First International Chemometrics Internet Conference 
(INCINC) during September-November 1994. Papers will 
be “presented” by posting the manuscripts over the Internet 
through session chairs to the interested (and registered!) 
community, and discussion of those papers will take place 
over a specified time period though the NAmICS Internet 
listserver. Proceedings from this conference will appear in 
Chemometrics and Intelligent Laboratory Systems, though 
those registered for the conference will have access to the 
manuscripts a good while before any hard copy appears in 
print. 

The increasing use of the Internet by chemometricians-as 
indicated by the upcoming Internet Conference-is worthy 
of further comment here. It is now simple to use Internet 
resources to get reports, transfer data sets, exchange software, 
and even submit manuscripts anywhere in the world. Yet, 
chemists-including those in chemometrics-remain well 
behind the curve established for efficient use of networks by 
information scientists, statisticians, and many others. For 
example, neuroprose, a neural networks manuscript repository, 
has been in existence for some time a t  Ohio State University. 
Many authors in this field routinely make their work available 
to neuroprose (archive.cis.ohio-state.edu) by anonymous ftp. 
In this field, it is not uncommon to learn of a new paper in 
the morning, ftp the paper to a local computer, print the paper, 
and test the results by the next day! Statisticians also have 
been taking advantage of Internet capabilities for some time. 
The statlib (temper.stat.cmu.edu) software and data repository 

for statistics, located a t  Carnegie Mellon University, has all 
sorts of public-domain statistical software available by 
anonymous ftp. Several well-known statisticians make their 
“reprints” available by anonymous ftp from their computers. 
With the high cost of reprints and decreasing funds, this is 
an attractive idea. Using the Internet to make work available 
to any interested person with knowledge of the Internet and 
access to it raises several questions concerning the meaning 
of publication and of peer review, however. The way in which 
journals-especially the two commercial journals publishing 
much of chemometrics research-will deal with issues raised 
by electronic release of research work has yet to be made 
clear. 

Awards announced during the last two years included two 
for Statistics in Chemistry. The 1992 award, given to the 
best industrial application of statistics in chemistry went to 
DuPont for research on mixture designs and neural networks. 
The 1993 award was given to Cheng Yu Ma and Chuck Bayne 
of Oak Ridge National Laboratory for their work on 
differentiation of environmental samples by linear discrimi- 
nants applied to the chemical ionization mass spectra of 
arochlor contaminants. The first Elsevier Award in Chemo- 
metrics, given to a chemometrician under 40, was presented 
to Lutgard Buydens, of The Catholic University of Nijmegen. 

During the past two years, two noted supporters of 
chemometrics passed on. Herman Wold, a noted econo- 
metrician responsible for the NIPALS algorithm and many 
other ideas now routine in chemometrics (and partially 
responsible for Svante Wold, a noted researcher in the field) 
died in 1992 (A38) .  L. B. (Buck) Rodgers, a well-known 
analytical chemist who recognized the utility of modern data 
analysis and was an early, powerful supporter of chemometrics 
in the United States, alsodied in 1992. Rodgers’work spanned 
most areas of analytical chemistry, but his last efforts were 
directed toward data analysis. The goodwill and enthusiasm 
of both will be missed. 

Having data sets to test new methods for data analysis has 
long been a concern for those in chemometrics. This issue has 
also been a concern to those in information sciences and 
statistics. These groups have set up a number of Internet 
data set repositories. One site a t  UC Irvine (ics.uci.edu) 
intended for testing out neural networks contains many 
classification sets and may be of interest to those in chemo- 
metrics. The statlib statistics repository has some well- 
characterized data sets for testing certain statistical software. 
Chemometricians will be interested in the first attempt to 
offer well-studied data sets in this field (A39) .  For $10, a 
floppy disk containing four well-studied data sets can be 
obtained from the authors. Another way of testing a 
chemometric method-and one favored by this group-is with 
simulated data. Voightman has reviewed his approach for 
simulating an analytical instrument with Mueller calculus 
(A40) .  His simulated instruments produce very good, 
simulated data. Visual BASIC has also been used to simulate 
analytical processes ( A 4 I ) .  Even Fourier transform N M R  
can be simulated, as Ratzlaff and VanderVelde demonstrate 
(A42) .  Pool and co-workers reported an  algorithm for 
simulating gas chromatographic/mass spectrometric (GC/ 
MS) data (A43) .  The simulated data was validated with real 
GC/MS data. Yang et al. used simulation methods for 
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multiplex chromatography to test several different methods 
for quantitation (A44).  Lewis et al. used the DryLab I/mp 
package to simulate chromatographic separations as a function 
of changes in the mobile-phase pH (A45).  

Two new journals will be of considerable interest to 
chemometricians. One, Spectrochimica Acta Electronica, the 
electronic supplement to Spectrochimica Acta, Part B, 
publishes computer applications in spectrochemical analysis. 
This journal provides a hard copy text and a floppy disk 
containing the software associated with each article. The 
approach employed here is not novel; The Mathematica 
Journal has done the same thing for some time, but 
Spectrochimica Acta Electronica, represents the first chemical 
journal to offer this feature. Judging from the number of 
books being published with accompanying software and disks 
(see the section below for more on this), providing an executable 
version of software with a publication reporting that software 
is a feature that is likely to become more common in the near 
future. The second new journal of interest to those in 
chemometrics publishes no papers. Instead, new papers on 
chemometrics are summarized in Window on Chemometrics, 
a service begun by the Royal Society of Chemistry in July 
1993. Window on Chemometrics offers brief abstracts of 
articles of interest to those developing chemometric methods 
or applying chemometric techniques. The scope for the 
abstract list includes general techniques and statistics, 
calibration and validation, computer programs, and expert 
systems, as well as chemometric application to standard 
analytical methods in spectrometry, chromatography, and 
other methods. Some 250 journals are scanned for articles 
relevant to chemometrics, and abstracts are provided monthly. 
The existence of this abstracting service is another indication 
of the increasing use of chemometric methods throughout 
chemistry, and it is a welcome aid for those wishing to keep 
abreast of the latest work in chemometrics without scanning 
more general abstracts. 

Books. During the last two years, a surprisingly large 
number of texts on chemometric methods were published. 
Many were intended for an audience new to chemometrics. 
Haswell edited a multiauthor book offering introductory 
treatments of several areas important to modern chemometrics 
(A46) .  A second in the series of books made from the tutorials 
published in Chemometrics and Intelligent Laboratory 
Systems appeared (A47) .  This book included tutorial articles 
from mid- 1989 to late 199 1. Brereton edited an introductory, 
multiauthor volume on the use of pattern recognition methods 
in chemistry (A48). Case studies served to illustrate the 
principles, and an optional, tutorial software supplement 
distinguishes their approach, the one used at  the Bristol short 
course. Kateman and Buydens teach introductory chemo- 
metrics from the perspective of considering the influence of 
the analytical process on the quality of an analytical result in 
a revision of an early text on chemometrics (A49).  Meloun 
and co-workers published the first in their series of texts on 
chemometrics in analytical chemistry (A50). The book, which 
focuses on introductory statistical methods and exploratory 
data analysis, is intended for use with their commercial 
CHEMSTAT package. Buydens and Schoenmakers edited 
a multiauthor text on software approaches for implementing 
expert systems, neural networks, and genetic algorithms (A5I) .  

Analysis of spectral data with the help of chemometrics 
continues to receive a lot of attention. Kalivas and Lang discuss 
the mathematical aspects of multivariate calibration of spectra 
in their new book (A52). PelikSln and co-workers offered a 
fairly complete text on the applications of chemometrics and 
other numerical methods applied to several different spec- 
troscopies (A53). A more introductory treatment of the 
analysis of data from electronic and vibrational spectroscopy 
also appeared ( A H ) .  Several multiauthor books appeared 
on near-infrared spectroscopy. The use of chemometrics in 
qualitative and quantitative analysis of samples by near- 
infrared (near-IR) spectrometry is emphasized in all three 
books. The book edited by Hildrum et al. emphasizes 
applications, but includes a section on developments in 
multivariate calibration (A55).  The book edited by Burns 
and Ciurczak focuses more on introductory theory of near- 
infrared spectroscopy and on the basics of multivariate 
calibration (A56) .  There is a sizable section on applications 
in this book, too. The third book, edited by Murray and Cowe, 
contains proceedings from the 4th International Conference 
on Near-Infrared Spectroscopy (A57) .  Many of the papers 
included here concern details of the chemometrics used in 
the data analysis. This book is more suited to the expert at  
near-IR and chemometrics. Other books on chemometrics 
applications that resulted from conferences included the third 
volume in the series covering the Snowbird Conference (A58). 
This book has a nice chapter on multivariate calibration by 
Haaland. 

Several other books appeared which are of interest to data 
analysts. Gans examined the statistical theory and practice 
of fitting chemical data to models (A59). Noggle published 
an introductory text on curve fitting with the MS-DOS-based 
EZ-FIT software, a copy of which is provided with the text 
(A60) .  Miller and Miller updated their well-known text on 
statistics for analytical chemistry ( A b ] ) .  Their new version 
places moreemphasis on computer methods and chemometrics. 
Meier and Ziind consider the use of statistical methods in 
analytical chemistry too, but from the perspective of case 
studies (A62) .  This new text also includes a disk with software 
in BASIC. Experimental design is an area that now attracts 
a great deal of interest from chemists and others. That interest 
spurred the publication of new books on experimental design 
and the revision or rerelease of older classics. Goupy offered 
an experimenter’s approach to experimental design, but with 
an emphasis on designs requiring computer-based calculations 
(A63) .  Davies published a nice introduction to experimental 
design for chemists (A64) .  This text covers designs up to 
those requiring the use of computer methods. Deming and 
Morgan updated their introductory text on experimental 
designs in chemistry (A65) .  Finally, the classic text on 
experimental design by Cochran and Cox was rereleased, in 
paperback form (A66) .  

Several other statistics books appeared whose topics are of 
special interest to workers in chemometrics. McLachlan 
published a new book on statistical methods for pattern 
recognition (A67) .  This well-written book includes discussion 
of chemometric methods as well as the usual statistical theory. 
It will be of interest to anyone doing classification work. Several 
books appeared on the bootstrap, a validation method gaining 
attention in chemometrics. Efron and Tibshirani published 
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a book introducing the bootstrap and examining its applications 
(A68).  Hall offered a text on the theory of the bootstrap 
(A69),  while Mammen published work on the utility of 
bootstrapping in book form (A70).  Brown considered the 
statistical theory behind calibration and related regression 
problems in a new book (A7Z). Van de Geer examined the 
theory behind nonlinear analysis of categorical variables in a 
monograph (A72).  In a second monograph, he reported on 
the use of standard statistical packages, such as SPSS, to 
implement the GIFI system for nonlinear analysis of several 
experimental data sets (A73).  Jobson surveyed the theory 
and applications of multivariate data analysis in a two-volume 
set (A74,  ,475). A diskette with the example data sets 
accompanies volume 1. Afifi and Clark used geometrical 
and graphical explanations to teach multivariate analysis in 
their new book (A76) .  They also offer introductions to several 
statistical packages. Kirby focuses on a single package, the 
SYSTAT statistical software package, to illustrate some 
advanced statistical methods (A77) .  Cressle offered a 
compendium of knowledge on spatial statistics in a new book 
(A78) .  Bandemer and Nather published an extensive mono- 
graph on the theory of fuzzy modeling methods (A79) .  

Neural nets are attracting attention from several groups. 
Among the many new books published in this area, a few 
stand out as especially interesting. Kosko summarized the 
literature on fuzzy methods and neural networks in a new 
book, which also includes C language software for fuzzy 
analysis and fuzzy nets (A80) .  Chemists, especially those 
new to the area of neural nets, will find the new book by 
Zupan and Gasteiger very helpful (A8Z). This book is filled 
with clear discussions of many types of networks, and many 
example applications relevant to chemistry are presented. 
Other new books on neural networks included those on 
statistical modeling with nets by Smith (A82) ,  a new book by 
Freeman on generating nets with the Mathematica symbolic 
computing package (A83),  and a book on advanced methods 
by Wasserman which supplements his earlier, more introduc- 
tory text ( A M ) .  Another book suited for those with expertise 
in neural nets is concerned with the combination of nets and 
genetic algorithms (A85) .  Applications of neural nets to 
pattern recognition are covered in a new book by Nigrin (A86) 
and a book comparing traditional and net-based approaches 
by Schalkoff (A87).  Those chemometricians interested in 
keeping up with the latest developments in computational 
chemistry will want to examine the multiauthor text edited 
by Lipkowitz and Boyd (A88). A very useful chapter on 
computational software is included. 

And, finally, although it is not particularly recently 
published, mention should be made here of an unusual book 
containing only data. Andrews and Herzberg have collected 
several data sets from different disciplines in a single source 
(A89).  They intended it for statisticians, but those seeking 
data sets for testing chemometric methods may find this a 
useful source book. 

Software. Chemometrics is an algorithm-based field, and 
the development of software continues to be an important 
part of research in this field. Not surprisingly, many papers 
concerned with chemometrics included discussion of in-house 
chemometrics software of some type. These in-house packages 
continue to grow in both size and sophistication. The area of 

optimization is especially active. Tchapla reviewed optimiza- 
tion software available for chromatography and gave sug- 
gestions on the selection of a suitable optimization package 
(A90) .  One of the most frustrating aspects of a chemometric 
analysis can be getting the data from the instrument to the 
computer where the analysis is to take place. Fennema and 
co-workers discuss their solution to this problem in a two-part 
series (A91, A92).  Progress toward the eventual standardiza- 
tion of data formats and simplification of interchange of 
analytical data was evaluated (A93) .  A noncommercial 
standard for storage and transfer of Auger and X-ray 
photoelectron spectra between machines and computers of all 
types has been developed by a consortium of Japanese 
researchers in this area (A94) .  They propose it as a standard. 
The use of laboratory information management systems 
(LIMS) has become much more common. McDowall and 
co-workers considered applications where LIMS and chemo- 
metrics are complimentary (A95) .  Levey and Leonard 
discussed the important issues to be considered in attempting 
to validate LIMS (A96) .  Miller and Mason offer a computer 
performance analysis of a LIMS for use in the pharmaceutical 
industry (A97) .  The issue of software and method validation 
was a popular subject during the past two years. Several 
reports concerned software for validation of analytical 
methods. The AMIQAS package was developed and used 
for quality control, proficiency testing, and method evaluation 
on lead analyses in blood (A98) .  A program based on 
maximum likelihood fitting of a functional relationship was 
also proposed as a means of method validation (A99).  
Biochemical and bioanalytical data were validated by an expert 
system-based approach implemented in the VALAB package 
(AIOO). Automated analysis of quality control data was 
accomplished by a new software package based on Westgard’s 
multirule (AIOI) .  Database search and interpretation soft- 
ware continues to be refined. The SpecInfo system, a 
spectroscopic search package used with NMR,  IR, and MS 
databases, was reviewed (A102) and evaluated for estimation 
of the I3C N M R  of organic molecules (AZ03). The 
SCANNET database, a system suited for NMR,  IR, MS, 
Raman, and UV spectra searches and structural elucidation, 
was described in two reports (AZOI, AZ05). Berrueta and 
co-workers describe the FLUORIM package for collection, 
evaluation, and storage of fluorescence data (AlO6).  The 
Beilstein database and search system for current facts in 
chemistry was also described (A207).  

Many authors considered the improvement of analytical 
methods with a chemometrics software package. The use of 
chemometric “detectors” for chromatographic separations was 
the subject of three reports. Cardot et al. described a program 
for automatic detection and description of chromatographic 
peaks (AZ08). Jurasek and co-workers reported a chemo- 
metric detector based on the ISODET software package that 
recognizes C1-, Br-, and S-containing compounds from the 
isotope cluster patterns in their mass spectra ( 4 0 9 ) .  Werther, 
Lohninger, and Varmuza discussed the use of the SpecInfo 
and MASS-LIB information systems with the EDAS software 
package as a classifier for GC/MS data (AI IO). Two disjoint 
classes are nicely separated. Another application in chro- 
matography was concerned with the use of symbolic pro- 
gramming for automated estimation of retention data from 
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chromatograms (A1 11). Atomic spectroscopy, an area not 
usually of interest to those in chemometrics, also received 
some attention during the past two years. Webb and Salin 
report an electronic aid based on a small expert system for 
line selection in inductively coupled plasma spectrometry 
(AI 12). Hypertext tools have been published for selection of 
dissolution methods prior to atomic absorption analysis (AI 13). 
Burton and Horlick reported on the MS Interview database 
for plasma mass spectrometry and related techniques (A114). 
Their program is suited for use with MS sources other than 
the plasma torch or glow discharge. Analysis of mass spectra 
is always challenging, something that attracts the interest of 
chemometricians. The last two years saw the publication of 
many packages for mass spectral analysis. A set of simple 
software tools for elucidation of mass spectra was offered in 
one paper ( A I S ) ,  and the SpecTool hypermedia tool kit for 
interpretation of mass spectra was described in two others 
(AI 16, A1 17).  Rules for identification of substructure from 
tandem mass spectra by the MAPS software package were 
the subject of a paper by Hart and co-workers (A118).  
Software for the analysis of data from plasma desorption mass 
spectrometry was also discussed (A119) .  King and Horlick 
offered SpectroPlot, a general user interface for processing 
spectral and interferometric data on Macintosh computers 
(A120). Programs with more specificuses included the STAR 
package for evaluation of stability constants from multi- 
wavelength absorbance data (A121) and the RAMPAC 
package for background correction, peak fitting, and decon- 
volution of Raman spectra (A122).  A subroutine for the 
MINUIT package that performs deconvolution of spectra 
containing up to 13 peaks was the subject of one report (A123). 
NMR, especially multidimensional N M R  and N M R  imaging, 
is another area where chemometrics software continues to 
evolve. The PROSA package performs many common 
preprocessing operations on large multidimensional N M R  
spectra (A124).  Another paper reported on what the authors 
called a “seraglio of programs” for human-aided assignment 
of 2-D lH N M R  (A125). N M R  microscopic imaging using 
projection reconstruction and the interpretation of multivoxel 
spectra with the MIMSTATS software package were the 
subject oftwo papers (A126, A1 27). Anovel, extensibleNMR 
signal processing package made by embedding Matlab into 
a UNIX-based expert system was the subject of another report 
(A128).  Fitting of high-resolution electron spin resonance 
spectra was discussed by Kirste (A129).  Surface spectra are 
also amenable to chemometric assistance, and new software 
for that continues to appear. Software for automated analysis 
of ion scattering spectrometry data was reported (A130). Time- 
resolved acoustic emission produces a kind of spectrum which 
has been the subject of several papers by Wade’s group. They 
reported on an extensible toolbox of signal processing methods 
for examining these acoustic emission “spectra” (A231). 

Development of general-purpose chemometric software 
continues to attract interest, but less than in previous review 
periods. Militky and Meloun added to their series of papers 
on the CHEMSTAT package with two papers on the nonlinear 
least squares package MINOPT (A132, ,4133). The second 
paper in a series describing a computer tool kit for chemists, 
one dealing with maximum tolerance procedures for fitting 
data to models, also appeared (A134).  Several rather novel 

software packages conclude our examination of this subject. 
The CFIT package, a genetic algorithm-based method for 
spectral curve fitting, was discussed by Lucasius et al. ( 4 3 5 ) .  
Software for image segmentation was the subject of a report 
by Mitev and Ivanova (A136). This is very useful for 
automating biological assays and classifying image parts. 
Software for fully automated, adaptive analysis has long been 
a goal of some groups in chemometrics. Plouvier et al. reported 
on their experiment planner software package (A137).  This 
software is capable of making strategic decisions concerning 
experiments and can alter ongoing experiments-or decide to 
terminate them-based on new experimental data. Finally, 
two reports on new software for teaching chemometrics 
appeared. One based the chemometric analysis on commercial 
spreadsheet packages (A138).  The second announced a new 
module for the commercial CLEOPATRA chemometrics 
teaching package (A139).  

Commercial chemometrics software has changed a good 
deal during the last two years, as vendors began to take 
advantage of improvements in computer hardware and system 
software. Commercial statistical software-much of which 
can be used to do considerable “chemometric analysis”-has 
matured significantly during this period. Very sophisticated 
user interfaces coupled to high-performance software for data 
analysis are now common on general-purpose statistical 
packages. Commercial chemometrics software, with a smaller 
audience and smaller budgets for development, cannot at 
present match the quality of these packages. However, the 
past two years has seen a gradual improvement in the quality 
of most of the established commercial packages for chemo- 
metrics. Pirouette and Unscrambler both were upgraded 
recently, and both have focused on the new issue of software 
validation. Unscrambler now offers capabilities for experi- 
mental design and the examination of response surfaces. Many 
other incremental improvements were also made. An upgrade 
to the Pirouette package focused on better file translation 
capabilities, improved display, and improved regression 
diagnostics for the soft modeling. Instep, a companion product 
to Pirouette which permits automated use of Pirouette- 
generated models under Microsoft Windows, also appeared. 
A new version of GOLPE, a package for variable selection 
released by Multivariate Infometric Analysis, is also available 
for purchase. This software is especially suited for work 
concerned with drug design and multivariate calibration. A 
few new packages suited to chemometrics also appeared. The 
SCAN software package, a general package produced by JerIl 
for exploratory data analysis, calibration, and classification, 
made its debut in late 1992. This package offers several 
unusual chemometric methods not found in other chemometric 
packages. The MODDE package was announced by Umetrics 
in 1993. This software package combines partial least squares 
(PLS) modeling and experimental design with a Windows- 
based graphical user interface that is more mature than many 
other packages. The last two years saw the release of a new 
version of the PLS Toolbox by Barry Wise. This shareware 
toolbox, which runs under the Matlab numerical computation 
and visualization package available from the Mathworks, offers 
m-files in source form for multivariate calibration methods 
of all sorts, including some newer methods not provided in 
commercial packages. The Matlab software package itself 
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also underwent a major revision in 1992; the new version offers 
much improved graphical user interfaces and visualization 
capabilities, along with some changes in the Matlab language. 
Toolboxes with m-files for neural networks, statistics, and 
image processing appeared during the last two years. Matlab 
continues to gain supporters among chemometricians, and 
many papers published during the last two years included 
Matlab code. The Mathworks now provides an anonymous 
ftp site (ftp.mathworks.com) with public-domain Matlab code, 
some of which is of interest to those in chemometrics. A new 
Windows version of S-plus also was released during the past 
two years. This language also offers many attractive features, 
and it has become the favorite of many statisticians. The 
statlib repository has a fairly large amount of S-plus code 
useful in chemometrics applications. 

