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Abstract 

The concepts of tensor algebra and vector space geometry provide a unifying framework for multilinear data 
analysis which simplifies notation and leads to economy of thought. Avoiding too much abstraction too soon in 
defining tensor products makes these concepts accessible. Examples are given of the use of tensor algebra in the 
analysis of bilinear and trilinear models arising in fluorescence spectroscopy. 
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1. Introduction 

The  t e rmino logy  and no ta t ion  of  t ensor  p rod -  
ucts and  vec tor  space  geome t ry  offer  a f r amework  
which grea t ly  s implif ies  the  no ta t iona l  complexi ty  
of ten  assoc ia ted  with mul t iway da ta  analysis.  This  
s impl i f ica t ion leads  to an economy of  thought  
which m a k e s  the  sa l ient  f ea tu re s  of  mul t i l i nea r  
mode l s  and  a lgor i thms  eas ie r  to unde r s t and .  

Unfo r tuna te ly ,  a l though  the concep ts  of  t enso r  
a lgebra  have been  a r o u n d  for  a long t ime,  most  

0169-7439/95/$09.50 © 1995 Elsevier Science B.V. All rights 
SSDI 0169-7439(94)0048-N 

of  the  extant  l i t e r a tu re  on the  subject  is unneces -  
sari ly eso te r ic  and  emphas izes  ma te r i a l  with l i t t le  
re levance  to mul t iway  da ta  analysis.  I t  can be  
d i scourag ing  af te r  s t ruggl ing to u n d e r s t a n d  the 
concep ts  of  covar iance  and  con t rava r i ance  to dis- 
cover  tha t  they have li t t le to do  with the  analysis  
of  mul t iway  data .  

This  Tu to r i a l  has a twofold object ive.  The  first 
is to p re sen t  basic  t ensor  p roduc t  concep ts  in a 
form tha t  is read i ly  access ible  to a r e a d e r  with a 
knowledge  of  in t roduc to ry  l inear  a lgebra .  The  

reserved 
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second  is to give some examples  tha t  i l lus t ra te  
the  usefu lness  of  these  concep ts  in the  analysis  of  
two-way and  th ree -way  da t a  arrays.  

2.  D e f i n i t i o n s  a n d  n o t a t i o n  

W e  beg in  by reviewing some basic  t e rmino logy  
f rom l inear  a lgebra .  

Definition 1 (vectors and vector spaces) 
The symbol R N denotes the Euclidean vector 

space consisting of  all uectors x with real coordi- 
nates { x l , . . . ,  XN}. I f  X =  {x 1 . . . . .  x R} is a set of  
uectors in R N, then the set grx of  all linear combi- 
nations of  the vectors in X is" the linear span of  X ,  
written Sp[X]. The linear span ~'-x is' a linear 
subspace of  R N. I f  the vectors in X are linearly' 
independent, then X is a basis for ~/x. I f  ~ is a 
linear subspace of  R N, the dimension of  ~ is the 
number of  uectors in any basis for ~.  

Def in i t ion  1 is given in formal  l anguage  for the  
sake of  r igor  and  precis ion.  Informal ly ,  we can 
th ink  of  vectors  as en t i t ies  tha t  can be a d d e d  
t o g e t h e r  or  mu l t ip l i ed  by scalars.  Any  m a t h e m a t i -  
cal cons t ruc t ,  e.g. funct ion,  which has the  funda-  
menta l  p r o p e r t i e s  of  vec tor  add i t ion  and scalar  
mul t ip l i ca t ion  can be r e g a r d e d  as a vector.  Fo r  
our  purposes ,  though,  a vec tor  will be an a r ray  of  
real  number s  and a scalar  will also be a real  
number .  Even  with this l imi ta t ion  we have flexi- 
bi l i ty  in the  a r r a n g e m e n t  of  the  number s  in the  
array.  Hor i zon ta l  rows of  numbers ,  ver t ical  
co lumns  of  numbers ,  mat r ices ,  and  th ree -way  ar- 
rays can all be  r e g a r d e d  as vectors  because  they 
can be  a d d e d  and mul t ip l i ed  by scalars.  

Definition 2 (matrices) 
The vector space of  all I × J matrices will be 

denoted by ¢g[ I, J]. The subspace of  R I spanned 
by the columns of  an I x J matrix M is called the 
column space of  M. Similarly, the row space of  M 
is the subspace of  R J spanned by the rows of  M. 
The rank of  M is defined to be the dimension of  its 
column space. 

T h e r e  are  o the r  ways to def ine  the  no t ion  of  
mat r ix  rank.  The  d imens ion  of  the  row space  is 
an equiva len t  a l te rna t ive ,  because  the  row and 

co lumn spaces  of  a matr ix  can readi ly  be shown 
to have the  same d imens ion .  