Tutorials. With the gradual entry of chemometric methods 
and concepts into most analytical instrumentation, the need 
for tutorial articles in chemometrics has grown. Here, a t  
least, the supply has kept up with demand. Now, there are 
many tutorials published on all areas of chemometrics. 
Regular columns on introductory statistical and chemometric 
methods appear in Spectroscopy and LC-GC, for example. 
Some of the tutorial articles being published now, of course, 
are more tutorial than others, which seem more like reviews. 
Only general tutorials are listed here; ones with a specific 
topic are referenced in an appropriate section below. Gardner 
et al. offer two brief tutorials on the need for chemometric 
and statistical methods in monitoring data from processes 
and routine analytical runs (A140, A141). As usual, many 
tutorial articles addressed issues concerning regression in one 
form or another. Johnson considered why, when, and how 
biochemists should use least squares analysis in dealing with 
their data (A142).  The application of multivariate methods 
to multidimensional N M R  was the subject of a tutorial that 
focuses on the relation between the mathematics and the 
physics of the measurement process (A143).  Wythoff 
introduced the back-propagation method for training feed- 
forward neural networks (A144). The mathematical modeling 
required for analysis of immunoassay data was the subject of 
a tutorial by Baud (A145) .  Statistical methods receiving 
examination included empirical Bayes methods for parameter 
estimation (AI 46) and validation procedures for regression 
and classification (AI47) .  

STAT1 STI CS 
A substantial increase in the number of literature references 

describing the use of statistics in chemical data analysis 
occurred during this review period. As in previous years, a 
number of papers merely incorporated basic statistical methods 
into the chemical analysis. These works are omitted here; 
instead, only those studies whose focus was on the development 
or evaluation of statistical procedures for analytical chemistry 
arecited. During the past two years, procedures were reported 
for diverse purposes such as method comparison and validation, 
quality assurance and control, estimation of detection limits, 
sampling, outlier detection, error estimation, and derivation 
of confidence intervals. Many of the articles published in 
these areas are beyond the scope of this review and are not 
referenced here. The interested reader is referred to statistics 

journals such as Technometrics and the Journal of the  
American Statistical Association. 

Several reviews of statistical techniques for chemical data 
analysis appeared in the literature. In particular, the use of 
statistics for methodvalidation was often discussed. Castledine 
and Fell reviewed schemes for assessing the purity of liquid 
chromatography (LC) peaks as part of thevalidation procedure 
for pharmaceutical analyses ( B I ) .  In addition, method 
validation was the topic of two other reviews regarding 
biopharmaceutical assays (B2) and food analysis ( B 3 ) .  The 
interlaboratory validation of analytical measurements was 
also of concern. The importance of assessing and comparing 
the accuracy of analyses performed by different laboratories 
was discussed in the context of pesticide residue analyses ( B 4 ) ,  
wastewater monitoring (B5), and chemical analyses in general 
( 8 6 ) .  Currie addressed the issue of accuracy in analytical 
science in a review which included an illustration of exploratory 
statistical graphics for appraising data quality and uncovering 
relationships ( B 7 ) .  In an introductory review of chemical 
analysis in complex matrices, Smyth described statistical data 
evaluation (88) .  The subject of statistical sampling was 
discussed by two reviewers. The first provided an overview 
of groundwater monitoring a t  waste disposal sites (B9) ,  while 
the second reviewed coal process and quality control in power 
plants (B10). Duca considered several statistical aspects of 
the estimation of reference limits in biological monitoring 
(B1 I ) .  The detection and handling of outliers in analytical 
data was also considered. In this regard, Miller reviewed 
parametric, nonparametric, and robust statistical methods for 
treating outliers (BI 2 ) .  In still another review, Piegorsch and 
Haseman discussed various parametric and nonparametric 
procedures for the analysis of toxicity data (B13). The use 
of flow statistics in nuclear magnetic resonance (NMR) 
spectrometry was also discussed (814). A new area named 
informational statistics was described as comparable to robust 
statistics in terms of resistance to uncertainty. Sarbu explained 
the basics of this field as applied to analytical chemistry (B15). 

Statistical procedures were utilized to either combine or 
compare chemical data for a given determination obtained 
from different analytical methods. These procedures account 
for differences in the accuracy and precision of the various 
analytical methods. For example, Schiller and Eberhard 
described a technique for presenting the combined results from 
several different chemical methods as a weighted mean and 
a corresponding uncertainty (B16).  Moreover, Rasemann 
and Peter defined the degree of efficiency, the degree of 
(mutual) reproducibility, and the equivalence probability as 
measures for comparing the results of tin analyses from various 
chemical procedures (B17) .  Another method comparison 
technique based on statistical power calculations was also 
reported by Mazzo and Connolly (818) .  Statistical procedures 
for evaluating results from different laboratories were discussed 
by several researchers. Henrion et al. again reported on 
applying three-way principal components analysis (PCA) to 
multivariate data for the detection of error in round robin 
tests (BI9 ) .  In a largeinterlaboratoryand methodcomparison 
study, the World Health Organization determined that the 
laboratory constituted the single most significant factor 
affecting the accuracy and precision of toxicological assays 
(B20).  Thompson and co-workers compared the robust 
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analysis of variance (ANOVA) method outlined by the 
Analytical Methods Committee (AMC) with the Harmonized 
Protocol. They found that the former was markedly more 
reliable for interpreting data from collaborative trials (B21). 
De Beer et al. evaluated three volumetric procedures for 
pharmaceuticals, using ANOVA and box plots to show that 
interlaboratory variations were significant (B22). 

A number of papers published over the last two years 
described the use of statistical procedures for analytical method 
validation as well as for quality assurance and control. In a 
two-part report, Lang and Bolton presented a scheme for 
validating bioanalytical methods for pharmaceuticals (B23, 
B24). Another report discussed the design and interpretation 
of a method evaluation in atomic absorption spectrometry. 
The design used here permits estimation of the systematic 
error, the limit of detection, and the limit of quantification 
(825).  Method evaluation functions (MEF), defined as the 
expected value of the analysis as a function of the true analyte 
content, were also described for inductively coupled plasma 
atomic emission spectrometry (ICP-AES) (B26). Critchfield 
and co-workers explained a new bootstrapping technique which 
provides a probabilistic assessment of confidence on the 
linearity of a calibration curve (B27). In the area of quality 
assurance and control, an analysis of precision based on the 
x2 distribution was described in the general case (B28) and 
in thespecificcaseofactivation analysis (B29). Qualitycontrol 
and standardization in analytical systems were addressed by 
examining the statistical properties of immunoanalytic systems 
(B30). For the purpose of quality assurance and control in 
spectrochemical methods, Pasky described statistical evalu- 
ations for normality, trends, and outliers (B31). Caudill et 
al. reported the results of testing a composite multivariate 
quality control (CMQC) system which detects systematic 
errors, random errors, and correlation changes under various 
typical measurement conditions (B32). 

The estimation of detection limits by statistical means 
continues to be of significant interest. Work in this area was 
undertaken by several research groups. Yang and co-workers 
investigated determination errors arising when multicompo- 
nent analysis (MCA) methods are employed for correcting 
line interferences in ICP-AES. The development of a 
relationship between the relative error in analyte concentration 
and the extent of line overlap, bandwidth, and magnitude of 
wavelength positioning error allowed the derivation of an 
expression for the true detection limit (B33). In another study, 
a statistical model was designed to ascertain the analytical 
sensitivity, the limit of detection, the limit of determination, 
and the precision of spectrometric and chromatographic 
methods on the basis of linear calibration data (B34). Singh 
employed PCA to estimate multivariatedecision and detection 
limits for gas chromatography/mass spectrometry data (B35). 
The estimation of detection and decision limits is rendered 
more difficult when the variance of the instrument response 
is not constant. Torrades and Garcia Raurich suggested a 
model which transforms heteroscedastic data to homoscedastic 
data in order to enable an estimation of the detection limit 
from the projection of the confidence interval about the 
regression line (B36). Gibbons and co-workers also proposed 
a detection limit estimator which allows for a concentration- 
dependent variability in the analyte signal and multiple future 

detection decisions (B37). In addition, Gibbons et al. described 
an approach for calculating practical quantitation limits from 
calibration data (B38). A replacement method for estimating 
normal and log-normal distribution parameters was described 
which accommodates samples with concentrations that fall 
below the detection limit by assigning them a value between 
zero and the detection limit. This technique was compared 
with the methods of maximum likelihood and log-probability 
regression (B39). The treatment of values below the detection 
limit with a parametric estimation method was also discussed 
by Hartmann and Walter (B40). Wegscheider and co-workers 
described an error model for (locally) linear systems which 
could be employed for estimating detection limits in spectral 
measurements (B41) .  The definition of detection limit was 
revised in a new statistical technique applied to bilinear 
chromatography. The method uses regions in which no 
chemical components are eluting as repeated analytical blanks 
to formulate a multivariate detection limit for measuring the 
number of species in local regions of a chromatogram ( 8 4 2 ) .  

Sampling strategies and outlier detection were also inves- 
tigated by a variety of statistical means. Dale et al. 
recommended the use of the standard error-to-mean ratio, 
kurtosis, and skewness to aid in determining a suitable sample 
size for estimating the distribution of soil nitrogen (B43) .  
Representative soil sampling for heavy metal analysis was 
discussed by Einax and co-workers, who employed cluster, 
discriminant, and principal components analysis, as well as a 
multivariate autocorrelation function to evaluate the sampling 
(B44) .  Soil contamination was the subject of another study 
in which different sampling strategies were statistically 
compared (B45) .  In a biological application, Traut and Scheid 
reported the dependence of the statistical power on the control 
sample size in mutagen screening (B46) .  The appropriate 
number of samples for the Cerioduphniu reproduction toxicity 
test was also ascertained statistically (B47). Signal-to-noise 
ratio measurements in electron spectroscopy were performed 
by Seah and Cumpson. They determined the minimum 
number of counts necessary to accurately measure the noise 
statistics assuming Poisson behavior (B48). Several methods 
for detecting outliers in measurements were discussed. Critical 
Q-test (B49) and QP-test (B50) values obtained from a 
stochastic procedure weredescribed for this purpose. A robust, 
alternating regression method was suggested as an alternative 
to the least squares regression technique that underlies a 
principal components analysis. The robust regression approach 
allows the elimination of outliers which could otherwise lead 
to an erroneous set of principal components (B51). Residual 
analysis and outlier detection were carried out using a robust 
bivariate regression model which accounts for error in both 
variables (B52). Moen et al. described the median method 
as a nonparametric linear regression technique which is 
resistant to outliers. In their approach, the median of all the 
absolute y deviations is used as a robust measure of the 
dispersion of the individual y deviations from the regression 
line (B53). A new technique called the gnostical method was 
discussed by Paukert and co-workers for identifying outliers, 
evaluating the homogeneity of data sets, and classifying 
individual data (B.54). In a novel approach based on 
multivariate analysis, Stapanian et al. described a method for 
identifying outliers as well as their suspected causes. The 
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procedure was illustrated with a large multivariate environ- 
mental data set (855) .  

The estimation of error in analytical measurements by 
statistical methods was the focus of many studies. Several 
authors critically examined the common practice of least 
squares fitting to spectroscopic data. Yamada argued that 
the standard deviation of the fit is poorly defined, particularly 
when the data comprise several sets of data with varying 
precision. The significance of the uncertainty of the fit was 
evaluated for absolute and relative weighing strategies (B56).  
Martin also investigated the uncertainty of fitting a function 
to spectral data and compared results from the least squares 
method with one based on cubic splines (B57).  Using Monte 
Carlo calculations, the applicability of estimating the error 
by the covariance matrix in a least squares fitting procedure 
was examined (B58). An approach in which the residuals of 
a least squares fitting to spectroscopic data are extensively 
studied to evaluate the quality of the linear model was also 
described (B59). Tellinghuisen reported a technique which 
greatly reduces the detrimental effects of background on the 
precision of the least squares estimate of exponential decay 
parameters (B60).  Another study explained a statistical test 
for determining the significant number of spectral lines to be 
included in a least squares fitting (B61). In an analytical 
method comparison application, the performance of ordinary 
least squares was compared to that of another regression 
technique which accounts for error in both variables (B62).  
The problems associated with multicollinearity were addressed 
by the use of biased linear models based on the mean quadratic 
error of prediction (B63). Giorgini et al. developed a method 
for assessing the influence of signal noise characterized by 
Poisson statistics on vibrational correlation functions and 
relaxation times in Raman spectrometry (864) .  The propa- 
gation of error in y spectroscopy and neutron coincidence 
counting for plutonium materials was also modeled (B65).  
Several researchers investigated the uncertainties associated 
with measurements in Auger (AES) and X-ray photoelectron 
(XPS) spectroscopies using x2 (B66),  Bayesian (B67),  
minimum x 2  and unweighted least squares procedures (B68).  
In addition, Harrison and Hazel proposed XPS/AES data 
acquisition strategies on the basis of uncertainty determinations 
(B69).  Atomic models are employed in interpreting nuclear 
Overhauser effect (NOE) data for macromolecular structure 
determinations. A cross-validation procedure was imple- 
mented to define reliable criteria for evaluating the quality 
of solution N M R  structures (B70) .  Protein structure eluci- 
dation by N M R  was also the subject of error analysis by 
Hoch (B71) .  Coates formulated corrections for dead time 
effects in the measurement of time-interval distributions, where 
the form of the probability distribution is arbitrary but known. 
The method was illustrated with a time-of-flight mass 
spectrometry application (872) .  Several studies investigated 
the effect of measurement error on the determination of 
principal components. In one study, Simeon and Pavkovic 
evaluated two methods for calculating statistical weights based 
on variances and concluded that such weights improve the 
analysis of principal components (B73).  A second study 
examined the influence of white noise in equilibrium data on 
abstract factor analysis. The perturbation of the data with 
normally distributed error prior to factor analysis was proposed 

as an aid in data modeling (B74). In another study, it was 
argued that the principal component and factor analysis modes 
(Q-mode and R-mode) typically selected assume error 
estimates that are not commonly encountered in chemistry. 
Two new scaling methods were proposed to improve the 
accuracy of the factors (B75).  Error analysis of calibration 
curves was also performed by several workers. For instance, 
Cabral utilized an analysis of covariance of the regression 
lines to evaluate the repeatability of ion-selective electrodes 
(B76). Others characterized the error in a calibration curve 
from flow injection and chemiluminescencedata by calculating 
the bias, excess variance, skewness, and excess kurtosis (B77). 
Four statistical methods which account for error in both the 
x and y variables in linear regression were evaluated by 
MacTaggart and Farwell (878) .  The H-point standard 
addition method, a technique for eliminating the blank bias 
error, was evaluated using ANOVA and the Bartlett statistic 
in a spectrophotometric application (B79).  A bootstrap 
method was also employed to determine the reliability of 
calculated imprecision profiles in immunoassays (B80).  In 
an environmental application, Ramsey et al. described the 
merits of robust ANOVA over classical ANOVA in the 
presence of outliers for geochemical surveys (B81, B82). 

Confidence intervals for analytical determinations were 
also obtained by statistical means. Krouwer and Schlain 
described a method for calculating a least squares estimate 
and a corresponding confidence interval for the extent of 
deviation from assay linearity (B83). Another method was 
presented by Alvord and Rossio for determining confidence 
intervals for dose potency estimates obtained from various 
nonlinear dose-response models (B84). An existing procedure 
was modified to account for the uncertainty in predictions of 
hazardous concentrations of toxic substances and to derive 
one-sided 95% and 50% confidence limits (B85).  In a 
discussion on linear regression, MacTaggart and Farwell 
explained the influences of various assumptions on calibration 
and described several approaches to calculating confidence 
intervals (B86). Phatak and co-workers developed a technique 
for obtaining approximate confidence intervals for partial least 
squares estimates on the basis of a linearized PLS estimator 
(B87). Confidence intervals were also calculated using a 
Monte Carlo method and their uncertainties were determined 
by a nonparametric regression technique. The approach was 
considered best suited to nonlinear regression problems not 
easily solved by conventional means (B88). In another study, 
confidence intervals obtained from a bias-corrected bootstrap 
method were compared with those calculated with various 
parametric methods for accuracy and precision (B89). 

Several other papers concerning statistical analysis were 
published in the chemistry literature. For instance, a procedure 
for fitting electron energy loss spectra using unweighted least 
squares on the log-log transformed data was described. The 
residual variance of the fit instead of the x2 test was suggested 
as a means of determining the optimum width of the fitting 
window (890).  Bielsa and Meira investigated the propagation 
of error in the correction of the combined distributions of 
molecular weights and chemical composition of copolymers 
for instrumental broadening in size exclusion chromatography 
(B91).  Using microbial toxicity measurements, concentra- 
tion-response curves were generated by nonlinear regression 
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of the raw data and by weighted linear regression of the linearly 
transformed data (892) .  Based on a modified normal function 
for modeling asymmetry in chromatographic peaks, equations 
were also formulated for calculating various chromatographic 
figures of merit (B93). Hotelling’s T2 test, canonical 
correlation analysis, and PCA were used to compare estimates 
of Hilditch’s theory and LC determinations of triacylglycerols 
in olive oil (B94, B95). The interaction of components in a 
mixture could lead to nonadditivity in spectra. Khots and 
co-workers investigated this phenomenon using simplex-lattice 
designs (B96). An interesting study was also reported on the 
influence of chance effects on the cross-validation of partial 
least squares regression models (B97). Finally, Mandel argued 
that all models should be validated prior to their application 
to data. He presented a graphical procedure for achieving 
such validation (B98). 

OPT1 M I ZATI ON 
The optimization of chemical systems using mathematical 

methods has become widespread in the chemical sciences. 
Hundreds of research efforts published in the most recent 
reporting period utilized some sort of mathematical optimiza- 
tion, but most of these involved only straightforward ap- 
plication of well-known methods. Due to space constraints, 
however, only relatively new methods and applications are 
included in this section. 

A number of reviews on some of the more popular 
optimization methods were given. One paper discussed 
statistical modeling and experimental design strategies in the 
pharmaceutical industry (C1). Twogeneral reviews pertaining 
to the use of information theory in analytical chemistry were 
published (C2, CJ), while another review focused on the use 
of information theory in the optimization of chromatographic 
systems (C4). The simplex optimization method was by far 
the most popular multiparameter optimization technique cited 
in the chemical literature. Those looking for an introduction 
to the simplex method will want to examine the review by Reh 
(C5). Simulated annealing optimization, including a variable 
step size modification, was discussed in a tutorial (C6) .  
Multicriteria optimization by genetic algorithms represents 
a new area in the field of chemometrics. Those interested in 
this rapidly growing research area are referred to two tutorials 
on the use of genetic programming in analytical chemistry 
(C7,  C8). 

The early, widespread use of simplex optimization in 
chemistry can be explained by its simplicity and its relatively 
modest demands on the computer as compared to many other 
nonlinear optimization methods. Even though modern day 
desktop computers offer substantially more power than earlier 
machines, the simplex continues to be very popular among 
chemists. Modifications and developments of the simplex 
algorithm also continue to be well represented in chemical 
optimization research. In one paper, the convergence proper- 
ties of several different modifications of the simplex method 
were examined (C9) .  A modified and weighted centroid 
simplex method (CMWCS) was presented and employed in 
the optimization of the heating program parameters in graphite 
furnace atomic absorption spectroscopy (CJO). A weighted, 
variable step size simplex method was used to optimize buffer 
pH, sodium dodecyl sulfate concentration, and percentage of 

organic solvent in micellar electrokinetic chromatography 
(C11). Brumby studied the effect of different quadratic 
convergence criteria on the computer time required to optimize 
some benchmark problems with the simplex method (C12) .  
A new application of the simplex method involved the detection 
and following of a discontinuity (C13). 

A number of other optimization techniques are known to 
have better convergence characteristics than the simplex 
method on complex or high-dimensional error surfaces. 
Several researchers have compared the simplex with some of 
these optimization methods during the most recent reporting 
period. For example, Monte Carlo optimization was compared 
with the simplex method in the fitting of physiological 
toxicokinetic models (C14). The application of the simplex 
method resulted in better fits to the toxicokinetic model, but 
results obtained from the Monte Carlo method contained a 
smaller measurement of uncertainty. Simplex and steepest 
ascent methods were compared in the optimization of flow 
injection reactor conditions used in postcolumn detection 
chromatography (C15). The quality of the solutions obtained 
from the two optimization methods was very similar. In 
another study, the simplex method was compared with the 
conjugate direction set method of Powell in the optimization 
of the flow injection analysis for nitrite in water ( C l 6 ) .  In 
a new application, the steepest ascent method was applied to 
the optimization of the separation of enantiomers on a chiral 
stationary phase in open tubular column supercritical fluid 
chromatography (C17). Error-compensated kinetic deter- 
minations of mixed first- and second-order reaction systems 
were accomplished with a Levenberg-Marquardt-based non- 
linear optimization scheme (CJ8). The method was dem- 
onstrated on simulated data with various amounts of additive 
noise. Multiple parameters in micellar liquid chromatography 
were optimized using an optimization strategy based on an 
extension of iterative regression ((219). Amino acid and 
peptide separations were achieved by optimizing pH, con- 
centration of surfactant, and 2-propanol solvent. An opti- 
mization procedure for the simulation of proton elastic recoil 
spectra induced by low-energy helium ions was reported (C2O). 
The optimization was conducted according to Poisson, 
maximum likelihood, or x2  statistics, according to the authors. 
The signal-to-noise ratio, for an electrothermal atomizer was 
optimized using Monte Carlo simulations (C21) .  The 
optimization was conducted with a two-dimensional grid design 
in length and diameter of the electrothermal atomizer. 
Simulated annealing was used to optimize the gradient-coil 
design in a N M R  spectrometer (C22) and in multicomponent 
calibration designs (C23). Window diagram and overlapping 
resolution maps were the most popular techniques utilized by 
researchers in the optimization of chromatographic systems. 
A comparison of these two methods was conducted in the 
optimization of planar chromatographic experiments (C24). 
The overlapping resolution map method was reported to be 
more robust with respect to variations between the development 
distance, spot diameter, and average plate height. The 
overlapping resolution map was also used to optimize the 
separation of porphyrins by micellar electrokinetic chroma- 
tography (C25), the HPLC separation of nitroaromatics (C26), 
and the gradient HPLC separation of selected phthalates 
(C27) .  The window diagram technique was also used to 
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optimize gas chromatographic (C28), and capillary zone 
electrophoretic experiments (C29). A three-part optimization 
method called PRISMA was used to optimize HPLC mobile- 
phase composition that included up to four solvents (C30). A 
graphical method was used to predict the combined effect of 
mobile-phase variables on resolution, peak height, and reten- 
tion time in ion chromatography (C31). 

A significant number of studies involving information 
theory in the optimization of analytical experiments were 
reported during the last two years. A tutorial on the application 
of information theory to theoptimization of neutron activation 
analysis of trace constituents in certified reference materials 
was published (C32). It was demonstrated that the informa- 
tion could be used as an evaluation criterion as well as an 
objective function in the optimization process. A gas 
chromatographic screening method for the determination of 
chemical warfare agents, precursors, and degradation products 
was optimized by considering the information power in the 
chromatographic distribution profiles of sequentially connected 
columns (C33) .  In an experiment that coupled information 
theory with nonlinear optimization, the function of mutual 
information was used as an objective function in the simplex 
optimization of the mobile-phase composition in liquid 
chromatographic analysis (C34) .  A discussion on the use of 
the function of mutual information as an evaluation criterion 
in the optimization of multielemental atomic spectroscopy 
was the subject of a paper by Matherny and Eckslager (C3.5). 
Simulations were used to evaluate the effect of different 
analytical performance parameters on the effectiveness of the 
method. In a more general discussion, it was argued that the 
spatial resolving power of the information theory approach 
should exceed that attainable by integral analysis (C36). The 
mutual information and information throughput were maxi- 
mized in an optimization of micellar electrokinetic chroma- 
tography (C37) .  The variables that were optimized included 
micelle concentration, applied voltage, and temperature. Other 
applications of information theory that were reported during 
the last two years included optical resolution of enantiomeric 
amino acids (C38) and the analysis of natural products (C39). 

Statistical experimental design has become one of the most 
widely used optimization tools in the chemical literature during 
the past two years. More than 60 applications of experimental 
designs were cited. The references listed here involve only 
new designs or applications. A factorial design was used to 
establish optimal sequences for data pretreatment in near- 
infrared spectroscopy calibrations (C40).  The pointwise 
resolutive significance of each design point with regard to a 
number of parameters was discussed ( C 4 I ) .  The sum of all 
the pointwise resolutive significance was proposed as a measure 
of the overall resolution of the data set, and simulations were 
used to validate the conclusions. A factorial design was also 
used to study the effects of flow rate, injection volume, and 
coil length on the experimental fluctuations of flow injection 
signals (C42). An analysis of the fluctuations revealed that 
interaction between the parameters studied was always 
significant. Several efforts addressed the use of experimental 
designs that used process and mixturevariables in combination. 
A two-part study was conducted that gave first a theoretical 
evaluation of the process and mixed-variable model (C43),  
followed by an application using pharmaceutical data (C44).  

Designs for mixture and process variables were also applied 
to the problem of pharmaceutical tablet formulations (C4.5). 
The optimization of TLC separations of alkaloids was 
approached with a mixture design and response surface 
modeling (C46). The number of mobile-phase solvents used 
for the separation was reduced from eight, recommended by 
the European Pharmacopoeia, to four without a loss in 
resolution. It is often desirable to conduct experimental designs 
with a minimum number of examples. Wegsheider and 
Walner used a partial least squares model to study the sparse 
effects of sparse mixed-variable mixture models ( 0 7 ) .  The 
effectiveness of Doehlert designs was explored in the chro- 
matographic separation of chlorophenols (C48), the use of 
microemulsions as drug carriers (C49), and the interpretation 
of atomization interferences in electrothermal atomic absorp- 
tion spectroscopy (C50, C.51). Several Plackett-Burman 
designs were examined for the optimization or ruggedness 
testing of analytical procedures (C.52). The authors dem- 
onstrated that erroneous conclusions may result in the case 
of an improperly balanced three-level design. Taguchi 
experimental designs were used in the optimization of the 
chromatographic separation of 25 solvents commonly found 
in bulk pharmaceuticals (C.53). 

Optimization methods are sometimes used in conjunction 
with an experimental design strategy. The initial experimental 
design step can often improve the chances for a good solution 
by providing more information about the response surface. A 
coupled strategy based on experimental design and simplex 
optimization was used to optimize the supercritical fluid 
extraction of PAHs and organochlorine pesticide compounds 
from the environmental samples using a liquid-solid extraction 
cartridge (C.54). Pijnappel compared variable projection and 
Gauss-Newton optimizations in an experimental design- 
optimization strategy that was designed to quantify model 
parameters from one- and two-dimensional N M R  (C55) while 
Cladera et al. used an experimentally designed data set to 
compare Gauss-Newton and simplex optimization methods 
in a study of the simultaneous kinetic analysis of catalysts and 
activators ( 0 - 6 ) .  The reversed-phase ion interaction liquid 
chromatographic separation of nitrite, nitrate, and phenylene- 
diamine isomers was optimized with an experimental design 
followed by partial least squares regression (C.57). 

The use of genetic algorithms in chemical research 
represents the fastest growing research area concerned with 
the optimization of chemical systems during the reporting 
period. Genetic algorithms areused to perform an evolutionary 
search of the optimization space defined by the chemical system 
of interest. The property most promoted of the genetic class 
of optimization techniques in the literature is their ability to 
avoid trapping in local minima on the optimization error 
surface. Optimization surfaces that contain multiple local 
minima can trap gradient-based optimization methods in 
undesirable solutions. The genetic algorithm avoids this 
difficulty by the development of multiple evolutionary searches 
in parallel. The optimized parameters are chosen from the 
search with the minimum error solution. The cost of parallel 
evolutionary searches can be substantial in terms of execution 
time and computer memory requirements, particularly when 
many variables are to be optimized, however. Wienke et al. 
have compared the performance of simplex, steepest ascent, 
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overlapping resolution map, pattern search, and simulated 
annealing with a genetic algorithm in the optimization of 
spectroscopic excitation conditions for the simultaneous 
analysis of six trace elements in atomic emission spectroscopy 
(C58). A second comparison of the same methods involved 
the optimization of six properties of a biochemical test strip 
for human blood glucose determination as a function of 12 
chemical and technological parameters (C59). In this study, 
a substantial advantage of the genetic algorithm method as 
compared to other optimization approaches was reported. 
Optimal selection of wavelengths in multicomponent analysis 
was performed by genetic algorithm (C60), and the selection 
of an optimal calibration set was reported using a dynamic 
version of a genetic algorithm (C61). Genetic algorithms 
have also been applied toother optimizations involving spectral 
curve fitting (C62) and the assignment of 2-D N M R  spectra 
of proteins (C63). The optimization of biological media by 
a genetic algorithm was also reported (C64). In this study 
of benzoate degradation by Pseudomonaspudita, optimization 
with the genetic algorithm allowed for an 80-fold increase in 
the biomass concentration and a 3-fold increase in the biomass 
yield coefficient. Genetic algorithms have also been applied 
to the determination of chemical structures. An atom-to- 
atom mapping was conducted by optimizing the minimum 
chemical distance parameter (C65), and feasible isomeric 
structures weredetermined from the molecular formula (C66). 
In another study, a genetic algorithm was used to infer 
hypothetical physical structures that corresponded to physical 
properties exhibited by poly(ethy1ene terephthalate) yarns 
(C67). The genetic algorithm used a validated neural network 
model that was developed from a structure-property mapping 
of yarn exemplars. A novel hybrid scheme that utilized a 
genetic algorithm in the determination of kinetic rate coef- 
ficients in the hydrolysis of adenosine 5’-triphosphate was 
also reported (C68). Of several approaches examined, 
including hybrid and pure genetic methods, the most rapid 
convergence resulted when the genetic algorithm was used to 
select initial starting point for a quasi-Newton optimizer. 

SIGNAL PROCESSING 
Signal processing techniques are defined here as data 

transformations that improve the accessibility of physically 
significant information in analytical signals. A large number 
of papers that include digital filtering, smoothing, deconvo- 
lution, and transformation of data into alternate domains were 
in evidence during this reporting period, partly due to the 
wide availability of software packages that contain these signal 
processing routines. In order to meet practical space limita- 
tions, references in this section were restricted to research 
efforts that featured signal processing techniques in a major 
role. A number of articles that reviewed signal processing 
techniques were published over the past two years. A review 
of Fourier methods was given (DI), as well as a more specific 
review of Fourier smoothing and filtering of a-particle spectra 
(02). Two reviews on Hadamard transform IR spectrometry 
were given during the reporting period. The scope of the 
discussions included basic concepts and more recent advances 
in stationary encoding masks and appropriate spectrum 
recovery techniques that make Hadamard transform spec- 
trometry more attractive (03 ,04) .  Applications of matched 

filtering and correlation techniques in (Multiplex) chroma- 
tography were reviewed with a focus on applications in 
environmental chemistry (05). Two reviews appeared on the 
use of signal processing techniques in Raman spectroscopy. 
In the first review, autocorrelation functions, Fourier power 
spectra, signal intensity distributions, and correlation between 
Raman and elastic scattering were covered (06) .  The second 
review addressed the determination of line frequency shifts in 
Raman difference spectroscopy, the study of line width changes 
by Raman difference spectroscopy (RDS), and described 
experimental techniques and applications (07) .  

The smoothing of analytical data has become common 
practice in many chemical laboratories. Many instrumental 
software packages provide smoothing options for the analytical 
chemist. A limited number of research efforts that focused 
on the details of smoothing are covered in this review. Least 
squares polynomial smoothing of inductively coupled plasma 
atomic emission spectra was discussed with respect to point 
insertion into spectral scanning intervals and the minimization 
of spectral distortions (08). A new, computationally efficient 
method for estimating the background in electron energy loss 
spectra was given ( 0 9 ) .  The new least squares method was 
reported to be more robust and efficient than the traditional 
method of calculating a least squares fit of a power law model. 
A novel method for enhancing detection limits in flow injection 
analysis was reported by Bos and Hoogendam (010). The 
authors reported that under conditions of white noise and 
favorable peak shapes, a wavelet transform of the spectral 
data allowed the detection of analytes below the conventional 
statistical detection limit. In another smoothing paper, a 
general framework for the representation of spectra by 
continuous functions was given by Alsberg (01 1). Two ways 
of dealing with objects in function space were investigated: 
operation on functions only and operation on functional 
coefficients only. 

A substantial number of authors reported the use of digital 
filtering methods in the analysis of analytical data. Hyde et 
al. presented a novel filtering technique for the resolution 
enhancement of magnetic resonance spectra that uses com- 
puter-simulated sinusoidal field modulation with phase- 
sensitive detection at selected fundamental or harmonic 
frequencies. The pseudomodulation method was applied to 
simulated data (012 ) ,  and strategies were given for use with 
EPR spectra (013). Moore and Jorgenson reported a simple 
method of removing baseline drift in chromatographic data 
by use of a moving median digital filter (014 ) .  The moving 
median filter removes impulse characteristics but preserves 
sudden changes such as baseline shifts and drifting. Two 
research efforts reported the use of matched filters in data 
treatment. The first paper reported on the robustness of the 
matched filter toward noise model errors in the quantification 
of chromatographic data (015 ) .  In the second study involving 
matched filtering, signal model errors were minimized using 
a simplex optimization (016). Infinite impulse response (IIR) 
and finite impulse response (FIR) filters were compared in 
flow injection simulations (01 7) and in experimental ap- 
plications (018). It was reported that thelow-pass Chebyshev 
type I1 filter was the most effective. A variable digital filter 
was used to obtain well-resolved solid-state electronic spectra 
of Cr(II1) complexes (019). The resolved spectra allowed 
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for interpretations in terms of tetragonal distortions in the 
coordination sphere of the Cr(II1) ion. Tunable parameters 
of the SR250 boxcar integrator-averager system were 
optimized for the analysis of excited-state lifetime decay 
waveforms produced from a pulsed-laser luminescence spec- 
trometer (020).  Harada and Tanumacompared top-hat, first- 
derivative and second-derivative digital filters in subtracting 
the background of overlapped low-energy Auger spectra (021 ). 
The authors reported that the top-hat filtered spectra gave 
the best separation of the Cu and Au analytes. In another 
study involving the filtering of Auger spectra, the suppression 
of noise in scanning Auger images was addressed with several 
different digital filters (022) .  Strategies for coupling Gauss- 
ian-shaped bandpass digital filtering with partial least squares 
regression were reported and applied to the determination of 
glucose in plasma by Fourier transform near-infrared spec- 
troscopy (023) .  Piyakis and Sacher used Savitsky-Golay 
filtering and an automatedoptimal Wiener filter in the removal 
of noise from the spectra of different surface analysis 
instruments (024) .  An exchange of comments pertaining to 
the conclusions reported in this paper concerned a disagreement 
about the relative merits of the two filtering methods. Seah 
and Cumpson maintained that the optimal Wiener filter was 
the faster algorithm but that the application of the Savitsky- 
Golay method was more transparent (025) .  The authors of 
the original paper responded that the application of the 
automated version of the Wiener filter was actually more 
straightforward (026).  Janssens and Francois proposed the 
use of two consecutive applications of zero-area Gaussian filters 
for the resolution enhancement of complex spectra (027) .  
The use of consecutive filters of this type was demonstrated 
to produce significant improvements in the resolution of atomic 
emission, NMR,  IR, and UV-visible spectra. 

Time series analysis is often performed using digital filtering 
methods. Simulations were used to show that a two-phase 
approach using nonlinear state-space models performs more 
effectively than the previously favored linear approach in the 
adaptive on-line control of bioreactor processes (028) .  
Doerffel et al. proposed the cumulative sum, CUMSUM, as 
an indicator of tendencies in time series analysis (029) .  The 
theoretical background on the interpretation of the 
CUMSUM shape was given and several applications of the 
method weredemonstrated. Other studies involving timeseries 
methods included the analysis of scanned data (030)  and the 
evaluation of noisy data in distribution analysis (031) .  

Researchers continue to find Kalman filtering a useful 
technique in the signal processing of analytical data. Xie et 
al. presented a robust version of the Kalman filter that was 
designed to be insensitive to outliers ( 0 3 2 ) .  A limiting 
transformation on the innovation term was used to make the 
filter more robust. Information theory was used to predict 
the precision and evaluate the accuracy of an adaptive version 
of the Kalman filter in the mathematical separation of 
overlapped target and interferent peaks (033) .  In this study 
using simulated data, the precision and accuracy of the filter 
were predicted with the function of mutual information and 
a single spectrum. The reliability of Kalman filtering in the 
correction of wavelength positioning errors in inductively 
coupled plasma atomic emission spectroscopy was examined 
with two different evaluation criteria: ( 1 )  the NAC criteria 

that is based on the autocorrelation analysis of the innovation 
sequence; (2) the innovations number, which is the autocor- 
relation coefficient of the innovation sequence, a t  the initial 
wavelength. It was determined that the application of both 
criteria was necessary for the modeling of continuous 
backgrounds and for obtaining estimates of the reliability of 
the analytical result (034). The Kalman filter was used for 
background correction by three researchers. In the first study, 
the filter was used in conjunction with a lock-in amplifier for 
background suppression of argon spectral lines in glow 
discharge atomic emission experiments (035). It was reported 
that the background suppression of argon lines by Kalman 
filtering improved the detection limit by 1 order of magnitude. 
In a third study, thedetermination of trace elements in uranium 
was enhanced by the Kalman filter correction of substantial 
background interferences (036).  A two-part study employed 
the Kalman filter as a noise reduction tool. In the first part, 
the improvement in calibration accuracy using simulated 
transient signals was addressed (037),  while the second part 
of the study examined the application to atomic absorption 
spectrometry with hydride generation (038) .  

Several researchers reported on the use of Fourier transform 
methods in the signal processing of analytical data. A new 
recursive method for computing fast Fourier transforms was 
presented by Wu and Chin (039).  The algorithm uses a three- 
stage, correlation-based approach. Fourier convolution was 
used to calculate the Hilbert transform, which relates 
components of immittance (040).  A nonlinear transformation 
of the immittance data was used to convert the data into a 
usable form. Fourier convolution of the raw immittance data 
is not possible because immittance data are not equispaced on 
a linear scale. Three studies involved investigations of 
apodization functions used in Fourier smoothing or filtering. 
Larivee and Brown used a maximum entropy criterion for 
finding near-optimal apodization functions that enhance 
signal-to-noise ratios in noisy data environments (041) .  The 
method, which required no a priori knowledge of the signal 
shape, performed as well as an optimal filter that used the 
true signal shape. Appropriate apodization functions for 
N M R  data were determined interactively using a constrained 
least squares technique with free induction decay measure- 
ments and the signal-to-noise ratio (042).  Peak broadening 
and baseline instabilities in ion mobility spectra were corrected 
with Fourier filtering (043).  Hanning, Hamming, super- 
Gaussian, and rectangular apodization functions were applied 
to the ion mobility spectra. Fourier filtering techniques have 
also been used to enhance signal-to-noise ratios in Rutherford 
backscattering spectra (044 )  and Fourier transform hydro- 
dynamic modulation voltammetry ( 0 4 5 ) .  Filtering was used 
to improve the resolution of electronic spectra (046) .  A time 
domain filtering technique that used a narrow stop band in 
the frequency domain was used to suppress the solvent signal 
in N M R  experiments (047) .  In another filtering study, time 
domain and frequency domain filters were compared in the 
determination of glucose in aqueous samples by FT-IR 
detection flow injection analysis (048). It was reported that 
superior results could be obtained with frequency domain 
filtering by using the enzymatic degradation of glucose for its 
measurement. Subtraction of background fluorescence in 
twin-beam, time-resolved microfluorometry studies of biologi- 
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cal samples was accomplished by subtracting the background 
reference in the time domain before transforming the signal 
into the frequency domain for analysis of lifetime and decay 
measurements (049) .  Two research efforts used Fourier 
transform methods in investigations of the failure analysis of 
materials. In the first study, a numerical Laplace transform 
and inversion using the fast Fourier transform was used in the 
stress analysis of samples subjected to impact testing ( 0 5 0 ) .  
In a second study, Fourier transform methods were used to 
investigate the relation of geometrical features on fatigue 
fracture surfaces to microstructure (051) .  Two studies 
involved the examination of chromatographic experiments with 
Fourier analysis. The recognition of chromatographic reten- 
tion patterns was accomplished by fitting the experimental 
autocovariance function to theoretical models (052) .  In a 
second study, Fourier analysis was used to quantitatively 
estimate both the separation performance and the retention 
pattern under programmed elution conditions (053). 

A limited number of studies on Hadamard transform 
methods appeared over the last two years. Fateley et al. 
reported the use of a two-dimensional encoding mask for the 
imaging of thin-layer chromatography plates by laser-induced 
fluorescence or surface-enhanced Raman scattering (054) .  
The authors also examined three-dimensional imaging using 
the two-dimensional encoding mask with the depth profiling 
capabilities of photoacoustic detection. A novel imaging 
technique was described that combines tomography, 
Hadamard signal encoding, and a patented ET-IR emission- 
transmission method for spatially resolving chemical species 
in a sooting flame from their infrared spectra (055 ) .  Harms 
et al. reported a new, more efficient method for spectrum 
recovery by fast Hadamard transform (056). The new method 
allows a permutation scheme to be applied to any Hadamard 
or simplex matrix in the appropriate equivalent class. A 
computer code was developed that facilitates exhaustive 
generation of Skew-Hadamard matrices by using elegant bit- 
manipulation techniques for matrix multiplication ( 0 5 7 ) .  The 
bit-manipulation-based codes required 124 h of CPU time on 
an IBM RS6000/560 to generate allcombinatorial possibilities 
of Skew-Hadamard matrices of order 100 X 100. 

As has been true for previous reviews, the deconvolution 
of analytical signals represented a significant portion of signal 
processing research during the latest reporting period. An 
improved method for deconvolving atmospheric absorption 
spectra using Newton’s iterative method and line shape theory 
was reported by Xu and Wang (058) .  Several researchers 
reported on the use of deconvolution methods in chemical 
imaging. Spatial resolution in photoresist materials was 
reported by deconvolution of ESR spectra (059) .  ESR 
imaging reportedly revealed that UV light was absorbed at 
the surface. Deconvolution techniques were also applied to 
secondary ion mass spectrometric (SIMS) image analysis data 
with a goal of improving detection limits (060). In two other 
SIMS studies, the deconvolution of depth profiles using a 
model depth resolution function (061) and a comparison of 
inversion techniques using measured response functions and 
indirect techniques were investigated (062). The enhance- 
ment of resolution by deconvolution methods was reported by 
several researchers. The degree of crystallinity in cellulose 
was determined by deconvolution of unresolved infrared O H  

bands (063), while in another study the simplification of one- 
and two-dimensional N M R  multiplets using several successive 
deconvolutions was reported (064). A modified Wiener filter 
algorithm was used to improve the resolution of electron energy 
loss spectra to 0.1 eV (065). Fourier self-deconvolution was 
used to study the structure of arrestin from bovine photo- 
receptors (066). The resolution of secondary structure- 
sensitive overlapped amide I bands allowed for a quantitative 
determination of the number of a-helices, extended strands, 
turns, and bends in the arrestin structure. The resolution of 
line-overlapping broadened Moessbauer, EPR, and thermo- 
luminescence spectra was examined with deconvolution ( 0 6 7 ) .  
The deconvolved spectra reportedly improved the quality of 
information available for characterization. Two papers 
reported the application of deconvolution methods to the 
resolution of overlapped voltammograms (068,069). A time- 
dependent, Fourier transform deconvolution of Raman spectra 
between 950 and 1500 cm-l was used to obtain estimates of 
crystallinity in polyethylene samples ( 0 7 0 ) .  Circular dichro- 
ism spectra of P-turn conformers of pseudocyclic hexapeptides 
were resolved by deconvolution ( 0 7 1 ) .  Circular dichroism, 
NOE, and X-ray crystallographic data were used in the 
resolution of the conformational spectra. The effect of an 
electrochemical concentration modulator injection device on 
the chromatographic signal was removed using time domain 
deconvolution ( 0 7 2 ) .  An overview of different time domain 
deconvolution methods was given with emphasis on the shape 
of the virtual injection. 

The use of maximum entropy methods in the analysis of 
analytical signals continued to increase during the latest 
reporting period. The suppression of artifacts in the phase- 
modulated, rotating frame N M R  imaging experiment was 
reported using the maximum entropy method ( 0 7 3 ) .  Artifacts 
in the Fourier transform spectra arising from off-resonance 
effects, imperfect pulse angles, and truncation were suppressed. 
Two studies involved comparison of maximum entropy and 
Fourier methods in the processing of analytical data. In the 
first study, the two methods were compared for phase 
refinement in crystal structure determinations (074) ,  while 
the second comparison study involved the deconvolution of 
two-dimensional N M R  spectra of proteins ( 0 7 5 ) .  The 
deconvolution of the instrumental response function in electron 
energy loss spectra using maximum entropy methods was the 
subject of two papers (076 ,  0 7 7 ) ,  while a factor of 3 
improvement in resolution was realized in the maximum 
entropy deconvolution of neutron tunneling spectroscopic data 
(078) .  Maximum entropy methods were also used to 
deconvolute two-dimensional ( 0 7 9 )  and COSY ( 0 8 0 )  N M R  
data. A software package that includes maximum entropy 
methods was designed for the recovery of signal from noisy 
data (081). The routines are designed to recover signal in the 
presence of Gaussian, binomial, or Poisson noise. A direct 
method for the inversion of resonant Raman excitation profiles 
to the time domain by maximum entropy was proposed (082). 
The method was considered along with another direct method 
that used a Fourier series expansion of the Raman dispersion 
relation. Several intrinsic characteristics of the line shape 
optimized maximum entropy linear prediction (LOMEP) 
procedure as a line-narrowing method was discussed (083). 
The method was demonstrated on gas-phase IR and NMR 
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spectra. A maximum entropy fit of fluorescence intensity vs 
correlation time and fluorescence lifetime measurements was 
used to determine the physical homogeneity and state of 
aggregation of recombinant proteins ( 0 8 4 ) .  Finally, Kaup- 
pinen and Saario presented their arguments against the use 
of maximum entropy methods in spectral recovery ( 0 8 5 ) .  