If  x and y are  nonze ro  column vectors  in R ~ 
and R J, respect ively,  the  I × J mat r ix  xy T (where 
yT deno te s  the  t r anspose  of  y) is a mat r ix  of  rank  
1. Conversely,  every rank 1 matr ix  can be ex- 
p ressed  as the  matr ix  p roduc t  of  a nonze ro  col- 
umn vector  by a nonze ro  row vector.  More  gener-  
ally, an I x J mat r ix  M has rank R if and  only if 
the re  exist l inear ly i n d e p e n d e n t  vectors  x ~ , . . . ,  x R 
in R I and l inear ly  i n d e p e n d e n t  vectors  Yl, . .  ",YR 
in R J such tha t  

R 

M= Exryj 
r = l  

W e  are  now ready  to def ine  the  tensor  p roduc t  
of  vectors,  which serves as the  fundamen ta l  basis 
for subsequen t  def in i t ions  of  t ensor  p roduc t  of  
vector  spaces  and t ensor  p roduc t  of  l inear  t rans-  
format ions .  

Definition 3 (tensor products of  uectors) 
Let x be a uector with I coordinates given by {x i} 
and y be a vector with J coordinates given by { yj}. 
A / The tensor product of  x and y, denoted x ® y, 
is a uector with H coordinates giuen by { x i Y ft. 

The  vagueness  in Def in i t ion  3 concern ing  the 
a r r a n g e m e n t  of the  vec tor  coord ina tes  is de l iber -  
ate.  E i t he r  of  the  vectors  x and y or  the i r  tensor  
p roduc t  could  be r e p r e s e n t e d  by a mult iway ar ray  
or  a co lumn vector,  and the r ep resen ta t ion ,  espe-  
cially for the  t ensor  product ,  could  change  f rom 
one context  to the  next. 

Examples  are:  
1. If  x is an I × 1  column vector  and y is a 

J × 1 co lumn vector ,  the  tensor  p roduc t  de f ined  
by 

T x ® y = x y  

is an I × J  matrix.  In  par t icu la r ,  if I =  3 = J  and 

(x1) 
x = x 2  , Y = Y2 

X3 Y3 
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the tensor product xy  T is 

x z Y l  xzY2 xzY3 

X3Yl x3Y2 x3Y3 

2. if x ~ R  I and y ~ R  J as above, the tensor 
product defined by 

[ x T . "l x ® x = t x l y  T, aY , " - ,x tyT)  T 

is an IJ × 1 column vector. Here for the particu- 
lar case I = 3 = J we have 

xlYl 

xlY2 

xlY3 

X2Yl 

x ® y  = x2Y 2 

XzY3 

X3Yl 

x3Y2 
x3Y3 

3. The Kronecker product of matrices is a 
tensor product. If x = (xk~) is a K × L matrix and 
Y=(Ymn) is an M × N  matrix, the Kroneeker 
product of x and y is the KM × L N  matrix de- 
fined by 

xHy . . .  XlLY 

x ® y = " ~ ' [  K M ,  L N  ] 

~ XK1Y . . .  XKLY 

In particular if 

x (xll x12) 
X21 X22 

and 

Y = Y21 Y22 ] 

then 

x ® y =  

x11Y11 

x11Y21 

x21Yll 

xzlY21 

xllYa2 

Xll Y22 

X21YI2 

X21 Y22 

Xl2Yll  

x12Y21 

x22Yll  

Xz2Y21 

x12Y12 

x12Y22 

x22YI2 

x22Y22 

Examples 1 and 2 illustrate the ambiguity in 
the arrangement of the coordinates of a tensor 
product. Both x and y are column vectors in these 
examples, but their tensor product is an l × J  
matrix in Example 1 and an IJ × 1 column vector 
in Example 2. The difference between these ar- 
rangements is, in a sense, trivial because we can 
readily obtain the column vector from the matrix 
and vice versa. If we want to distinguish carefully 
between the arrangements, we can call Example 1 
a tensor product of x and y and Example 2 
another. 

Alternatively, we could decide that the particu- 
lar arrangement is a minor detail that should not 
be an encumbrane to the concept of tensor prod- 
uct. In that case we may define the tensor prod- 
uct as a collection of coordinates that we are free 
to rearrange at our convenience. 

The latter alternative is an example of the 
abstraction process in which only the essence of a 
concept that applies to various particular situa- 
tions is incorporated into the definition of that 
concept. Details that serve only to distinguish the 
particular applications and are irrelevant to the 
abstract concept are stripped from its definition 
by the abstraction process. Abstractions of this 
sort are the heart and soul of mathematics and 
are extremely valuable aids to thought. It is very 
useful to have the notion of the number ' two' 
without having to ask whether it refers to two 
apples, two dollars, or two inches. 