A number of other signal processing studies were reported 
during the last two years. B-Splines were proposed for the 
compression of very large data arrays (086) .  The math- 
ematical relationship between the maximum entropy method 
for the compression of data tables and the B-spline of zeroth 
degree was described together with the generalization of 
B-spline compression of data tables and nth-order data array 
tables in matrix and tensor algebra. A conditional-access 
algorithm was used to determine elemental specificity in the 
dual-channel flame photometric detection of gas chromato- 
graphic peaks (087) .  The method reportedly yields infinitely 
selective chromatograms for any chosen flame photometric 
detection element. The multiple signal classification method 
or MUSIC was compared with the Fourier transform method 
for spectral estimation of three simple model systems ( 0 8 8 ) .  
The method was very accurate in determining line position, 
but the estimates of the line amplitudes were rough. A novel, 
multiplex method for sampling and frequency analyzing a 
signal consisting of a sum of exponentially damped sinusoids 
of different frequency was presented ( 0 8 9 ) .  The bipolar 
method of sampling used here achieves the multiplex advantage 
of Fourier transform analysis for time-of-flight mass spec- 
trometers. Geladi offered a tutorial on multivariate imaging 
that addressed grey level operations and the general properties 
of images (090) .  A new method for approximating the 
Kramers-Kronig transform with the finite Hilbert transform 
was reported (091) .  The accuracy of transformed spectra 
using the BZ algorithm was the same as that obtained with 
the Kramers-Kronig transform. The advantages of spectral 
interference subtraction and extended multiplicative scatter 
correction in the pretreatment of near-infrared data were 
examined by Schonkopf et al. ( 0 9 2 ) .  The application of these 
pretreatments led to a simplification of partial least squares 
regression models. Three principal component-based methods 
were used to process analytical data. In the first method, 
gain and offset stabilization of y ray pulse height spectra was 
performed with a principal component-based target test (093) .  
In  a second study, eigenstructure tracking analysis was used 
to identify the noise distribution and local rank in instrumental 
profiles ( 0 9 4 ) .  In a demonstration of the method, the 
heteroscedasticity in the infrared absorbance spectra of a three- 
component mixture design was revealed. A two-way procedure 
for the background correction of chromatographic-spectro- 
scopic data was reported by Liang et al. (095) .  The method, 
a combination of a congruence analysis and a least squares 
fit of the zero-component regions, compared favorably with 
double centering without increasing the rank of the data. 
Haaland et al. introduced the use of classical least squares to 
improve the signal-to-noise ratios of the composite analyte 
spectra obtained from FT-IR detection chromatography 
( 0 9 6 ) .  The signal-to-noise ratios that resulted with the 
application of the classical least squares method were as good 
or better than those obtained with the more usual coaddition 
of spectra. A number of research efforts used some form of 

correlation analysis in signal processing. Cross-correlation 
of flow injection signals was performed by using two parallel 
flow lines (097) .  The cross-correlation of the data followed 
by low-pass filtering resulted in 2 orders of magnitude 
improvement in the signal-to-noise ratio. A new method, 
single-sequence correlation chromatography, reportedly re- 
duces the chromatographic detection limit (098) .  Larger 
sample volumes are made possible without a loss in resolution 
by using a deconvolution procedure. Autocorrelation and 
cross-correlation techniques were used in laser microanalysis 
atomic emission spectrometry to detect periodicities in a line 
scan in the presence of noise (099) .  Detection limits were 
improved in flow injection atomic absorption spectrometry by 
applying an ensemble summation procedure to repetitive flow 
injection signals (0100) .  A multiresolution algorithm that 
combined derivative methods with cross-correlation methods 
was presented as a means for signal-to-noise improvement in 
ion mobility spectrometry (0101) .  

RESOLUTION 
Curve resolution can be achieved by a variety of techniques, 

from matrix manipulation methods to graphical means. One 
of the more interesting approaches involves the special situation 
in which two analytical methods are combined in hyphenated 
analytical techniques such as LC-UV. Here, the chromato- 
graphic peaks may be resolvable through analysis of the 
combined spectroscopic-chromatographic data matrix. Evolv- 
ing factor analysis (EFA) has been proposed as one way to 
extract information on components measured by these 
techniques. New EFA applications and a few modifications 
have been reported by several research groups during the past 
two years. New applications of EFA have gone beyond 
LC-UV and included such widely diverse combinations as 
GC/MS ( E l ) ,  fluorescence lifetime-resolved spectra (E2) ,  
p H  gradients in FIA systems ( E 3 ) ,  and spectra of components 
in an industrial process ( E 4 ) .  To balance these successes, it 
also should be noted that EFA was applied for the first time 
to an LC-UV data set in which the separation of two 
compounds was not achieved (E.5). The EFA technique was 
reviewed by Keller and Massart (E6).  Several research groups 
have reported modifications of the EFA technique to improve 
its performance. A fixed-size, moving window (FSMW) 
modification to EFA was introduced by Keller and Massart 
to take instrumental and experimental artifacts into account 
(E7) ,  to correct for heteroscedastic noise (E8) ,  and to correct 
for the nonlinear response of photodiode array UV detectors 
(E9) .  An algorithm for another modification of EFA was 
suggested by a Belgian group concerned with the efficiency 
ofan automatic peakpuritycontrol procedure (EIO). Window 
factor analysis (WFA) is a third modification, introduced by 
Malinowski (E1 1 )  and applied to FIA data. This approach 
was further applied to EDTA complexation ( E l  2 )  and HPLC 
data (E13). Heuristic evolving latent projections (HELP) 
was proposed by Kvalheim and Liang as a new method to 
resolve 2-D data ( E 1 4 ) .  HELP was compared to EFA (E15), 
and both were found to perform equally well on the data sets 
studied. The HELP algorithm was also used in an LC-UV 
study involving drug isomers (E16)  and chlorophyll degrada- 
tion experiments (E l  7 ) .  Limitations of evolving principal 
component innovation analysis, another resolution technique 
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similar to EFA and HELP, were discussed in a paper by 
Vandyke and Wentzell (E18).  Other principal component- 
based methods have also been reported to be useful in analysis 
of 2-D and 3-D data. Generalized rank annihilation factor 
analysis (GRAFA), iterative target transformation factor 
analysis (ITTFA), and residual bilinearization were all used 
on real LC-UV data in a comparative study (E19).  ITTFA 
was compared to curve fitting and local curve fitting in an 
examination of methods for background correction (E20) .  
The curve fitting methods gave the best results in these studies. 
The generalized rank annihilation method was modified with 
similarity transforms to avoid problems that arise withcomplex 
eigenvectors (E2I) .  This approach was further advanced with 
a decomposition algorithm called the direct trilinear decom- 
position method (DTDM) (E22).  One-dimensional chro- 
matograms were resolved by combining several runs using 
simplex optimization of cross-correlation matrices and then 
applying HELP to the 2-D data (E23).  Three-way arrays 
were resolved by a generalized eigenvalue approach, which 
was reported to be more effective than parallel factor analysis 
(PARAFAC) (E24) .  Overlapping resolution mapping 
(ORM), which had originally been developed for chroma- 
tography, was modified and applied to atomic emission 
spectroscopy (E25).  ITTFA was applied to time-dependent 
direct-inlet mass spectrometry (E26).  A comparison of the 
performance of several noniterative factor analysis algorithms 
on noisy and overlapped data was reported by Neal (E27).  
The results indicated that the conventions used to exclude 
some of the noise have a significant effect on the algorithm 
performance. A theory of overlap for 2-D separations was 
tested by computer simulation of 3-D concentration profiles 
(E28). Principal component analysis and self-modeling, along 
with nonlinear least squares fitting, was applied to 2-D 
fluorescencedata (E29) .  Lastly, alternating regression (AR) 
was recommended as a non-factor-based analysis approach to 
the resolution of 2-D data sets (1530). 

Progress has also been made in the application of PCA 
methods to one-dimensional curve resolution problems. A 
program called OBLIQUE was offered to assist in performing 
nonorthogonal rotations (E31) .  It was applied to gas 
chromatographic data. Principal components analysis of 
infrared microscopic data provided information on the number 
of spectrally different layers, which were subsequently resolved 
by a nonlinear optimization (E32).  The effect of white noise 
on abstract factor analysis was studied using varimax rotated 
factor loadings to observe the effects on loading interpretations 
(E33).  Self-modeling curve resolution techniques also con- 
tinue to receive attention, mostly through new applications. 
PCA self-modeling was applied to fluorescence spectra, with 
an improved procedure to address more complex systems 
(E34).  PCA, followed by self-modeling spectral resolution, 
was used for quantitative analysis of tetraphenylethylene 
photochemical reactions (E35).  A photophysical constraint 
was introduced to justify the results of the self-modeling. The 
correction of overlapped spectral interferences in ICP-AES 
was accomplished by self-modeling curve resolution, and the 
effect of measurement errors on the results was investigated 
(E36). A tutorial on self-modeling techniques was offered by 
Windig (E37). A review of the SIMPLISMA method for 
interactive self-modeling mixture analysis, which uses a 

relatively simple algorithm rather than PCA and displays 
intermediate steps as spectra, was also published (E38).  The 
SIMPLISMA method was also applied to second-derivative 
near-IR spectra (E39),  IR microscopy (E40) ,  and mass 
spectral data (E41) .  

Kalman filtering offers another approach to resolving peak 
overlap in analytical data. Several studies and applications 
of recursive filtering have appeared during this review period. 
Two new methods, fading Kalman filtering (FKF) and 
networked Kalman filtering (NKF), were introduced (E42).  
Kalman filtering was applied after an optimized alignment 
by simulated annealing to the quantitative analysis of ESCA 
spectra (E43).  A combination of steepest descent minimiza- 
tion and Kalman filtering was applied to HPLC peaks (E44) .  
The precision and accuracy of results from an adaptive Kalman 
filter used with Gaussian peaks were modeled (E45) .  A com- 
parative study was done with Kalman filtering, synchronous 
excitation, and numerical derivative techniques in fluorometry 
(E46).  Synchronous excitation can be combined with Kalman 
filtering to improve results. Kalman filtering applications 
have included simultaneous kinetic determination of phenols 
by visible spectroscopy (E47),  the quantification of pyrazines 
by polarography (E48), and the separation of thesignals which 
results from multiinjection chromatography (E49).  

Fourier self-deconvolution techniques and curve fitting in 
Fourier space are still receiving some attention. Several 
advantages for curve fitting in Fourier space, for example, 
were reported in a review relating to Moessbauer spectroscopy 
(E50) .  A method which was based on Fourier deconvolution 
was presented for EPR peaks (E51). A program called 
Asymgrad was written to perform deconvolution of multiple 
peaks in a narrow spectral range (E52).  Applications of 
Fourier self-deconvolution included the resolution enhance- 
ment of polarographic adsorption peaks (E53),  cyclic voltam- 
metry (E54) ,  and infrared spectra of rhodopsin in disk 
membranes (E55). 

Maximum likelihood and/or maximum entropy methods 
have also been applied to resolution problems, often in 
conjunction with other techniques. Maximum likelihood 
factor analysis (MLCFA) was used to resolve EPR powder 
spectra (E56) and Auger depth profiles (E57).  In the latter 
study, the combined technique was found to be superior to 
ordinary PCA. A maximum likelihood method involving 
symmetrized spectral resolution yielded improved noise 
suppression and marked resolution enhancement for 2-D N M R  
spectra (E58).  Maximum likelihood and maximum entropy 
estimation were jointly applied in a neutron spectroscopy 
experiment (E59). The study also involved spectral unfolding, 
using information theory as a base. Software using maximum 
entropy was developed and applied to electrospray mass spectra 
of protein mixtures (E60).  The program automatically 
produces zero-charge mass spectra, along with a probabilistic 
quantification. Another novel, entropy-based algorithm for 
extracting parent masses was presented for electrospray spectra 
(E61). The nonlinearity of the maximum entropy method 
was investigated (E62).  Additional maximum entropy-based 
resolution applications were reported for the study of depth 
profiles from XPS (E63) and S I M S  (E64) .  A method called 
expectation maximization was also employed in conjunction 
with regularized least squares to resolve single-exponential 
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kernels from kinetic data (E65).  The regularized least squares 
analysis was performed by ridge regression using generalized 
cross-validation to optimize the regularization parameter. 

Several recent papers described methods based on statistical 
or neural network-based approaches to curve resolution. A 
comparison between Bayesian and maximum likelihood peak 
fitting techniques showed that the former was very effective 
in reducing peak intensity uncertainties (E66).  Bayesian 
probability was also applied to the estimation of true line 
shapes, even from strongly overlapped or broadened peaks 
(E67).  A method employing apparent content curves was 
proposed to resolve analytes’ spectral peaks from those of 
unknown interferents (E68).  A cerebellar model arithmetic 
computer neural network was reported for the resolution of 
chromatographic peaks (E69).  An artificial neural network 
was also applied to pyrolysis mass spectra (E70) .  Fuzzy linear 
programming formed the basis of a new method for resolving 
spectral peaks (E7J) .  

Convergence issues for several iterative resolution algo- 
rithms were discussed in a general paper (E72). Also, a 
statistical theory for spot overlap for two-dimensional separa- 
tions was expanded and applied (E73,  E 7 4 ) .  

CALIBRATION 
Calibration refers to the process of relating a measured 

response to the amount of a chemical entity or property. 
Calibration techniques are of critical importance to most 
analytical work, and analytical chemists have explored 
statistical and mathematical methods to improve their results 
for many years. This review will focus on only the most recent 
approaches, including new types of regression, principal 
component-based methods, Kalman filtering, and artificial 
neural networks. 

In addition to the many technique-related and application 
studies, reviews, comparative studies, and general papers have 
appeared recently. A global perspective on multivariate 
methods including K-matrix and P-matrix calibration, prin- 
cipal components regression, and partial least squares was 
offered by Lang and Kalivas ( F I ) .  Geometric theory and an 
understanding of projections were invoked. A comparison of 
linear prediction singular value decomposition (LPSVD) and 
total least squares (TLS) as applied to NMR data was made 
(F2). Gemperline wrote a tutorial on methods for detecting, 
studying, and modeling nonlinear spectral responses in 
multicomponent assays ( F 3 ) .  Included in the paper were tests 
for detecting nonlinear regions and suggestions for future study. 
Another review on nonlinear methods was contributed by 
University of Washington researchers (F4) .  PCR, PLS, locally 
weighted regression (LWR), projection pursuit regression 
(PPR), alternating conditional expectations (ACE), multi- 
variate adaptive regression splines (MARS), and artificial 
neural networks (ANN) were applied to six data sets and 
results were compared. Weighted nonlinear PCR, PLS, and 
canonical correlation (CCA) in latent variables were compared 
with classical calibration by Wienke and Kateman (F5). 
Sekulic and Kowalski contributed a tutorial paper on MARS, 
complete with examples which explain the mechanics of the 
algorithm (F6).  Multivariate calibration methods were 
examined with respect to a proposed classification of analytical 
mixture types (F7) .  Mark reviewed MLR and principal 

component-based methods and discussed the effects of errors 
(F8) .  The relationship between digital filtering and multi- 
variate regression as applied to quantitative analysis was 
discussed by Erickson, Lysaght, and Callis (F9) .  Plotting 
aids to assist in characterizing multivariate calibration data 
were offered by Spiegelman (FIO) .  

Standard additions, nonlinear regression, and multiple 
linear regression continue to have wide application, and some 
unusual approaches and analyses have been reported. Stan- 
dard additions combined with MLR was used for the direct 
analysis of solid samples by electrothermal vaporization, 
inductively coupled, plasma atomic emission spectrometry 
( F I I ) .  In another hybrid approach, standard additions to 
correct for matrix affects and constrained background bi- 
linearization were combined along with generalized simulated 
annealing to measure analytes in bilinear fluorescence data 
(FI2). A nonlinear addition technique and linear stepwise 
discriminant analysis were used to determine strontium by 
atomic absorption spectrometry (FI3 ) .  Nonlinear methods 
are also receiving more attention. Simplex optimization and 
nonlinear modeling of array characteristics were applied to 
the measurement of salts in blood plasma using array FIA 
data (FI  4) .  Ten biopharmaceutical chromatographic methods 
were used to compare univariate linear regression, weighted 
regression, and polynomial functions (F15). It was found 
that weighted linear regression provided the most appropriate 
calibration function for most of the methods. Iterative 
weighted regression was applied to toxicity tests (F16). A 
modified stepwise regression method, which used an informa- 
tion criterion instead of an F test for variable selection, was 
applied to multicomponent spectrophotometric analyses in 
which a known range of possible interferents coexisted (FI7) .  
Graph theory was proposed as a means of depicting and 
modeling the interferences and possible interactions in an MLR 
calibration (F18). The relationships among analyte, inter- 
ferents, and instrument response were approximated by a 
polynomial of order 3, including cross-terms. Also, multiple 
linear regression has been suggested as a means of detecting 
and classifying interferences in clinical analyses ( F I 9 ) .  Several 
other interesting MLR applications have been reported, 
including the measurement of heavy metal takeup by plants 
(F20), boron in steels (F2I), nitrobenzene oxidation and 
pyrolysis products in pyrolysis GC/MS experiments (F22), 
and simultaneous determination of different catalysts during 
a kinetic run (F23). MLR was also applied to the analysis 
of near-IR spectra of smectite minerals, with the reflectance 
spectra being correlated to AI, Mg, Fe, and Si (F24). 
Wavelengths selected by MLR were spectroscopically ex- 
plained. 

A number of researchers explored both MLR and principal 
component-based techniques (PCR and PLS) and compared 
results. The approach with which these techniques were 
applied, however, may play a role in the conclusion. MLR, 
as it is used in near-infrared spectroscopy, involves optimization 
and pretreatments such as derivatives and scatter corrections 
which remove much of the collinearity in the data. Multiple 
terms and divisor terms usually improve the fit. If these tools 
are not employed or are not applicable to the problem, MLR 
may not appear to be as good at predicting as PCR or PLS. 
For example, several ordinary MLR methods such as K-matrix 
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and P-matrix regression were compared to PCR and PLS to 
measure dye components in the visible region, and PLS gave 
the best results (F25).  Also, the salinity of seawater was 
determined in the 680-1 230-nm near-IR region by simple, 
selected wavelength regression and PLS, and again the PLS 
calibration produced a better predictive model (F26). For an 
array of four piezoelectric crystals measuring 0- and m-cresol 
in water, PLS performed better than MLR because there was 
some collinearity (F27). In another study, PLS gave somewhat 
better results than stepwise MLR in the determination of 
ascorbic acid in pharmaceutical preparations, but only in the 
more complex samples (F28). Slightly better results for PLS 
were also obtained in a near-IR tobacco analysis investigation 
(F29), a visible absorption measurement of myoglobin oxygen 
saturation (F30), and a mid-IR on-line analysis of sugars in 
a fermentation process (F31). PLS was said to offer a more 
workable approach than MLR in the analysis of mixtures, 
due to the mixture constraint (F32). It  was also claimed that 
PCR and PLS could take nonlinear effects into account better 
than MLR (F33) .  Other the other hand, several studies 
indicated that MLR and PLS results were equivalent for their 
sample sets, which included the determination of cadmium by 
inductively coupled plasma mass spectrometry (F34) ,  the 
determination of aromatics and saturates in aviation fuel by 
near-IR (F35) ,  the correction for interferences in hydride 
generation atomic absorption (F36), and the estimation of 
crude lipid content in trout by near-IR (F37). Although 
equivalent results were obtained, MLR with derivatives was 
judged better for the determination of pesticides in mixtures 
because it is simpler (F38) .  In another paper, a wavelength 
selection approach was chosen over a calibration using the 
full spectrum and the conclusion was made that the leave- 
one-out cross-validation approach to evaluating PLS equations 
may be overly optimistic in estimating error of prediction 
(F39).  Lastly, a locally weighted regression gave the same 
prediction as PLS with fewer factors in a study involving the 
heat treatment of meat and near-IR spectroscopy (F40) .  

Several reviews, tutorials, and software papers concerning 
PLS calibrations have appeared recently. Bjoersvik and 
Martens reviewed the mechanics of developing a PLS method 
for multivariate calibration (F41) .  Naes and Isaksson 
discussed PCR methodology applied to food analysis by near- 
IR spectrometry (1742). Williams, Sobering, and Norris 
compared different PLS software packages (F43) ,  finding 
some significant discrepancies in results. The potential of the 
latent variable concept was examined by Kvalheim (F44) .  
Computer simulations were used to investigate PLS and 
modifications of PLS to compare how well they estimated the 
true regression coefficients in the presence of simulated light 
scattering effects (F4.5). Haaland compared four multivariate 
methods including multiple linear regression based on a 
classical least squares criterion (CLS), inverse least squares 
(ILS), PLS, and PCR, using Monte Carlo simulations (F46). 
Buco used artificially generated data to illustrate the shapes 
of PLS loadings (F47), and Cowe et al. compared the shapes 
of PLSl and PCRloadings (F48) .  Martens and Foulkoffered 
a paper on how and why PLS calibrations work in near-IR 
spectroscopy (F49) .  A procedure named GOLPE (generating 
optimal linear PLS estimations) was suggested to identify 
those variables which increase the predictive ability of PLS 

models (F50). Protocols were reported for coupling digital 
filtering techniques with PLS regression ( H I ) .  Programs 
named CENTER and SELECT were developed to establish 
population boundaries and choose samples for near-IR PLS 
calibrations (F52). A new, efficient PLS algorithm for large 
matrices was offered, complete with MATLAB code, by 
Lindgren, Geladi, and Wold (F.53). Helland, Bernstsen, 
Borgen, and Martens presented an algorithm using recursive 
updating for PLS regressions (F.54). Oman, Naes, and Zube 
described a PCR method employing a model which includes 
squares and products of principal component scores to adjust 
for nonlinearities in the calibration model (F.55). Wakeling 
and Macfie offered a robust PLS algorithm, and they made 
the suggestion that the angle between loading vectors should 
be used as a measure of robustness (F.56). 

There have been many applications of PCR and PLS 
published in the last two years, and only selected examples 
will be included here. Derivative spectroscopy was combined 
with PLS in a visible spectral region analysis of several 
aldehyde reaction products (F57), and also for the determina- 
tion of mixtures of flavor enhancers by UV-visible spectroscopy 
(F58) .  In the latter case, the derivative treatments did not 
prove to be an advantage. Several different preprocessing 
treatments, including derivatives and scatter correction, were 
examined as part of a study concerning an automated IR 
interpretation system (F59). In a UV-absorbing drug dis- 
solution test, Fourier smoothing was applied before PLS to 
reduce background and noise (F60). Second derivatives and 
Fourier transformations were used for calibration for sample 
composition, thickness, and temperature using infrared emis- 
sion spectroscopy of liquids (F61). Second-derivative spectra 
were also used in a polymer composition study involving 
attenuated total reflectance IR spectroscopy (F62).  Target 
factor analysis, combined with PCA, was applied to dif- 
ferential-pulse anodic stripping voltammograms for the 
measurement of lead and cadmium (F63). PLS was employed 
to determine sulfur in an X-ray fluorescence method and was 
instrumental in explaining spectral artifacts (F64). The 
possibility of using more than one optical emission line for 
calibration in ICP-OES was explored with the help of PLS, 
and an improvement in sensitivity was noted (F6.5). A matrix 
of near-IR spectra of esters was used as a probe to explore the 
capabilities of PLS, especially with relation to the grouping 
of subsets of raw materials (F66). A variety of analytical 
disciplines have explored calibration with PCR or PLS during 
this reporting period. Examples include trace analysis by 
polarography (F67), an ultrasound pulse method for polymer 
blends (F68), and an analysis for osmium and ruthenium in 
ancient coins by neutron activation analysis (F69). The 
measurement of glucose in blood by either near- or mid- 
infrared spectroscopy and PLS regressions has received much 
attention recently ( F 7 0 4 7 3 ) .  Several papers have addressed 
the use of PLS calibrations in flow injection analysis, including 
one which employed a Hadamard transform spectrometer 
(F74).  

The use of Kalman filtering as a calibration technique 
appears to have diminished recently. Gauglitz, Mettler, and 
Weiss reviewed its application in multicomponent analysis by 
UV-visible spectroscopy (F75).  An algorithm for a two- 
dimensional, real-time filter was offered, along with a 
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discussion of parameter choices for a fluorescence analysis of 
polynuclear aromatics (F76). Some studies comparing Kal- 
man filtering to other techniques were reported. A comparison 
to forgetting factor analysis in an application to the analysis 
of dosage forms was offered (F77). Also, in the prediction 
of priority pollutants, Kalman filtering proved to be superior 
to classical least squares fitting (F78),  and in an ICP-AES 
study of 14 elements, Kalman filtering was marginally better 
than multivariate analysis (F79). A new approach involving 
a Fourier domain data set employed Kalman filtering to 
estimate concentrations (F80, F81).  The boundary conditions 
of the analysis were set by calculating the condition number 
of the calibration matrix. An enzymatic method was reported, 
combining stopped-flow fluorescence and Kalman filter-based 
resolution of alcohol mixtures (F82) .  

Artificial neural networks (ANN) have been considered 
for calibrations by an increasing number of researchers. Bos, 
Bos, and van der Linden reviewed the current usage of artificial 
neural networks, with emphasis on aspects such as training 
methods and validation (F83) .  Blank and Brown provided a 
report on layered, feed-forward networks as applied to the 
analysis of nonlinear, multivariate spectral data (F84) .  A 
novel transfer function and a modified conjugate gradient 
algorithm which converges rapidly were proposed to improve 
training procedures (F85) .  Interestingly, most of the papers 
which appeared on calibrations with ANNs during this review 
period involved comparisons to other chemometric techniques. 
In one such study, three types of A N N  were compared to 
stepwise linear regression, PCR, PLS, and modified PLS 
(F86). In most of the calibrations based on near-infrared 
analyses of agricultural products, the neural networks appeared 
to outperform the other methods. In a comparison with a 
classical model and a singular value decomposition-linear 
learning machine method, quantitative X-ray fluorescence 
data were better modeled by ANNs when wide ranges were 
considered (F87). Feed-forward ANNs were compared with 
nonlinear matrix regression, and a trade-off was observed 
(F88) .  It was found that the networks required a greater 
sampling frequency in order to constrain the flexible models. 
Glucose in whole blood measured by mid-IR spectroscopy 
was modeled by PLS, PCR, and A N N  combinations (F89). 
The best standard error of prediction was achieved via a PLS- 
A N N  combination. An MLR-ANN comparison for quan- 
titative ICP  atomic emission spectroscopy indicated a close 
relationship between the two procedures (F90). A consid- 
eration of three nonlinear methods (projection pursuit regres- 
sion, MARS, and ANNs) vs linear PLS and PCR was reported 
by Seasholtz and Kowalski (F91). The linear methods require 
that fewer parameters be estimated and therefore may be 
more parsimonious. PLS and PCA scores were used to train 
neural network models for protein in meat analyses by near- 
IR (F92). The results indicated that this combined approach 
produced a 30% improvement over standard PLS. Other 
nonlinear systems were also calibrated using neural networks. 
These included Taguchi gas sensors for monitoring organic 
solvents (F93, F94) and near-IR instruments for measuring 
octane number (F95). Also, qualitative and semiquantitative 
analysis of elements by ICP-AES was performed with a simple 
neural network, the bidirectional associative memory (BAM) 
(F96). 

Several additional novel calibration methods and modi- 
fications of older methods have been introduced during the 
past two years. Two new methods rely on isolating spectral 
regions in order to optimize calibration results. Isaksson and 
Naes suggested a segmented approach with a local, linear 
calibration to address nonlinearity in the calibration data 
(F97). The second method involved windowing to maximize 
the correlation between spectral data and composition (F98). 
A graphical method for studying interferences was also 
introduced in a PLS-like approach (F99). Bayesian methods 
were used by two research groups. An empirical Bayesian 
method for processing linear calibration data using a single 
calibration standard was introduced (FIOO). Also, a Bayesian 
method for developing calibration equations by combining 
several calibration sets was suggested (FIOZ). Several unusual 
types of regression were reported. A modified ridge regression 
was introduced as part of a study involving the relationship 
between the number of terms in an equation and the size of 
the coefficients (F102). Ridge trace analysis and ridge 
regression were used to estimate the collinearity of a system 
(F103). A new approach to PLS regression, SIMPLS, was 
proposed by de Jong (F104) .  This algorithm calculates the 
PLS factors directly as linear combinations of the original 
variables in such a way as to maximize covariance. Nonlinear, 
robust regression methods based on the single-median and 
repeated-median methods were developed and adapted to 
calibrations in flame atomic absorption spectrometry (F105). 
A method based on simultaneous minimization of residuals, 
with increased weight on thexvariable, was proposed (F106). 
Several methods relating to bilinear or trilinear data were 
also introduced or modified. A new constrained optimization 
method was presented for background linearization with 2-D 
data (F107). A review of recent advances in second-order 
calibration, in particular nonbilinear rank annihilation, by 
Wang, Borgen, and Kowalski also appeared (F108, F109). 
Gemperline and co-workers offered an introduction to three- 
way principal components analysis (F1 10). Smilde reviewed 
the theory, history, and applications of three-way chemometric 
methods, including unfolding, Tucker methods, and parallel 
factor analysis (PARAFAC) (F11 I ) .  Three-dimensional PLS 
of fluorometry data was employed for the determination of 
several polynuclear aromatic compounds (FI  12). Some 
additional new techniques were introduced. External dif- 
ferential representation (EDR) is a mathematical technique 
used to model systems by making estimations based on partial 
data (FZI3) .  I t  involves rewriting the equations in terms of 
higher-order differential equations on the input and output 
variables. Procrustes rotation is a second approach which 
works with partial data (F114) .  Using only the experimental 
spectra, the DATAN algorithm calculated spectral profiles 
and concentrations of components by a Procrustes rotation 
performed on the scores of the PLS regression. A branch and 
bound algorithm was applied to the analysis of mixtures having 
a known range of possible components (F115) .  Optimized 
scaling was also introduced for closed data sets that occasion- 
ally occur in multivariate calibrations ( F l 1 6 ) .  Linear local 
models calculated via multidimensional simplex interpolation 
were also employed as a calibration aid (F117). 

Occasionally a calibration may be performed against a 
physical property rather than a constituent. In particular, 
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full-spectrum methods such as PLS and PCR are useful for 
including all of the subtle spectral features contributed by 
different chemical species, all of which may relate to a physical 
property such as toughness of a polymer. For example, band 
shape changes due to hydrogen bonding may be related to 
physical properties. A number of properties of water, such 
as the velocity of sound, surface tension, and refractive index, 
were measured at  various temperatures by near-IR spectros- 
copy with calibration by PLS and MLR (F118). Octane 
number and other gasoline properties have been measured by 
PLS and near-IR spectroscopy in the past. Recently, 
horizontal ATR/FT-IR (F119) and proton N M R  (F120) have 
also been combined with multivariate techniques to predict 
octane number. Several aspects of the crystalline structure 
of proteins as measured by IR  were calibrated against X-ray 
data, using PLS and PCR (F121). A study of the effects of 
particle size on diffuse reflectance mid-IR spectra was done 
using PLS to show differences in absorption intensities (F122). 
PLS was also used to explore the problem of sample heating 
in near-IR Raman spectrometry (F123). The PLS analysis 
measured the shift in a thermotropic phase transition. 

Discussions of calibration strategies, means of measuring 
errors, and different types of weighting were the subject of 
several papers. An improved means of describing the 
interdependence of the parameters involved in a multivariate 
fit was offered (F124). A procedure for choosing the optimal 
set of principal components for a given calibration was given 
(F125). The Heisenberg principle was invoked to determine 
a balance between fit and variance in a predictor and to 
optimize the mean square error of prediction with respect to 
bias and prediction variance (F126). The effects of spectral 
resolution, dynamic range, and noise on multivariate calibra- 
tions was explored using hydrocarbon mixturedata sets (F127). 
The relationship among closure, mean centering, and baseline 
offsets to the interpretation of matrix rank in calibration sets 
was discussed (F128). Also, the effect of mean centering on 
PLS predictions was examined, with the conclusion that it 
can sometimes lead to higher prediction errors (F129). Several 
different methods for examining errors were reported. 
O'Connell, Belanger, and Haaland reviewed calibration and 
assay development for an immunosorbent assay, applying 
several measures of performance (FI 30). These included 
minimum detectable concentration, reliable detection limit, 
limit of quantitation, and precision profile. A modification 
of a previously reported technique for the estimation of 
prediction error within the calibration range was offered 
(F131). This approach involves removing the uncalibrated 
portion of a sample and using the calibrated model to predict 
the remaining signal. The bootstrap method was used to 
approximateconfidence intervals (F132). Near-IR calibration 
methods were discussed with respect to their tolerance to 
random errors (F133) .  Residual maximum likelihood was 
used to evaluate the accuracy of two near-IR methods relative 
to a referee method (F134). Selection of variables was the 
subject of two papers. Cross-validation, Procrustes rotation, 
and statistical variable selection were used to reduce a battery 
of 26 kerosenespecification tests to 10 (F135). Ten different 
strategies involving different number of principal component, 
scatter correction, and local regression methods were applied 
to a large data set of forage samples (F136). A local calibration 

with 50 samples was suggested as optimal in this study. Wise 
and Ricker evaluated continuum regression (CR) for the 
identification of optimal finite impulse response models (F137), 
Location of a minimum in the C R  response surface permitted 
selection of an optimal number of latent variables and an 
optimal form for the regression. Generally, models with 
regression characteristics between PCR and PLS were optimal. 

Transferring calibrations between two instruments has 
elicited several papers recently. The need for transferring 
calibrations occurs primarily when the calibration developed 
on a laboratory instrument, such as a near-infrared spec- 
trometer, is to be used on a second instrument in a process 
area. Biased models such as PLS are particularly difficult to 
transfer because every subtle aspect of the instrument's 
behavior may be included in the calibration model. There 
have been several different approaches proposed to solve this 
problem. One is to collect a subset of standard samples to be 
used to individually match each instrument to an original 
master instrument on which a full calibration was performed. 
One recent paper compares the suitability of five different 
standard materials sets for this purpose (F138). A modifica- 
tion of this approach, using two-dimensional responses 
measured on several instruments or on a single instrument 
under different conditions, was reported (FI 39). This method 
employs banded diagonal transformation matrices to simul- 
taneously correct for response channel shift and intensity 
variations in both dimensions. PLS was employed in two 
additional approaches. In one of these, PLS equations were 
modified to incorporate a repeatability file containing spectra 
from different instruments at different temperatures (F140). 
In the second, a new PLS-based algorithm involved relating 
the x blocks (predictor physical variables) of two instruments 
(F141). Lastly, Wang and Kowalski reported a calibration- 
transfer method called piecewise direct standardization (PDS), 
which structures a transformation matrix based on the 
measurement of a small set of samples run on both instruments 
(F142). 

Finally, the statistical basis for, and the relative performance 
of, what Frank and Friedman call several "chemometric" 
regression methods was the topic of a critical evaluation of 
PLS, PCR, ridge regression, and weighted regression for a 
largely statistical audience (F143) .  A number of statisticians 
have long harbored doubts about PLS, and the paper helps 
by putting PLS into perspective for them. The results of the 
study, and the manner in which it was conducted, brought a 
comment from Wold (F144). Hastie and Mallows also 
commented on the paper (F145). Frank and Friedman 
provided a response to these comments in a followup discussion 
(F146). 

PARAMETER EST1 MAT1 ON 
Parameter estimation, as reviewed in this section, includes 

methods which fit experimental data to mathematical models 
of general chemical properties. A distinction has been made 
between modeling of composition (calibration) and modeling 
of properties. The latter include, for example, kinetic 
parameters, ionization constants, and spectral band shapes. 
Some of the more popular modeling methods include linear 
and nonlinear regression, recursive filtering, and principal 
components-based techniques. 
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Several comparisons between modeling approaches ap- 
peared during the review period. Simulation and modeling 
methods for optimizing quality control practices were reviewed 
( G I ) .  Maximum likelihood and least squares estimation were 
examined for estimating exponential decay parameters ( G 2 ) .  
It was found that the maximum likelihood estimator for 
lifetime, but not rate, exhibited divergence in its variance, 
indicating that lifetime is the statistically preferred parameter 
for characterizing exponential decay for finite observation 
times. The process of model fitting using binomial regression 
and log-linear regression was discussed and illustrated by 
application to end point determinations of toxicity test data 
(G3) .  Principal components analysis and Kalman filtering 
were used as examples in a review of ways to examine chemical 
behavior ( G 4 ) .  Discrete Fourier transform and Bayesian 
analyses were compared as means of estimating the signal 
frequency and amplitude of N M R  resonances (G5). Three 
different methods were used to study in vivo magnetic 
resonance spectral parameters: nonlinear maximum likelihood 
estimation (NMLE), linear prediction, and Fourier trans- 
formation (C6) .  A comparison between three-way PLS and 
parallel factor analysis (PARAFAC) for estimating HPLC 
retention values was made with attention to validation tools 
(G7) 8 

Several computer programs were offered to assist re- 
searchers interested in parameter estimation. These included 
graphical evaluation of pKa values (G8), mathematical 
determination of equilibrium constants (G9),  and prediction 
of retention values in temperature programming of chro- 
matographic columns (GIO).  A general equation to derive 
kinetic models by facilitating application of the Taylor series 
was reported (G11). Another group of programs involved 
some statistical approaches. One employing Bayesian proba- 
bilistic reasoning was used for the analysis of output curves 
from a DTA curve of a soil sample (G12). BASIC programs 
employing maximum likelihood and x 2  approaches to the 
estimation of lethal dosages in bioassay applications were also 
published ( C I S ) .  A new algorithm for computing spectral 
reconstructions based on the maximum entropy principle was 
described ((314). Other new algorithms involved matrix-based 
methods. A procedure employing continuous regularization 
was suggested as an improvement in the linear prediction 
singular value decomposition (LPSVD) algorithm for deter- 
mining spectral parameters from time domain ESR or N M R  
spectra (G15) .  Two new approximation methods for weighted 
PCA as applied to parameter estimation problems were 
discussed (GI6 ) .  

Some unusual approaches to parameter estimation have 
been published in the last two years. Simulated annealing 
has been applied to N M R  (G17) and fluorescencedata (GZ8). 
Artificial neural networks wereused to predict N M R  chemical 
shifts (G19) and for modeling an enzymatic glucose deter- 
mination by FIA (G20). A combination of neural networks 
and principal components analysis characterized the effect of 
process parameters on the optical emission and mass spectra 
of etching plasmas (G21). Pade-Laplace analysis was 
proposed as a method for identifying the number of exponential 
components in a relaxation decay curve, but was found to be 
no better than nonlinear least squares regression a t  resolving 
three decays with similar time constants (G22). Weibull, 

logit, and probit models estimated the risk of carcinogenesis 
(G23). New iterative methods for the analysis of potentio- 
metric titration data were presented (G24). Nonparametric 
variogram modeling, followed by kriging, was used to 
characterize the extent of regions of contamination a t  
superfund sites (G25). 

The Kalman filter and other recursive methods continue 
to play a role in modeling. An extended Kalman filter 
approach (G26-G28) and a parallel Kalman filter network 
(G29) have been applied to the extraction of parameters from 
multicomponent kinetic data. The temperature and spectral 
emissivity coefficients of plasma-sprayed particles were 
determined simultaneously with the aid of a Kalman filter 
(G30). Kalman filtering has also been used for background 
correction in ICP-AES (G31) and for the extraction of 
heterogeneous rate constants and transfer coefficients when 
coupled to a generalized simulation for step voltammetry 
(G32).  

Principal components analysis and PLS have been exten- 
sively applied as aids in the understanding of chemical systems. 
Results from research on the techniques, as well as from a 
variety of their applications, have been reported over the past 
two years. An examination of the mathematical structures 
of PCR and PLS led to the development of a prognostic vector 
which contains information about the contribution of each 
feature in a sample spectrum to the quality of the sample 
(G33). New research into nonlinear PLS analysis was 
reported, invoking splined inner relations (G34) and quadratic 
and logistic link functions (G35). Many applications of 
principal components-based methods have also been reported 
during this review period. Several papers appeared that 
concerned estimation of chromatographic retention parameters 
(G36-G39). The effect of nonlinear response times of 
photodiode array detectors on principal components-based 
methods was studied (G40) .  An algorithm was provided to 
correct for this problem. Atomic emission spectra were 
combined with PCA-based methods to derive depth profiles 
of TiN/Ti/SiO2 layers (G4Z). In this work, the authors tried 
to rotate factors to obtain physically meaningful spectra. 
Similar studies were reported with Auger sputtering (G42, 
G43) .  Some unusual applications appeared in the biomedical 
field. The degradation of pharmacologically active compounds 
was characterized with eigenvector projection (G44). An 
examination of metabolic control in brain aging studies 
employed PCA (G45). PCA was also used to determine the 
critical parameters which define the metabolic profile of 
normal and diseased brains (G46). DNA and peptide 
sequences were modeled by PLS and PCA, and a good 
discussion was given of the problems encountered in the 
modeling (G47). Several spectroscopic techniques also 
benefited from PCA/PLS modeling. Solvation effects on the 
N M R  parameters of mercury compounds were reviewed and 
a new multiparametric solvent scale was derived using principal 
components (G48).  Correlations of 13C N M R  substituent 
effects with electronegativities were examined (G49). Phase 
transitions and conformational changes of a stearate ester 
were studied by applying factor analysis to FT-IR spectra at 
different temperatures ((750). PLS-2 modeling and Raman 
spectroscopy were combined to improve understanding of near- 
IR spectra (G.51). Also, PLS was used to generate mid- 
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infrared spectra from near-IR spectra of molten polymers in 
an attempt to better understand the process (G52). Pure UV- 
visible spectra were extracted from abstract principal com- 
ponents in a new approach to estimate the structure of ions 
in solution (G53). Visible spectra and target transformation 
factor analysis were employed in a study of valence states of 
chromium and iron (G54). Near-infrared reflectance spectra 
of lake sediments and PLS were proposed as a means of 
inferring the past pH of lakes (G55). The Auger crater-edge 
profile of layered structures was examined using principal 
components analysis (G56).  The NIPALS algorithm was 
employed to determine equilibrium constants from spectro- 
scopic titrations (G57). The analysis, which does not require 
knowledge of the component spectra or a completed titration 
end point, is based on a decomposition of the spectra into 
target and projected matrices. 

Some unusual studies involving PCA were also reported 
during the review period. Models for infinite dilution activity 
coefficients were developed using abstract factors from 
synthetic data matrices to target test different model param- 
eters. The synthetic data matrices came from modified 
cohesive energy equations (G.58). Target testing was also 
used in a PCA study relating '3C N M R  chemical shifts and 
Taft's constants (G59). The dewatering of clay slurries was 
studied using factor analysis; two factors with physicochemical 
meaning were obtained (G60). PCA and response surface 
modeling were used to study gases from municipal solid waste 
combustion (G61).  A principal components model which 
accounts for variation of air pollution sources over samples 
of the source profiles was developed using a Bayesian approach 
(G62). In this innovative work, point estimators and confi- 
dence set estimators were obtained for the vectors of the source 
contributions. 

Least squares regression techniques remain the most 
popular method for parameter estimation. Several new 
modifications and comparisons were published during the last 
two years. Constrained and restrained refinement of EXAFS 
data reduced the number of independent parameters required 
to fit the data as compared to conventional least squares (G63). 
A program named Expit was offered to fit a sum of exponential 
functions to experimental data points (G64). The program 
employs a new technique, based on statistical tests, to 
automatically locate the best number of parameters. Mul- 
tistage, linear least squares modeling based on autoregressive 
moving average (ARMA) modeling wasapplied tonoisy NMR 
signals (G65). A newly developed numerical integration and 
optimization program was proposed to estimate parallel 
reaction parameters (G66). Nonlinear least squares fitting 
has been applied to a number of problems, including slow 
amide proton exchange rates (G67) and extracting rate 
constants from UV spectra taken on reacting systems (G68, 
G69). Many spectroscopic studies included least squares 
regression techniques. A nonlinear, iterative least squares 
method was used for fitting EPR spectra to simulated spectra 
(G70). The Marquardt algorithm was employed as a search 
procedure for adjusting the parameters. Issues concerning 
the application of least squares methods to vapor FT-IR 
spectroscopy were addressed, with emphasis on spectral 
collinearity (G71).  I3C solid-state NMR, FT-IR, and near- 
IR spectroscopies were combined with PCA and PLS in a 

study of the physical properties of wood pulp (G72). Some 
applications of least squares fitting to chromatographic 
problems were also reported. Acidity constants from capacity 
factors (G73) and testing of columns (G74) were typical 
examples. Also, least squares curve fitting and moment 
analysis were compared in a solute transport study (G75). 

Some general studies involving parameter estimation were 
also reported. A Bayesian approach was taken to estimate 
the number of excitation lines in neutron scattering molecular 
tunneling experiments (G76). One paper described methods 
of creating chromatographic/UV simulated data to test mod- 
eling approaches (G77). The simulation was done to take in- 
to account small model nonlinearities which can influence the 
performance of a principal components analysis. The 1R spec- 
tra of functional groups were extracted from typical IR spectra 
via PCA and MLR (G78). Canonical correlation analysis of 
mid- and near-infrared spectra of oil was done to assign near- 
IR wavelengths (G79), and two-dimensional statistical cor- 
relation of mid- and near-infrared spectra was suggested as 
a means of qualitative spectral interpretation (G80). 

STRUCTURE-ACTIVITY RELATIONSHIPS 
In this section, the use of multivariate techniques in the 

building of models that relate molecular structure to some 
sort of physical, biological, or chemical property is reviewed. 
Also included here are studies that deal with relations between 
material composition and property. Studies that deal with 
regression or classification of spectra to property are included 
in the calibration or pattern recognition sections, respectively. 
Most research in this area focused on the development of a 
linear or nonlinear multiple regression model that related 
multiple electronic or topographical molecular descriptors as 
independent variables to a dependent property variable. 
Predictions of the activities or properties of objects that are 
not contained in the calibration data set are made by 
interpolating or extrapolating the calibration model. A very 
important step that is all too frequently overlooked in the 
development of structure-activity relationships (SAR) is that 
of a preliminary statistical experimental design. The key 
aspects of structure activity design were discussed in a review 
that included priority setting for risk assessment of hazardous 
chemicals and the statistical design of calibration models ( H I ) .  
Different chemical or physical variables can also be used to 
classify different objects according to property or activity. A 
review addressing both classification and regression in SAR 
was followed by examples in structure-taste modeling (H2) .  
The specific techniques that were addressed included cluster- 
ing, SIMCA pattern classification, and partial least squares 
modeling. A large increase in the use of nonlinear modeling 
methods in the construction of structure-activity models was 
noted during the past two years. One of these nonlinear 
modeling techniques, the nonlinear map, was the focus of 
another review ( H 3 ) .  An application-specific review con- 
cerned the construction of models that relate the composition 
of fatty acid tissue in marine animals with the dietary intake 
(H4)  * 

Research continued in the area of descriptor development 
and analysis during the most recent reporting period. Ten 
topological indexes were examined with principal components 
analysis in order to determine the nature of their contributions 
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to structure-activity regression models (H5). A new phys- 
icochemical descriptor was developed as a measure of 
hydrophobicity (H6) .  The average molecular electrostatic 
field was calculated from the atomic monopoles a t  the points 
on the van der Waals surface or from bond increments. 

One of the most active areas in structure-activity modeling 
over the last two years concerned the relation of chemical 
structure to biological activity. Several studies involving 
nonlinear regression methods have appeared recently. Struc- 
ture-activity relationships have traditionally dealt with non- 
linearities by using nonlinear transforms of molecular de- 
scriptors in a linear regression. Over the past two years an  
increasing number of researchers sought to determine the 
feasibility of more sophisticated nonlinear regression methods 
in the development of SARs. Artificial neural networks, a 
class of highly flexible nonlinear regression methods, were 
examined for modeling effectiveness in a number of these 
structure-activity studies. Because of the highly flexible 
nature of neural network models, the design of data sets is 
critical to preventing overfitting the calibration data. Ghosal 
et al. reported that smaller networks performed more ef- 
fectively than larger networks in the construction of predictive 
models that related chemical structure information to mu- 
tagenic, enzyme inhibitor, and biochemical binding properties 
(H7) .  In another study that compared neural network models, 
the comparatively rigid functional-link network outperformed 
back-propagation networks of various sizes in the prediction 
of antileukemic activity of carboquone derivatives, and in the 
prediction of anti-pentylenterazole activity of benzodiazepine 
derivatives (H8).  Interestingly, optimally sized back- 
propagation neural networks actually outperformed the 
functional-link networks in the fitting of the training set. In 
other work, back-propagation neural networks were reported 
to outperform multiple linear regression in the development 
of models that related structure with dihydropteridine re- 
ductase inhibition (H9). Another powerful nonlinear regres- 
sion technique, that of alternate conditional expectations 
(ACE), performed less effectively than a linear regression of 
nonlinearly transformed variables in the determination of 
psychotomimetic activity of phenylalkylamines (HIO). The 
ACE approach resulted in good fits of training set but poor 
predictions on the test set data. In a comparison of two 
nonlinear regression methods, maximum likelihood logistic 
regression was found to be more accurate than a weighted 
multiple regression using logit transformed variables in the 
assessment of herbicide efficacy (HI  I ) .  Strategies on the use 
of logistic regression in the monitoring of herbicide efficacy 
over a time span of several years were discussed. A number 
of research efforts reported new applications of multiple 
regression in the relation of structure with biological or 
toxicological activity: the relation of structure with cyclic 
AMP phosphodiesterase inhibition properties of pyridines and 
pyramidines ( H I 2 ) ,  NK-2 receptor antagonist activity of 
neurokinin A analogues ( H I 3 ) ,  antibacterial activity of 
quinolones (H14),  and dihydropteroate synthase inhibition of 
multisubstituted arylsulfones ( H I S ) .  A model that predicts 
the carcinogenic activity of a series of polycyclic aromatic 
hydrocarbons was developed from 17 property and reactivity 
descriptors (HI  6 ) .  In a more structured approach, a statistical 
experimental design was used in the development of a 

regression model that related temperature, light intensity, and 
concentration of carbon dioxide to plant growth ( H I 7 ) .  
Research concerning the relation of structure with biological 
toxicity continues to be of interest to many scientists inside 
and outside the chemical sciences. Experimental design, 
followed by regression, was compared with blocked ANOVA 
design for assessing the impact of tetrachlorolphenol on 
zooplankton populations ( H I 8 ) .  The experimental design- 
regression model was preferred because of the ability to 
extrapolate this model to the no-effect concentration. Pattern 
recognition methods were also employed to reveal qualitative 
information about structure-activity relationships during the 
last two years. Steric and electronic chemical structure 
parameters were used in clustering and principal components 
mapping of the effects of benzoic acid derivatives on rat 
metabolism (HI  9 ) .  The activities of thiocarbamates were 
classified as herbicidal or antifungal using PLS modeling 
(H20).  Some researchers studied the contributions of 
individual structural parameters on biological activity. A 
principal components analysis of the conformers of eight known 
Ca  channel blocking agents was used to determine the 
structural parameters of certain conformers that are the most 
likely to contributors to biological activity ( H 2 I ) .  Molecular 
mechanics software was also used in the determination of the 
conformational structures that are most likely to contribute 
to the activity of a homologous series of HMG CoA reductase 
inhibitors (H22) The interaction of different monoamine 
oxidase inhibitory drugs with amino acids was studied with 
a principal components analysis of charge-transfer chromato- 
graphic data followed by a spectral mapping technique (H23).  
I t  was concluded that the amine group of the drugs interacted 
electrostatically with the second carboxylic acid group of the 
dicarboxylic amino acids. Structural features affecting the 
antibacterial activity of quinolones against Staphylococcus 
areus were rationalized using a calibration and design in latent 
variables (H24).  An expert system for structure-activity that 
tests for adequate representation of important structural 
information was applied to increasing the informational content 
of several data bases (H2.5). In a study that focused onvariable 
selection, the standard parameter sets normally used in the 
theoretical linear solvation energy relationship, TLSER, were 
compared with the use of topological indexes in the molecular 
transform method (H26) .  A study involving the screening of 
hazardous substances was updated from the previously 
reported model (H27).  Five new group counting variables 
were employed in the new SAR model. Polynomial equations 
of the second degree were used to correlate the lipophilicity 
and surface area descriptors of various trityl derivatives with 
the antimicrobial activity (H28).  

A large number of researchers sought to develop models 
that could predict some sort of instrumental response from 
chemical structure information. These structure-response 
relationships were often modeled using larger calibration data 
sets as compared to those used in structure-biological activity 
studies. Theuseoflargecalibration sets has probablyreduced 
the likelihood of a sparse sampling of the calibration space-a 
condition that often leads to overfitting by more flexible 
methods based on nonlinear regression. In addition, com- 
prehensive variable selection in structure-response modeling 
may be intuitively easier than for structure-biological activity 
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relations. The overfitting of the calibration data by neural 
networks that was reported by several researchers in the studies 
involving structure-biological activity models was not reported 
in the structure-response research. Ball and Jurs compared 
multiple linear regression, gradient-descent-optimized back- 
propagation, and quasi-Newton-optimized back-propagation 
in the modeling of structure-13C N M R  chemical shift data 
(H29).  The models generated by the Broyden, Fletcher, 
Goldfarb, and Shanno (BFGS) quasi-Newton method resulted 
in improved accuracy of prediction and decreased training 
time when compared with back-propagation optimized by 
gradient descent. Both neural network approaches outper- 
formed multiple linear regression in the prediction of N M R  
chemical shifts by a wide margin. Back-propagation neural 
networks also outperformed multiple linear regression in the 
modeling of structure-retention relationships in thin-layer 
chromatography (H30).  Counterpropagation neural net- 
works, neural net algorithms that function as key-value lookup 
tables, were compared with multiple linear regression in the 
prediction of Kovats indexes of substituted phenols (H31).  
The counterpropagation network approach led to significant 
improvements over multiple linear regression in the prediction 
of Kovats indexes. Interestingly, the advantage of counter- 
propagation neural network modeling was most pronounced 
in cases where the structural descriptors and Kovats indexes 
were highly correlated. Back-propagation neural networks 
were also used to generate models for predicting gas chro- 
matographic retention indexes (H32).  Regression models 
relating structure with 13C N M R  chemical shift data were 
also developed with recurrent back-propagation neural net- 
works (H33).  Automated selection of appropriate neural 
network and multiple regression predictive models from a 
previously developed library was accomplished using selection 
criteria based on the similarity of chemical structure (H34, 
H35).  In another study involving neural networks, graph 
theoretical descriptors were correlated with infrared spectra 
(H36).  A wide range of test set compounds were predicted 
with about 80% accuracy using the calibrated neural model. 
Another type of nonlinear modeling method, that of nonlinear 
mapping, was used in conjunction with principal components 
analysis to determine the molecular properties that allowed 
the separation of a series of benzimidizole sulfoxide 
enantiomers in chiral liquid chromatography (H37).  Nine 
important molecular properties were identified from an initial 
data array that contained 254 molecular descriptors. A new 
approach to the prediction of 13C N M R  spectra based on 
optimized spectra using increments made use of the spectra 
of molecular fragments in estimating the overall spectrum of 
a candidate molecule (H38) .  The majority of structure- 
instrumental response papers were concerned with developing 
specific applications with well-known methodologies, however. 
Structure-retention relationships of polychlorinated di- 
benzofurans (H39),  polychlorinated dibenzodioxins (H40), 
and petroleum hydrocarbons (H41) were investigated on gas 
chromatographic stationary phases of varying polarity with 
multiple linear regression techniques. Other applications that 
used multiple linear regression in the construction of s t ruc ture  
gas chromatographic retention models included studies with 
sulfur vesicants (H42) ,  chlorinated dibenzodioxins (H43),  
polychlorinated biphenyls (H44), barbituric acid derivatives 

(H45), N-isopropyl phosphoramidothioates (H46), poly- 
halogenated biphenyls (H47), trimethylsilyl ethers (H48), and 
a group of benzene derivatives (H49). Thin-layer chromato- 
graphic structure-retention relationships were investigated 
for the prediction of retention of benzodiazepines (H.50) and 
for the influence of dielectric strength and refractive index 
effects on solvent strength and selectivity in the separation of 
ethylene oxide oligomer mixtures (H51). The feasibility of 
structureretention and structureodor intensity relationships 
was investigated for a diverse set of industrial compounds 
using multiple linear regression (H52).  Several researchers 
probed the usefulness of linear free energy relationships 
(LFER) in chromatographic structure-retention models. The 
LFER relationships were used with the 77 phase McReynolds 
data set to characterize gas chromatographic stationary phases 
(H53).  LFERs were also used in reversed-phase liquid 
chromatography to develop a simple structureretention model 
(H54). The regression model used only two solvatochromatic 
parameters, one each for the solute and the mobile phase. The 
solubility parameter (SOLPAR) and LFER models were 
compared in the resolution of chlorinated aromatic isomers 
(H55). The SOLPAR model outperformed the LFER model 
in the prediction of the retention of various tetrachlorodibenzo- 
(p)dioxins on C18 columns. The LFER was also used to 
examine the solute stationary-phase interaction in gas-liquid 
chromatography (H56).  Relative retention values and the 
corresponding energy partition were determined for a group 
of monosubstituted benzene derivatives. A methodology was 
presented for the development of quantitative structure- 
retention relationships in gas chromatography (H57). Two 
types of calibration models were used to study the interaction 
between the analyte and stationary phase. The retention 
behavior of some ring-substituted aniline derivatives on 
polyethylene and octadecylsilica columns was studied with 
stepwise linear regression (H58). The differences in retention 
behavior of the two types of columns were attributed to free 
silanol groups on the polyethylene column that were not 
covered. In another column comparison, the retention behavior 
of phenol derivatives on porous graphitized and octadecylsilica 
columns was qualitatively examined by principal components 
analysis, two-dimensional nonlinear mapping, and cluster 
analysis (H59).  Two different solvation energy models were 
used to characterize the selectivity of different stationary 
phases used in gas-liquid chromatography (H60). It was 
reported that, contrary to popular beliefs, noneof the stationary 
phases behave as significant hydrogen-bond acid solvents at 
the test temperature of 121.4 OC. Molecular structure 
descriptors have been related to retention characteristics of 
isomeric structures. A quantitative structure-enantiospecific 
retention model was developed that predicts the separation of 
1 ,Cbenzodiazepines on a human serum albumin-based HPLC 
stationary phase (H61).  Molecular descriptors for 40 pairs 
of diastereomeric amides were used to construct structure- 
retention relationship with partial least squares regression 
(H62).  A range of conformers were used in descriptor 
development prior to the regression step. Hsieh and Dorsey 
investigated different approaches for extrapolating the struc- 
ture-retention model to the 100% water mobile-phase value 
(H63).  The proposed model included mobile- and stationary- 
phase effects in the regression. High-performance liquid and 
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supercritical fluid chromatographic systems were compared 
for retention characteristics (H64) .  Automatic classification 
and factor analysis were used to show the equivalence of the 
retention processes of the two methods. Partition coefficients 
between olive oil and nitrogen were determined with gas- 
liquid chromatography and a structure-retention model (H65).  
Target factor analysis (TFA) was used to reconstruct data 
matrices and make predictions with the best set of molecular 
descriptors (H66).  Solutes were also classified with TFA 
according to their retention behavior. The effect of substituent 
groups on fluorescence behavior was determined with a linear 
regression of structure-activity data (H67).  

A few researchers used graph theoretic approaches in their 
structure-activity studies during the latest reporting period. 
Graph theoretical constructs were used to describe N M R  cross- 
relaxation networks in macromolecules and to analyze different 
experiments used in topological editing (H68).  A constrained 
partitioning algorithm was reported that determines the initial 
assignment of proton N M R  resonances of proteins from MFQ- 
COSY data (H69) .  The algorithm used graph theoretical 
indexes with a binary tree generation algorithm. The 
combination of two-dimensional COSY N M R  spectra and 
graph theory was used to estimate carbon-to-carbon con- 
nectivity of some simple molecules (H70).  

Structure-property modeling was popular in industrial 
quality control during the most recent reporting period. The 
activity of a number of paraffin inhibitors in a different crude 
oils was studied using clustering of principal components 
(H71) .  Crude oils and inhibitors tended to cluster into one 
of several groups that were used todevelop predictive structure- 
paraffin inhibition activity models. A principal components 
study of the physicochemical measurements was used to 
determine the defining differences between four different 
breeds of cattle (H72) ,  and virgin olive oil samples were 
characterized with principal components and canonical cor- 
relation according to their triacylglycerol composition (H73) .  
A regression model was developed between the properties of 
magnetic tape and the maghemite morphology (H74) .  It was 
concluded that the electroacoustic properties of the tape were 
mainly determined by the length of the maghemite particles. 
In  a study that involved the quality assessment of mold-ripened 
cheese, a regression model was developed that relates the 
chemical composition to the water activity ( H 7 5 ) .  Some 
research efforts attempted to construct regression models that 
used physical and chemical properties to predict the properties 
of agricultural soil. Regression models were developed for 
the effect of nitrogen and nitrogen placement on no-till small 
grains (H76) and for the estimation of soil microbial biomass 
as a function of organic composition (H77) .  

A number of new SAR applications have appeared in the 
recent literature. The relationship between chemical shift 
tensors and shielding parameters obtained from 31P N M R  
experiments and molecular structure was studied with a 
principal components analysis (H78) .  A linear relationship 
between the S=P-S bond angle and anisotropy and asym- 
metry parameters was established. Fuzzy, adaptive least 
squares pattern recognition was used to develop a discriminant 
function of 37 variables that could be used to infer aquatic 
toxicity from chemical structure (H79) .  The model, repre- 
senting a wide range of structures in the 394-compound training 

set, was verified by cross-validation. Principal components 
analysis was used to examine the effects of different sub- 
stituents on the carbonyl stretching frequency and 13C N M R  
chemical shift (H80).  The validity of several substituent 
parameters were investigated by target testing. An integrated 
approach to the design and optimization of SAR experiments 
with a new chemometric system, SPECTRE, was discussed 
(H81) .  A new approach to SAR analysis, multiway principal 
components analysis, was used to examine the spatial and 
temporal factors of influence on the water quality in the Niger 
delta (H82).  An advanced variable selection procedurecalled 
generating optimal PLS estimations or GOLPE was presented 
and demonstrated with an application on a 3-D SAR (H83).  
The strategy includes a preliminary variable selection by means 
of a D-optimal design in loading space, followed by an iterative 
evaluation of the importance of the individual variables used 
in the predictive performance of the regression model. Finally, 
Lohninger evaluated the performance of neural networks that 
use radial basis-transfer functions on nonlinear multivariate 
regression with simulated data, and also with experimental 
data that was used to generate a structure-boiling point 
relationship (H84) .  Topics that were addressed included the 
determination of network topological structure, the setting of 
adjustable network parameters, generalization, and extra- 
polation of the model. 

PAlTERN RECOGNITION 
The aim of pattern recognition is ultimately to classify an 

unknown into one (or sometimes more) of a set of predeter- 
mined classes. Establishing a classification may be desired 
for any number of purposes, including the analysis of chemical 
composition, detection of food adulteration, food quality 
testing, source apportionment, and exploratory data analysis, 
to name but a few. The classification step is often accomplished 
through use of one or several chemometrics techniques that 
are now fairly well-established, including principal components 
analysis, soft independent modeling of class analogy (SIMCA), 
k-nearest neighbors (KNN) classifiers, and linear discriminant 
analysis. Few novel methods for pattern recognition were 
published over the past two years; instead, the chemical 
literature on pattern recognition focused on novel and not- 
so-novel applications of existing techniques. Nevertheless, 
classification of data clearly remains an important subject in 
chemometrics, as the number of citations appearing on 
applications of pattern recognition were rivaled only by 
calibration during this review period. References in this section 
are therefore grouped according to the type of application, 
namely, applications to general spectroscopy and chroma- 
tography, sensors, food, environment, biochemistry and 
pharmaceuticals, and diverse industrial applications. 

Several reviews on pattern recognition were found in the 
literature for this period. A general overview (in Slovak) of 
many pattern recognition methods in mass spectrometry was 
published with an extensive list of references (ZI). Geladi 
and co-workers discussed exploratory data analysis, clas- 
sification, and regression of multivariate images in chemistry 
(Z2). Exploratory data analysis was also the subject of another 
paper in which several graphical tools were described. These 
tools included quantile and quantile-box plots for data 
presentation, quantile-quantile plots for comparing empirical 
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and theoretical probability distributions, and power trans- 
formations for simplifying distributions (13). A number of 
reviews concerned the utility of pattern recognition techniques 
in sensing systems. Multicomponent analysis with sensors 
using pattern recognition was reviewed by Vaihinger and 
Goepel(14), as well as by Gauglitz (15). The use of various 
classification methods in gas sensing was discussed by Gardner 
and Bartlett (16). Pattern recognition with surface acoustic 
wave sensors (SAW) (17) and field effect gas sensors (18) was 
also reviewed. A major concern of regulators of the food 
industry is commodity adulteration. Several analytical and 
pattern recognition techniques suitable for the detection of 
the adulteration of fruit juices were evaluated (19). The 
classification of off-flavors by multivariate methods was 
reviewed by Zervos and Albert (110). A number of reviews 
of environmental concern involving pattern recognition were 
also published. Eastwood et al. discussed spectral pattern 
recognition in environmental programs (11 I). Classification 
techniques for fluorescence spectroscopy in environmental and 
hydrological sciences were described (112). Hierarchical 
clustering and principal components analysis in the source 
identification of airborne mineral fibers measured by SEM 
and energy-dispersive X-ray spectroscopy were reported (113). 
Einax discussed the use of several pattern recognition methods 
in the environmental analysis of heavy metals (114). Electronic 
gas and odor detectors modeled after animal chemoreceptors 
were reviewed in conjunction with pattern recognition (115). 

Several different pattern recognition techniques were 
applied to spectral analysis in general. Not surprisingly, PCA 
and cluster analysis were fairly widely used in these studies. 
For instance, PCA was used to help interpret tandem mass 
spectra of organic compounds (116). Three different studies 
identified the sources of materials with the help of pattern 
recognition. In one study, PCA was used in determining the 
origin of Chinese porcelain samples analyzed for trace elements 
by energy-dispersive X-ray fluorescence (11 7) .  A second study 
also used X-ray fluorescence as the basis of determining the 
geographical origins of Gallo-Roman ceramics using PCA, 
clustering, and discriminant analysis (118). Another study 
accounted for different sources of production of Roman pottery 
by applying hierarchical, agglomerative clustering, and PCA 
to inductively coupled plasma atomic emission and atomic 
absorption spectra. The SIMCA classifier was also employed 
to augment the PCA results where the assignments were 
uncertain (11 9) .  Bernard and Van Grieken investigated seven 
different hierarchical clustering algorithms using electron 
probe X-ray microanalysis data from mineral mixtures. The 
methods were evaluated and compared by theuseof Kstatistics, 
and the influence of various experimental parameters on the 
clustering results was assessed (120). Also, different phases 
of heterogeneous rock and alloy materials were identified by 
applying PCA to two-dimensional, X-ray microfluorescence 
spectra (121). In another study, Linton and co-workers applied 
cluster analysis to secondary ion mass spectrometry images 
for molecular microanalysis (122). Ehrentreich et al. com- 
pared k-means and fuzzy c-means cluster analysis on 29Si 
N M R  data. They showed that the c-means clustering provides 
useful information regarding outliers and hybrids (123). A 
new approach was reported for the identification of products 
which exhibit very similar near-infrared spectra. This ap- 

proach combines the residual variance and the Mahalanobis 
distance metrics with PCA-based library searching (124). 

Several other techniques were also used for spectral analysis. 
Linear discriminant analysis (LDA), following PCA, was used 
to automatically detect benzene in the presence of nitrobenzene 
from surface-of-section maps generated from digitally filtered 
Fourier transform infrared (FT-IR) interferograms (125). The 
same authors also reported that pattern recognition perfor- 
mance is optimal for linear discriminants derived from faster 
sampled interferograms (126). Small and Barber showed the 
influence of interfering species on results obtained from this 
technique (127). Discriminant analysis applied to near-IR 
spectra distinguished gelatinized starch samples from up to 
seven classes. PCA detected an outlier among these samples 
and emphasized the importance of spectral variations due to 
scattering (128). The so-called bootstrap error-adjusted, 
single-sample technique (BEST) classifier was also used for 
qualitative analysis with near-IR spectroscopy (129-131). In 
the mid-IR region, Werther and Varmuza also carried out 
exploratory data analysis for spectra-structure relationships. 
They employed discriminants based on partial least squares 
latent variables instead of ones obtained from LDA or PCA 
(132). The knowledge of mid-IR spectra was utilized to 
interpret near-IR spectra through a canonical correlation 
analysis. The principal components were used in the data 
analysis due to collinearity (133). In an extensive study, data 
on analyte elements and chemical modifiers utilized in 
electrothermal atomic absorption spectrometry were classified 
using various methods such as discriminant, correlation, 
cluster, and factor analysis (134). Jerkovich et al. explored 
the mass spectra-structure relationships of organic radicals 
by using a linear discriminant (135). Scott classified volatile 
organic compounds using SIMCA on low-resolution mass 
spectra according to six classes. The molecular weights of 
these classes were estimated by an expert system (136). The 
classification of low-resolution mass spectra was also inves- 
tigated in a comparison study of four supervised learning 
methods, namely, KNN, stepwise discriminant analysis, 
probabilistic classification, and centroid classification (137). 
Davis discussed the characterization of molecular spectra using 
hierarchical trees (138). Determining the optimum features 
for classification can be a difficult problem. Leardi et al. 
investigated genetic algorithms as a method for feature 
selection. Genetic algorithms were shown to be generally more 
efficient than classical feature selection methods for this 
problem in that fewer features were selected and better 
classification results were obtained (139). 

The most novel research in pattern recognition involved 
work with artificial neural networks. These networks were 
also-not coincidentally-the most frequently applied pattern 
recognition technique for spectral analysis over the past two 
years. In most cases, a layered, feed-forward neural network 
was used. These nets were usually trained by using back- 
propagation of error. Lohninger and Stancl compared the 
performance of back-propagation neural networks with LDA, 
as well as that of Kohonen feature maps with KNN clustering 
on mass spectra of eight classes of steroids (140). Meyer and 
Weigelt investigated the use of a back-propagation neural 
network with one hidden layer for IR spectral analysis. In 
one case, the full, low-resolution spectrum served as the input 
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to the network (141). In a second case, the scores obtained 
from PCA of the spectra were input rather than the entire 
spectrum in order to minimize the number of connections 
required in the network (142). Luinge and co-workers 
compared a three-layered net with a library searching system 
for the identification of pesticides from I R  data (143). Others 
using feed-forward artificial neural networks trained with the 
back-propagation learning algorithm for the interpretation of 
IR spectra included Fessenden (144) and Weigel (145). 
Coenegracht applied a feed-forward neural network trained 
with back-propagation to the analysis of the UV spectra of 
mixtures of sulfonamides. From a set of spectra and the peak 
areas of the corresponding chromatogram, the neural network 
was able to identify the peaks in other chromatograms 
measured in different mobile phases (146). The relationship 
between the europium(I1) emission spectrum in complex 
fluorides and the structures of host complex fluoride lattices 
was also studied with a neural network trained by back- 
propagation (147). Noisy spectra can cause pattern recogni- 
tion to be difficult, particularly when the spectra of interest 
are very similar. Allanic et al. demonstrated a neural network 
that was used to successfully distinguish between similar two- 
dimensional fluorescence spectra where classical methods 
failed (148). Olmos reported a neural network which 
performed pattern recognition on the shape of the whole 
spectrum rather than on individual peaks for low-resolution 
y spectroscopy (149). The effective prediction of sample 
composition based on near-IR and FT-Raman data was 
achieved using signal preprocessing and a neural network (150). 
Ricard et al. evaluated the performance of neural networks 
on IR spectra by considering statistical indexes and the 
connection weights of the network when the net was trained 
on functional groups from synthetic spectra (151). Several 
research groups investigated the use of hybrid and modular 
networks for pattern recognition. A modular network system 
wasdesigned such that each constituent network was dedicated 
to a specific structural task (152, 153). Another system of 
neural networks consisting of two steps was constructed by 
Tanabe. In the first step, the I R  spectra are classified into 
one of a set of categories, and in the second step, each category 
is connected to another network which identifies the spectrum 
(154). Others tried unusual networks on unconventional tasks 
in pattern recognition. The poor resolution exhibited by ion 
mobility spectra renders them difficult to classify with 
traditional library searching or pattern recognition methods. 
Bell et al. studied the use of a connectionist hyperprism 
classification (CHC) neural network with such spectra and 
were able to identify the significant spectral features (155). 
An interesting study of the interpretation of IR spectra using 
a self-organizing feature map was undertaken by Melssen 
and co-workers. A Kohonen network, accelerated by a parallel 
implementation, was used to cluster molecular fragments on 
the map according to functionality. The presence, in some 
cases, of more than one level of clustering suggested the design 
of a tree-structured system of dedicated multilayered, feed- 
forward neural networks (156). 

Pattern recognition methods were also employed to aid in 
the characterization and design of chromatographic systems. 
For example, various hydrophobic interaction chromatography 
media were grouped according to protein selectivity using 

PCA (157). Similarly, the flavonoid selectivities of several 
mobile and stationary phases for reversed-phase high- 
performance liquid chromatography (HPLC) were also 
classified by PCA (158). Forgacs et al. examined the retention 
of aniline derivatives on two different HPLC columns and 
established relationships between retention properties and 
physicochemical parameters. This was accomplished using 
several methods, including PCA followed by two-dimensional 
nonlinear mapping, clustering, and canonical correlation 
analysis. The former was found to be the most suitable for 
the task (159). Smilde and Doornbos compared two multi- 
variate analysis techniques, namely, PARAFAC and three- 
way PLS, for their performance in predicting reversed-phase 
retention. The simple validatory tools used to carry out the 
comparison were described (160). In a gas chromatography 
application, linear solvation energy relationships with three 
solute parameters were utilized to categorize several stationary 
phases using a so-called phase classification triangle (161). 

The combination of new sensors and pattern recognition 
has long been an active area of research, and the past two 
years proved no exception. Many research groups have 
directed their attention toward the development of sensor 
systems in which pattern recognition techniques play a vital 
role. For example, Amati et al. designed SAW sensors for 
the simultaneous detection of various organic solvents in dry 
air. The selectivity of the detectors was enhanced by the use 
of PLS regression (162). Reichert et al. reported a similar 
system for the detection of methanol in fuel vapors (163). In 
another study of a SAW sensor array, the responses were 
analyzed by disjoint principal components regression (164). 
Nayaq et al. described a gas sensor array for identifying 
component gases or odors in air by clustering transformed 
data (165). A technique was proposed for reducing the 
dimensionality of remote sensing data from an imaging 
spectrometer by selecting features which enabled accurate 
classification (166). PCA was used with conducting polymer 
gas sensors to discriminate between the responses of alcohols 
in a ternary mixture (167). Sugimoto et al. also employed 
PCA to categorize the responses of plasma polymer thin-film 
probes to organic vapor molecules (168). A number of papers 
were concerned with the analysis of flavors and aromas. The 
response patterns of a quartz resonator gas sensor to various 
types of coffee or wine aromas were distinguished with a neural 
network (169). Nakamoto et al. also developed an odor-sensing 
system based on a quartz resonator sensor array. The choice 
of suitable membrane coatings for classifying nut flavors was 
achieved by PCA (170). A PCA analysis was also used with 
a neural network to distinguish whiskey aromas (171). Pearce 
et al. combined an array of conducting polymers with a neural 
network for the headspace analysis of beer. The system was 
able to identify various brands of beer as well as detect tainted 
beer (172). Another back-propagation neural network was 
devised in order to categorize response patterns generated by 
a flow injection system. The system was equipped with an 
array detector comprised of several ion-selective electrodes 
(173). The specificity of a fuel cell array was ameliorated by 
the use of a neural network. Signal preprocessing as well as 
both supervised and unsupervised learning schemes for neural 
networks was discussed (174). 
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A significant number of the references involving pattern 
recognition concerned applications in food chemistry. Gener- 
ally, routine analytical measurements, including GC, LC, and 
trace metals analysis were used to obtain the data, and linear 
discriminant and principal components analysis constituted 
the bulk of the multivariate data analysis techniques. Linear 
discriminant analysis was used to characterize red varieties 
of grapes from HPLC measurements of anthocyanin. (175). 
Pino et al. also utilized LDA to categorize samples of cocoa 
powder into two classes on the basis of G C  analysis of the 
volatile components (176,177). As mentioned earlier, one of 
the main problems facing the regulatory food agencies is 
adulteration. In particular, the FDA undertook a study of 
orange juice adulteration in which PCA and discriminant 
analysis were used to classify samples from HPLC measure- 
ments of volatile components and from inductively coupled 
plasma (ICP) spectrometric analyses of trace metals (178). 
A group in the United Kingdom reported research results 
regarding the authentication of orange and other fruit juices 
by the application of discriminant analysis to their near-IR 
spectra (179). Kaufmann identified illicit oil substitutes in 
a mixture using PCA and estimated their proportions by PLS 
(180). In another study, Headley and Hardy used PCA to 
identify adulterants in whiskey from gas chromatograms (181). 
Another issue preoccupying the food industry is that of 
monitoring food quality. Near-IR reflectance spectra of pea 
extrudates were classified according to extrudate cooking 
conditions using PCA. These cooking conditions were found 
to be correlated with protein quality (182). PCA was also 
applied to several measured parameters of powdered black 
pepper in order to assess the impact of storage on quality 
(183). Narasimhan and co-workers categorized the aromas 
of black pepper as well as ginger using canonical discriminant 
analysis (CDA) on G C  data that had been correlated with 
sensory analysis. The change in the quality of the aroma of 
black pepper during storage was evaluated by PCA and quality 
predictions were formulated for both spices (184). Chro- 
matographic data of samples of paprika were related to the 
evaluations of a sensory panel for classification according to 
aroma quality by SIMCA (185). Similarly, Huang and Zayas 
grouped sensory evaluations of the aroma of corn germ protein 
flours into four classes by CDA. Stepwise multiple regression 
correlated sensory and G C  data to enable predictions of aroma 
quality (186). Food source apportionment is another area 
where pattern recognition has been applied. Shimoda et al. 
analyzed the volatile compounds in the headspace of cabernet 
sauvignon wines by GC. They were able to correctly classify 
the wines by region of origin using discriminant analysis (187). 
On the other hand, Italian peppermint oils also analyzed by 
G C  were not successfully classified according to their 
geographic origin using PCA and SIMCA (188). Other 
applications of PCA included the characterization of roasted 
coffee by static headspace G C  or HPLC-UV of coffee extracts 
(189) and the identification of fat substitutes in sausages by 
near-IR reflectance spectroscopy (190). Near-IR spectra of 
hard red wheat harvested over a four-year period were also 
grouped by PCA with the objective of classifying the wheat 
samples according to winter or spring varieties using a 
discriminant function (191 ). Murota analyzed the headspace 
of six coffee cultivars by G C  and M S  and classified them into 

three sensory categories using CDA (192). Static headspace 
G C  was employed to determine the volatile components in 
four species of Pacific salmon. The use of PCA in conjunction 
with discriminant analysis successfully classified the four 
species, where nonparametric, linear, and quadratic discrimi- 
nant analysis performed in decreasing order of percent 
classification (193). 

Various methods of cluster analysis were also commonly 
applied to food classification problems. Wheat differentiation 
was again the subject of study. In this case, five classes of 
winter wheat samples from two different growing seasons were 
analyzed by Curie point pyrolysis gas chromatography. It 
was found that multivariate cluster analysis discriminated 
the five classes within a single season, whereas discriminant 
analysis classified the wheats correctly, regardless of growing 
season (194). Cluster analysis was also employed in food 
quality tests. Martinez-Anaya et al. correlated biochemical 
and physical properties of breadmaking starter cultures with 
bread quality by three different means, namely, k-means 
clustering, discriminant analysis, and PCA (195). Varadi and 
Toth investigated the feasibility of monitoring chocolate quality 
during processing by applying hierarchical clustering and 
discriminant analysis to near-IR spectra (196). Both of these 
pattern recognition methods were also utilized to classify red 
wines and musts from their physical properties and GC 
measurements (197). Three gin brands were discriminated 
by several pattern recognition techniques, including clustering, 
PCA, and discriminant analysis (198). These methods were 
also used to discriminate sugars from cereals, tubers, 
leguminosae, fruits, and sugar plants on the basis of natural 
isotope measurements of hydrogen, carbon, and oxygen (199). 

A miscellany of other pattern recognition methods were 
also employed in food chemistry. For example, sensory data 
on apricot purees were correlated with analytical parameters 
as measured by G C  using PLS regression. The size of the G C  
data set was reduced by PCA prior to performing the regression 
(1100). Alcohol distillates determined by chromatography 
were also classified with the help of PLS modeling (1101). De 
Jong described several techniques, namely, fuzzy set theory, 
PLS regression, and mixed integer programming, and 
illustrated their use in the classification of edible fats (1102). 
Vogels and co-workers applied K N N  and PCA combined with 
discriminant analysis to differentiate wines characterized by 
N M R  spectroscopy. The accuracy of the classification was 
improved using a partial linear fit preprocessing scheme (1103). 
Oligosaccharide residues analyzed by N M R  were categorized 
by KNN, PCA, and SIMCA (1104-1106). Francelin et al. 
compared the performances of three neural network archi- 
tectures, namely, the Hopfield model, the Hamming model, 
and a multilayer, feedforward network, for the classification 
of vegetable oils analyzed by G C  (1107). The flavor profiles 
of natural orange aroma generated by both a sensory panel 
and GC were classified using a nonlinear mapping (NLM) 
technique and various other pattern recognition algorithms 
from the ARTHUR package (1108). In a novel approach, 
Devaux et al. determined the size and shape of granules 
composing the different types of starches by image analysis. 
The similarity maps of categories generated by multiple 
correspondence analysis (MCA) showed that the granule 
distributions were characteristic of the starch species (11 09). 
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Pattern recognition methods have become an  integral part 
of environmental studies over the past few years. During the 
course of this review period, PCA was most commonly used 
for classification of environmental data, frequently to attempt 
to apportion the contributions of various sources of pollution. 
One study with that objective was carried out by Wenning et 
al. to determine whether contaminants found in surficial 
sediments were mainly of industrial, residential, or municipal 
origin using PCA and polytopic vector analysis (11 10). Giesy 
and Hoke classified freshwater sediment toxicities by PCA 
and cluster analysis (11 11). In another sediment study, PCA 
and hierarchical clustering were utilized to categorize sediment 
toxicities in the Hamburg harbor. Varimaxrotation and factor 
analysis established the relationship of toxic responses to 
sediment composition (11 12) I Cash and Breen also used PCA 
as well as geostatistics todiscriminate two sources of pollutants 
in the Hamburg sediments (1113). In another study, data on 
Chatauqua Lake sediments were subjected to correspondence 
analysis (11 14). Several soil analysis studies also included 
pattern recognition techniques. Chemical soil characteriza- 
tions were classified using PCA and clustering (1115, 11 16). 
Kokot et al. used PCA and two multicriteria decision-making 
methods known as PROMOTHEE and GAIA to choose an 
appropriate microwave digestion procedure for metal deter- 
mination (11 17). In water research, PCA andvarimax rotation 
were applied to rainwater samples to determine the sources 
of various ions (1118). Trace element concentrations in 
rainwater were determined by neutron activation analysis and 
the samples were categorized according to source using PCA. 
In addition, PLS was employed to compare the data to various 
source signatures of the same elements (1119). Rainwater 
composition was also interpreted by Zhang et al. using PCA 
(1120). Grimalt and Olive compared the performances of 
PCA and factor analysis (FA) in determining the sources of 
various chemical species in aquatic systems. They found that 
FA revealed a direct correspondence between factor loadings 
and geochemical origin, whereas PCA only provided clas- 
sification according to major sample groups (1121,1122). In 
two separate studies of groundwater, data analysis by PCA, 
FA, and clustering helped to elucidate possible origins of the 
water (1123), and FA aided in identifying sources of water 
contaminants (1124). Lavineet al. investigated the feasibility 
of identifying the source of a jet fuel spill by applying disjoint 
PCA to G C  analyses of the fuel (1125). Exploratory data 
analysis using PCA was again discussed and illustrated with 
a large environmental database by Meglen (1126). Physi- 
cochemical characterization of airborne dust from three cast 
iron foundries was subjected to PCA and cluster analysis. A 
relationship was uncovered between chemical composition and 
particulate size as well as foundry operating schedules (1127). 
Sarker et al. reported the results of a study comparing SIMCA 
and a library searching method for the identification of 
hazardous compounds from mass spectra (1128). The 
interpretation of data from chlorinated phenol analyses by 
GC/MS was achieved using the PRIMA (pattern recognition 
by independent multicategory analysis) method. Results from 
these studies were compared to library searching (11 29,1130). 
Niemi et al. formulated a discriminant function for classifying 
acute toxicity syndromes in fish according to the physiological 
responses of fish to exposure to xenobiotic chemicals (1131). 

On the basis of GC retention indexes, Klappa and Long 
categorized the toxicities of polychlorinated biphenyls (PCBs) 
using PCAand discriminant analysis (1132). Thequantitation 
of PCBs and the identification of their sources by Environ- 
mental Protection Agency (EPA) methods requires the 
identification of Aroclor mixtures. LDA was employed to 
classify PCB mixtures as a specific Aroclor from mass spectral 
data (1133). Hazardous gases analyzed by ion mobility 
spectrometry were identified by LDA from data processed by 
a finite impulse response filter (1134). Classification of 
particles is also receiving attention. A scanning nuclear 
microprobe was utilized to analyze atmospheric aerosol 
particles from several sources. PCA and hierarchical cluster 
analysis yielded similar classes reflecting the sources of the 
particles (1135). A new model called direct trilinear decom- 
position followed by a matrix reconstruction (DTDMR) was 
developed for identifying sources of airborne particles (11 36). 
Another new approach was described for identifying the 
sources of contaminant emissions based on a conditional 
probability model named the potential source contribution 
function (PSCF) (1137). Kaltenbach and Small described a 
procedure in which ridge regression is employed to transform 
collinear IR spectral data prior to LDA. They claimed that 
the transformation stabilizes the data by reducing the degree 
of collinearity, thereby improving the piecewise linear dis- 
criminant (1138). 

A considerable number of studies involved the use of pattern 
recognition techniques in pharmaceutical and biochemical 
analysis. Lincoln et al. compared the results of applying PCA 
to LC-UV and LC-MS data as a way of determining the 
number of components co-eluting under a single chromato- 
graphic peak. They found that PCA applied to LC-MS data 
afforded a better detection of low levels of coeluting impurities, 
particularly when the UV spectra were very similar (1139). 
Castledine et al. also reported the results of applying PCA to 
the LC-UV analysis of a model drug (1140). In another 
pharmaceutical study, drug solutes subjected to HPLC were 
classified by PCA according to the pharmacological properties 
of the drugs (1141). Both PCA and SIMCA were used to 
categorize samples of a Chinese traditional drug by geo- 
graphical origin on the basis of pyrolysis G C  (1142). Monfre 
and Brimmer described the use of PCA for classification of 
antibiotics characterized by near-IR spectroscopy (1143). Plant 
biochemistry, as analyzed by various types of chromatography, 
was the basis for discriminating species of trees (1144,1145), 
plants (1146), and medicinal herbs (1147) and shrubs (1148) 
by PCA. Baiocchi and co-workers investigated the application 
of both PCA and LDA to HPLC data in order to distinguish 
between fungus-resistant and -susceptible species of poplar 
trees based on the phenolic content of their bark (1149). Others 
identified several molds using SIMCA on the gas chromato- 
grams of the fatty acids of the spores (1150). IR spectra of 
tobacco plants served to classify samples according to 
qualitative properties using PRIMA (1151) and to differentiate 
blends using PLS and PCA (1152). In another study, 
Canadian coniferous woods were distinguished by the ap- 
plication of PCA to the reflectance FT-IR spectra (1153). 
Gemperline et al. utilized PCA on three-mode data arrays to 
establish the relationship between trace elements and blue 
crab shell disease (11 54) .  Several pattern recognition methods. 
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namely, KNN, projection pursuit regression, and PCA, were 
tried in attempts a t  classifying fruit fly larvae on the basis of 
gas chromatograms (11 55). Delgoda and Pulfer employed 
the linear learning machine to identify amino acid sequences 
from mass spectral data (1156). Another paper reported the 
results of categorizing molecular analogues on the basis of 
immunochemical cross-reactivity by the use of minimum 
estimate variability (MEV), PCA, and K N N  (1157). Gelinas 
et al. performed multielement analyses of numerous animal 
tissues in order to establish relationships between elemental 
composition and tissue types using PCA (1158). In an 
interesting application, a system for providing diagnostic 
information based on qualitative and quantitative properties 
of human urine samples was designed with PCA and PLS 
(1159). The concentrations of 20substances in urine samples 
were also determined by N M R  at  eight time points in rats 
injected with two toxins. The application of PCA and 
nonlinear mapping to the data yielded two distinct metabolic 
trajectory diagrams corresponding to the two toxins (1160, 
1161). 

Various cluster analysis methods were also commonly 
employed in biochemical applications. White et al. used 
hierarchical clustering and PCA to classify species of fungi 
from LC determinations of their amino acids (1162). In 
another study, fungi and bacteria were distinguished according 
to their biotransformation activity. This was achieved by 
applying hierarchical cluster analysis to the Rf values and 
spot intensities of the products resulting from screening the 
strains with several substrates (1163). Fungi were also 
categorized by Frisvad using a number of pattern recognition 
techniques on LC data of secondary metabolites. These 
techniques included several clustering methods, correspon- 
denceanalysis, SIMCA, and PLS (1164). Othersdetermined 
the factors affecting the phenolic composition of sorghum by 
applying single linkage cluster analysis to HPLC and in vitro 
degradability data of crop residues (1165). PCA and clustering 
were also utilized to discriminate roses by HPLC analysis of 
their flavonoids (1166). These same methods were employed 
in another study of flavonoids where Rf values from several 
planar chromatography systems were classified to select the 
minimum number of systems required to achieve optimal 
separation (1167). Hobert and Meyer used PCA and 
hierarchical clustering to interpret IR spectra of urinary stones. 
Quantitative estimates of the compounds were obtained by 
multiple linear regression (1168). Latent variable analysis 
was also used to represent receptor protein sequences. 
Subsequent application of cluster analysis yielded the mini- 
mum number of classes reflecting distinct pharmacological 
types and subtypes of receptors (1169). Matson devised a 
system for diagnosing nerve diseases on the basis of cere- 
brospinal fluid samples from normal and abnormal persons. 
The analytical data were evaluated by linear and stepwise 
regression prior to clustering (1170). Maenhaut and co- 
workers measured minor and trace elements in brain tissue 
and inferred a relationship between the trace element profile 
of a brain structure and its function. Data analysis was 
performed using varimax rotation and several hierarchical 
clustering schemes (1171). 

Other pattern recognition approaches were adopted for 
biochemical methods. For instance, Reibnegger et al. com- 

pared self-organizing neural networks with cluster analysis 
and PCA for classification in clinical chemistry (1172). A 
neural network was also used to distinguish classes of algae 
from flow cytometer data (1173) and to identify two- 
dimensional proton N M R  cross peaks in the spectrum of an 
enzyme inhibitor (11 74). Two-dimensional proton N M R  
peaks of proteins were also assigned using a novel combination 
of spin coupling graph theory, fuzzy graph pattern recognition, 
and tree searching (1175). McLachlan presented a new 
method called the multichannel Fourier transform for detecting 
weak, periodic patterns in protein sequences against a noisy 
background (ZZ 76). Sahota and Morgan described several 
feature selection methods for G C  and G C / M S  data of 
biochemicals. These methods isolate unique chemical markers 
which are characteristic of the different classes (1177, 11 78). 

Pattern recognition techniques continued to be explored in 
the petroleum, polymer, and textile industries. Meuzelaar et 
al. described principal components and canonical correlation 
analysis of spectral data on multisource fossil fuels such as 
coal. The chemical trends and components represented by 
the canonical variate functions reflected the different coal 
compositions and structures (11 79). In another study, Ismail 
classified coal and coal fly ash samples using PCA and cluster 
analysis (1180). Several petroleum crudes and their cor- 
responding silica-adsorbed fractions were categorized by 
applying PCA to their 13C N M R  spectra (1181). Lai and 
co-workers described a technique which uses multivariate 
circular profiles to aid in distinguishing crude oils by 
geographical origin (1182). Mixtures of hydrocarbons typi- 
cally observed in gas chromatograms of petroleum derivatives 
wereoxidized for analysis by GC/MS. The resulting profiles 
were then subjected to cluster analysis and related to the source 
oils (1183). Using PCA, Kosman and Lukco were able to 
differentiate petroleum products on the basis of GC-AES 
multielement simulated distillation data (1184). Petroleum 
products were also categorized by applying PCA to IR spectral 
data (1185). In a polymer application, PCA successfully 
distinguished high- and low-temperature-cured polyimide thin 
films analyzed by pyrolysis MS (Z186). PCA was also utilized 
to elucidate the curing reaction of an epoxy resin from time- 
resolved FT-IR spatial maps (1187). Mansueto and Wight 
applied the SIMPLISMA self-modeling method to IR spectra 
to identify two types of oligomers found during the polym- 
erization of formaldehyde (1188). Others used PRIMA to 
interpret the IR spectra of various materials of high molecular 
weight or complexcomposition (1189). Applications of interest 
to the textile industry were also reported. Gilbert et al. 
described the use of PCA and SIMCA in discriminating cotton 
fabrics characterized by diffuse reflectance Fourier transform 
infrared (DRIFT) spectroscopy (11 90). In addition, PCA, 
SIMCA, and fuzzy clustering were applied to DRIFT spectra 
of textile dye mixtures. Samples were grouped according to 
where they were extracted on the material (1191). Another 
paper described the analysis of polyester fibers by two- 
dimensional HPLC and their separation by cluster analysis 
into classes representing the different manufacturers (I1 92). 
White and Catterick compared a method called groupcentroid 
Euclidean distance measurement (GCEDM) with PCA and 
clustering in the classification of azo dyes (11 93). Six other 
pattern recognition techniques were compared with respect to 
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their ability to formulate decision rules for qualitative 
assessments of dyes. They found that the best decision rules 
were afforded by a nonstatistical method (1194). In another 
study, FT-IR reflectance spectra of paint binders on ground 
chalk were interpreted by hierarchical cluster analysis and 
PCA (1195). The phase composition of superconductors was 
also observed by clustering and PCA (1196). Glickand Hieftje 
reported a comparison of a neural network with other pattern 
recognition methods in the identification of alloys from their 
glow-discharge atomic emission spectra. Calibration of the 
spectra was achieved using stepwise multiple linear regression 
(1197). A neural network was also employed to classify laser 
desorption-ion mobility spectra in order to distinguish 
polymeric materials (11 98). 

Several researchers reported studies on the development 
of new pattern recognition methods or the refinement of 
established ones. For instance, Glick and Hieftje presented 
an unusual alternative to conventional multivariate data 
analysis methods in which stereoscopic visualization is utilized 
for examining three-dimensional data (11 99). A linear 
discriminant hierarchical clustering technique was also devised 
which permits the validation of clusters by a cross-validation 
method (1200). Aeberhard and co-workers demonstrated the 
shortcomings of the model selection procedure of regularized 
discriminant analysis. They suggested modifications of the 
selection procedure and one of the control parameters for 
better classification performance (1201). Two new orthogonal 
expansion techniques, modified optimal discriminant plane 
(MODP) for mapping and order Gram-Schmidt ortho- 
gonalization (OGSO) for modeling, were also introduced 
(1202). Alsberg and Remseth defined noncongruent two- 
dimensional surfaces/images as sequences of comparable but 
structurally different surfaces/images. They described the 
use of latent variable projection for the analysis of such 
structures (1203). Krzanowski explained the problem of 
matrix singularity associated with the use of canonical variate 
analysis when more variables exist than within-group degrees 
of freedom. H e  proposed using PCA under these circum- 
stances by ranking principal components according to the ratio 
of between- to within-group variances instead of the usual 
totalvariancecriterion (1204). The utility of projection pursuit 
in exploratory data analysis was also described (1205). 

LIBRARY SEARCHING 
During this review period, the number of publications that 

appeared concerning research in library searching systems 
was notably few. For the most part, the literature in this area 
of chemometrics focused on applications of existing methods. 
For the purpose of this review, however, the ensuing discussion 
will center on new library searching procedures, the enhance- 
ment of established ones, or unusual applications. 

A number of previously developed library searching 
methods were reexamined for the purpose of refinement or 
for adaptation to new applications. Scsibrany and Varmuza 
described a searching procedure for identifying common 
structural characteristics of compounds grouped by principal 
components analysis of their mass spectra ( J I ) .  Another PCA- 
based technique, originally devised for mid-IR spectra, was 
implemented for the identification of near-IR spectra. The 
performance of this technique was compared to that of the 

dot product metric, and approaches for handling spectra of 
poor quality were proposed (J2) .  Kauvar and Ambler cross- 
reacted a series of triazine analogues with monoclonal 
antibodies for different analyte concentrations. A number of 
parameter values defining the so-called survey of character- 
istics profiles were then measured and stored in a database 
for matching with those of unknown samples ( J3 ) .  A library 
was also constructed for protein secondary structure elucida- 
tion on the basis of Fourier transform infrared spectra- 
structure correlations ( J 4 ,  J5). Jarvis and Kalivas described 
a library searching method which employs condition index 
evolving profiles derived from singular value decomposition 
of library and time-evolving sample spectra. The procedure 
was demonstrated with liquid chromatography UV-visible 
spectrophotometry ( J 6 )  and gas chromatography-FT-IR 
spectrometry (17). In an effort to characterize different library 
searching systems, a procedure for evaluating and optimizing 
spectroscopic libraries was presented (J8) .  In addition, Owens 
reviewed the method of correlation analysis for the interpre- 
tation of mass spectra (J9) .  

Several new techniques were devised for library searching 
systems. For instance, a new procedure employing the 
correlation coefficient and the Euclidean distance was 
developed for interpolating spectra a t  every composition of 
eluent in the model range of high performance liquid 
chromatography (110). A new library searching system based 
on peak weighting factors was also designed for X-ray powder 
diffraction data ( J I I ) .  Chen and Robien reported novel 
algorithms for automated extraction and analysis of sub- 
stituent-induced chemical shift differences of I3C N M R  
spectra from the CSEARCH-NMR database (512). Regres- 
sion techniques also formed the basis of several library systems. 
Data reduction of spectral databases was performed using 
characteristic regression analysis, an approach based on 
characteristic vector analysis and multiple linear regression 
analysis ( J 1 3 ) .  Methods based on the use of principal 
components and regression attracted several authors’ attention. 
Lo and Brown designed procedures for searching I R  spectral 
libraries of mixtures using principal components regression. 
PCR analysis in conjunction with an adaptive filter was applied 
to medium-size libraries (J14). A dot product metric in 
addition to PCR and an adaptive filter was used for large-size 
libraries (J15). Meyer et al. discussed the identification and 
quantitation of components in a mixture using a library 
searching method based on IR peak tables and linear regression 
(J16) .  In a novel approach, a Hamming neural network was 
utilized to devise an IRspectral librarysearching system (J17). 

Molecular structure database systems were also the subject 
of several research papers. Chemical structure databases 
typically allow molecular substructure searching and full- 
structure similarity searching, but few permit a search based 
on substructure similarity. In view of this, an interactive 
system was devised that retrieves two-dimensional molecular 
structures whose substructure is similar to the query structure 
(J18) .  Databases of three-dimensional molecules were also 
investigated. Artymiuk et al. compared four techniques based 
on interatomicdistances for measuring the extent of similarity 
between pairs of molecules. In addition, a new method which 
also incorporates angular information was demonstrated with 
protein structures (J19) .  Another method was designed in 
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which the similarity between two molecules relative to their 
mutual orientation in three-dimensional rotational space is 
determined. The similarity function is based on projections 
of molecular property values (J20). 

ART1 F IC  I AL INTELLIGENCE 
Artificial intelligence (AI) continues to be of considerable 

interest to analytical chemists, as evidenced by the significant 
increase in the number of references related to this field 
compared to previous review periods. The areas of AI 
discussed in this section include neural networks, genetic 
algorithms, and expert systems, the latter being by far the 
area the most widely applied to problems in chemistry. 
Concepts first developed in AI have taken root in other fields 
of data analysis. Neural networks in particular continue to 
grow in popularity, and their application now extends far 
beyond traditionally defined areas of AI. Their use is especially 
common now in applications concerning multivariate calibra- 
tion and pattern recognition. Authors whose work involved 
neural networks in either of these two chemometric fields are 
referenced in those sections of this review. Applications of 
genetic algorithms, another research area whose influence 
has spread beyond the confines of traditional AI, are discussed 
in the optimization section. 

A rapidly growing area of AI that is also emerging in 
chemometrics is that of fuzzy set theory. Fuzzy sets were 
conceived as mathematical constructs some time ago as a 
consequence of the oft-encountered need to describe objects 
with inherently vague attributes. The recent genesis of a new 
journal, IEEE Transactions on Fuzzy Systems, attests to the 
growing importance of this field in general. Other (nonchem- 
ical) journals in this field that may be of interest to 
chemometricians include AI Expert, IEEE Transactions on 
Neural Networks, and Neural Networks. For reasons of scope, 
however, only those papers found in journals relevant to 
chemistry are referenced in this review. 

A number of reviews on various facets of AI appeared in 
the literature in the course of the last two years. Dickinson 
discussed some of the problems associated with conventional 
rule-based expert systems and suggested a new model-based 
approach (K1). In the second part of a two-part series, Warr 
reviewed systems for computer-assisted molecular structure 
elucidation, including expert systems, neural networks, and 
pattern recognition techniques (K2) .  Molecular structural 
information was also the subject of another review focusing 
on the use of expert systems in the analysis of infrared and 
nuclear magnetic resonance spectra ( K 3 ) .  Other systems 
designed for spectral interpretation included the improved 
PAIRS (program for analysis of IR spectra) and other related 
knowledge-based systems (K4), as well as one developed for 
biomedical applications utilizing fluorescence spectroscopy 
(K.5). Expert systems were also discussed as analytical tools 
for various types of chromatography. In this vein, the ESCA 
(expert systems applied to chemical analysis) project for high- 
performance liquid chromatography was summarized (Kd), 
and an expert system for the selection of ion chromatographic 
conditions was described (K7). The utility of fuzzy models 
for chemical data analysis was also the subject of two reviews. 
Ebel et al. reviewed pattern recognition and the representation 

of near-IR spectra as fuzzy sets (K8),  while Otto et al. discussed 
fuzzy logic and neural networks (K9) .  

Several new approaches to the design of neural networks 
for chemical analysis were found in the recent literature. One 
such approach was the method of optimal minimal neural- 
network interpretation of spectra (OMNIS),  an approach 
which combines the principles of neural networks and principal 
components analysis. OMNIS was shown to outperform 
principal components regression and partial least squares on 
near-IR calibration data sets by 50-7576, as measured by the 
standard error of prediction (KIO). Harrington devised 
minimal neural networks which, unlike other neural networks, 
use localized processing. Fuzzy rules are employed in the 
construction of classification trees whose branches consist of 
multiple processing units (K11, K12). A back-propagation 
neural networkmethod was reported, which comprises a linear, 
orthogonal feature extraction part and a nonlinear mapping 
part with one or more layers (K13). A comparison was made 
of the performance of back-propagation neural networks for 
calibration in near-IR spectroscopy with that of principal 
components regression ( K I 4 ) .  A smart sensing system for 
the detection of water pollutants based on light scattering 
measurements was constructed using a multilayer, back- 
propagation neural network (K15). Harrington argued that 
the increase in the training rate of neural networks observed 
by others using bipolar sigmoid functions rather than the 
conventional sigmoid function is artificial (K16). In a 
discussion regarding the merits of neural networks as tools in 
analytical chemistry, Kateman advocated rigorous testing to 
promote the acceptance of the technique (K17). The back- 
propagation network was not the only neural network receiving 
attention, however. A new neural network named the 
dynamically capacity allocating (DCA) network manifests 
the ability to learn in an incremental fashion, allowing for 
additional training data to beused later, as it becomes available. 
The DCA network was shown to perform as well or better 
than other existing linear and nonlinear methods on clas- 
sification problems and on multivariate calibration of spec- 
troscopic data (K18). 

Fuzzy sets consist of a convenient mathematical way of 
representing imprecise data which are intuitively described 
by linguistic terms such as “many”, “few”, “somewhat”, etc. 
Fuzzy set theory allows one to determine, say, the degree to 
which a pattern belongs to a given class. This contrasts with 
traditional (crisp) set theory which uses probability to describe 
the likelihood of a pattern belonging to a given class. In 
chemical analysis, the range of applications of fuzzy set theory 
is increasing rapidly. In one recent example, fuzzy models 
have been used in conjunction with gas sensors. Fuzzy logic 
enabled the representation of a human expert’s interpretation 
of inherently imprecise data in the detection of atmospheric 
gases using a gas sensor array (K19). Similarly, fuzzy set 
representations of sensor signals were utilized in a fire and gas 
leak prevention system (K20) .  Spectral data analysis has also 
been performed on the basis of fuzzy models. Hoerchner and 
Otto used fuzzy functions to assess the degree of similarity 
between an unknown UV-visible spectrum and the spectra in 
a fuzzy database (K21). In another study, Neuboeck and 
co-workers applied fuzzy logic to aid their interpretation of 
atomic emission spectra (K22) .  Adler et al. implemented an 
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expert system containing fuzzy rules for the analysis of X-ray 
diffraction spectra (K23),  while another group did so for 
neutron activation analysis (K24) .  An unusual approach 
reported during the last two years involved the application of 
a fuzzy linear regression method to colorimetric data as an 
alternative to the typical calibration curve ( K 2 5 ) .  The 
applications of fuzzy logic extend beyond quantitative rela- 
tionships, however. Chen described the fundamentalsof fuzzy 
cluster analysis and its use in environmental water quality 
assessment (K26) .  In a comparative study, three methods of 
propagating uncertainty in a knowledge base were examined, 
namely, Bayesian logic, certainty factors, and fuzzy logic 
( K 2 7 ) .  An interesting application of fuzzy logic was conceived 
in which the concentration of penicillin in a fed-batch 
bioreactor was controlled by fuzzy rules (K28).  A number 
of mass spectrometric studies were carried out in which fuzzy 
models were employed for data analysis. Harrington’s fuzzy 
rule-building expert system (FuRES) was designed to classify 
polymer thin films characterized by laser ionization mass 
spectrometry (K29).  The interpretation of the mass spectra 
of chromatographically unresolved binary mixtures of alcohols 
were aided by a fuzzy classification of the spectral patterns 
(K30).  Otto et al. devised an  interesting fuzzy method for 
determining the influence of arsenic concentration and 
annealing conditions on the antimony and boron implantation 
(depth) profiles in silicon wafers. The profiles were measured 
by secondary ion mass spectrometry, and the variations in 
concentrations were represented by a fuzzy set (K31) .  

An expert system essentially encapsulates the knowledge 
or expertise of human experts in a particular domain. Such 
knowledge is typically represented as a set of rules from which 
inferences can be made about a given problem in order to 
arrive at a decision. As a chemometric technique, expert 
systems have been employed in numerous applications 
encompassing the design or selection of analytical systems or 
methods, spectral analysis, and data and test validation, to 
name but a few. Until recently, researchers have not tried to 
adapt expert systems to electrochemistry, however. Esteban 
and co-workers developed an expert system to direct the analyst 
through the simultaneous determination of trace metals by 
voltammetric techniques. Their knowledge base provides 
guidance for sample pretreatment, choice of analytical 
procedure, and identification of the analyte metals (K32- 
K34).  Barthel and Popp discussed the simulation of electrolyte 
solutions by the expert system ELDAR (Electrolyte Data 
Regensburg) (K35).  

Unlike electrochemistry, however, chromatography has 
been an area where the advantages of expert systems have 
long been recognized. A number of papers appeared in the 
literature concerning the use of expert systems for the 
development of methods or the selection of optimum conditions 
for chromatography. A knowledge-based system was designed 
to suggest the best choice of a solvent-phase extraction column 
for high-performance liquid chromatography in the analysis 
of drugs (K36).  HPLC was also combined with several 
individual expert systems in order to aid the analyst in 
ascertaining the optimum chromatographic conditions (K37) .  
Some of the common difficulties associated with the design, 
maintenance, and use of expert systems were addressed by 
Bourguignon et al. by implementing a hypermedia version of 

CRISE, an  expert system for HPLC (K38). In the closing 
of a major undertaking, final results were reported for the 
ESCA (expert system for chemical analysis) project in liquid 
chromatography (K39).  In ion chromatography, Mulholland 
and co-workers discussed the design and application of an 
expert system for determining suitable chromatographic 
conditions with respect to the column, detector, and mobile 
phase (K40) .  Knowledge-based systems were also employed 
in connection with gas chromatography. For example, Scheuer 
described WANDA, an expert system which assists in the 
interpretation of gas chromatograms of trace organic sub- 
stances ( K 4 I ) .  In another application, an expert system was 
used to detect gas chromatographic system instability during 
the analysis of atmospheric methane (K42) .  The combination 
of an expert system with various methods for multivariate 
data analysis was discussed and illustrated in the context of 
HPLC-UV data (K43) .  

Although the applications above concern quantitative 
analysis, most of the use of expert systems in chemistry have 
been directed toward qualitative analysis of spectra. The 
knowledge-based system ESSESA was devised for structure 
elucidation on the basis of spectra. The determination of 
chemical structure involves a novel algorithm that perceives 
the smallest, linear independent set of rings (SSSR) (K44) .  
Infrared spectra of copolymers were interpreted by an expert 
system on the basis of spectrum-structure correlations derived 
from the spectra of homopolymers ( K 4 5 ) .  Perkins et al. 
implemented an expert system in which principal components 
analysis is used for infrared spectral analysis. The classifica- 
tion rule is generated from a training set of spectra of chemical 
species containing the functional group(s) of interest (K46) .  
This system was applied to infrared spectra taken in both the 
vapor phase (K47 ,  K48)  and thecondensedphase (K49) .  Other 
applications involving the use of expert systems in the 
interpretation of infrared spectra included the monitoring of 
oil degradation (K50),  the detection of silicon impurities in 
electronic materials (K51), and the identification of functional 
substructures in various gaseous ( K 5 2 )  and condensed-phase 
( K 5 3 )  mixtures. Koutny and Yeung developed an expert 
system to flag data points in real time for which a sufficient 
signal-to-noise ratio had been attained during data acquisition 
or processing. The omission of system-detected “inadequate 
data” in subsequent acquisition or processing greatly improved 
the efficiency of the imaging of DNA sequencing gels (K54) .  
A diagnostic, knowledge-based system was reported for atomic 
absorption spectrometry (K55). Expert systems were also 
used for classification of fluorescence spectra of petroleum 
oils (K56) ,  and for identification of radionuclides from y-ray 
spectra ( K 5 7 ) .  In an arson analysis application, a knowledge- 
based system was designed to detect petroleum-based com- 
pounds from their GC/MS signatures (K58).  Scott and co- 
workers constructed an expert system for predicting the 
molecular weights of organic species from low-resolution mass 
spectra (K59,  K60). The pyrolysis mass spectra of three 
different classes of polymers were interpreted by another expert 
system (K61) .  An interesting, adaptive, hybrid expert system 
was reported for the interpretation of two-dimensional N M R  
spectra of proteins. The first two modules of this expert system 
are rule-based and can be trained with known spectra. The 
third module employs a genetic algorithm to assign the N M R  
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spectral patterns to the amino acids in the protein sequence 
(K62),  

Expert systems are potentially well-suited for assisting the 
analyst in planning the best approach to accomplish a particular 
determination with respect to analytical technique and 
procedure. One such system was designed for elemental 
analysis (K63) and applied to X-ray fluorescence spectrometry 
(K64) .  Another system was developed to help map out a 
strategy for analyses of soil and water pollutants (K65) .  Lee 
and co-workers integrated a relational database with an expert 
system to provide both data management and domain expertise 
(K66).  In a biochemical application, decisions as to the 
timeliness and type of measurements to be made in a 
fermentation process were carried out by an expert system 
(K67).  Knowledge-based systems can also serve as powerful 
diagnostic tools. For example, CLICHE (clinical chemist 
expert system) was designed using abductive reasoning for 
the diagnosis of inborn errors of metabolism (K68).  

Knowledge-based systems have also served to validate data 
and interlaboratory comparisons. VALAB was developed to 
validate data in a biochemical laboratory (K69).  Another 
expert system was designed to permit the transfer of standard 
methods between laboratories and the automatic conversion 
of these methods into reproducible procedures (K70).  An 
expert system composed of several statistical procedures was 
constructed to select and evaluate the results of interlaboratory 
tests (K71).  

Several other chemometric techniques also incorporated 
artificial intelligence. For instance, three structure-activity 
methods, CASE, MULTICASE, and CASE/GI, were com- 
pared for accuracy in thedetermination ofmutagenicity (K72).  
Further, two learning schemes based on inductive logic were 
reported. The first consisted of a machine learning algorithm, 
INDUCT, which was trained on ion chromatographic methods 
(K73) .  The second comprised an adaptive learning network 
based on the abductory induction mechanism (AIM) for 
determining the components of a gas mixture analyzed by a 
sensor array (K74).  By combining n-branched trees to 
represent coherence-transfer pathways in N M R  spectroscopy, 
it was demonstrated that a structural matching algorithm can 
be used to predict N M R  spectra (K75) .  Applications 
concerning process control continue to receive attention, too. 
In a novel approach, a variable structure learning automaton 
which can adapt to environmental changes was used to 
maintain optimum control of a continuous stirred tank 
fermenter (K76) .  Robotics and expert systems also received 
attention over the past two years. Isenhour et al. further refined 
their approach to coupled AI and robotics called the Analytical 
Director project, an AI system including robotics for the design, 
testing, modification, and implementation of its own analytical 
procedures (K77, K78). A robot controlled by an expert system 
to operate a standard additions procedure was also imple- 
mented (K79) .  
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