Although abstraction is important and poten- 
tially very useful, too much too soon can be a 
pedagogical mistake. To appreciate fully the value 
of an abstract concept, the student should be 
allowed to participate in the abstraction process. 
If an uninitiated student is presented at the out- 
set with a rigorous, highly abstracted definition, 
he or she may find the concept impossible to 
appreciate. That, in this author's opinion, is a 
major problem with much of the extant literature 
on tensors and helps to explain why this poten- 
tially useful subject is not more widely used in 
practice. Avoidance of the pedagogical trap of 
too much abstraction too soon is an important 
objective of this Tutorial. 

The following properties of tensor products of 
vectors are worth emphasizing: 
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Extendability. The definit ion is easily extended 
to tensor  products  of  three or more  vectors. For  
x e R  z, y e R  J, z e R  ~:, the tensor  product  x ® y  
® z is a vector  with coordinates  x i y j z  ~. 

Independence. Tensor  products  preserve linear 
independence .  In o ther  words, if the R vectors 
{x~ , . . . ,x  R} are linearly independent ,  and the S 
vectors {Yl,...,Y,} are linearly independent ,  then 
the RS vectors {x~ ® y~} will also be linearly inde- 
pendent .  The  proof  of  this result is straightfor- 
ward but somewhat  tedious, and will be omit ted 
for the sake of  brevity. 

Nonclosure. In general  l inear combinat ions of  
tensor  products  are not themselves tensor prod- 
ucts. In part icular  if x~ is linearly independent  of  
x 2 and y~ is linearly independent  of  Y2, it is 
impossible to find vectors u and v for which 

Xl ®Yl + x 2 ® Y 2 = U ® V  (1) 

The  impossibility of  satisfying (1) is easy to see 
f rom Example 1 where  tensor  products  are rank 1 
matrices. Unde r  the stipulated conditions of  lin- 
ear  independence  the sum of two rank 1 matrices 
will have rank equal to 2 and cannot  therefore  be 
a tensor  product  of  two vectors. In formal jargon 
the tensor  p roduc t  of  vectors is a bilinear map 
whose range is not closed under  vector addition. 

By the nonclosure  proper ty  not every I × J  
matrix is a tensor  product ,  i.e. a rank 1 matrix. 
However,  every matrix in ~#'[I, J ]  can be ex- 
pressed as a sum of rank 1 matrices. This feature 
forms the basis for a definit ion of  a / t h e  tensor 
p roduc t  of  vector  spaces. 

Definition 4 (tensor products o f  t,ector spaces) 
Suppose a tensor product x ® y has been defined 
for  x ~  and y ~ ,  where ~ ' c R  1 and ~ c R  J 
vector spaces. The tensor product  o f  ~ and 7/, 
denoted by ~ ® ~/, is defined to be the c, ector space 
consisting o f  all linear combinations o f  t,ectors o f  
the form x ® y, where x ~ f / a n d  y ~ ~ .  Continu- 
ing our examples yields: 

1. R 1 ® R J = l / [ I ,  J] .  I f  A is an I × J matrix with 
g/ and 7 /  as its column and row spaces, respec- 
tiuely, then A ~ ~" ® ~/. 

2. R t ® R J = R 1J 

3. / / / [K,  L]  ®~d/[M, N]  =.//Z[KM, LN]  

Some important  propert ies of  tensor products  
of  vector spaces are: 

Extendability. The extension to tensor products  
of  more  than two vector  spaces is straightforward. 

Dimensionality. If  {x 1 . . . . .  x R} is a basis for X,' 
and {Yl . . . . .  Ys} is a basis for 7/,  then preservation 
of  linear independence  implies that the RS vec- 
tors { x r ® y  ,} are a basis for X / ® ~ .  Thus, if 
d i m ( f ) = R  and d i m ( ~ / ) = S ,  it follows that 
d i m ( f  ® ~ )  = RS. 

Factorability. The tensor product  f / ®  Y is a 
linear subspace of  R ~ ® R  s, but not every linear 
subspace of  R 1 ® R  J can be factored as ~ ' ® T  
with ~ ' c R  1 and ~ c R  s. This property is analo- 
gous to the nonclosure property,  since not every 
matrix can be expressed as the tensor product  of  
vectors. 

A tensor product  of  vector spaces is a vector 
space with extra structure. This structure permits 
it to be factored into a product  of  lower dimen- 
sional vector spaces. A tensor is just a vector in a 
tensor product  vector space. A natural conse- 
quence of  the tensor  product  structure is the use 
of  multiple subscripts for the coordinates  of  a 
tensor. W h e n  we write x e R 4 ® R  3 instead of  
y e R  12, it is natural  to use (Yij) for i = 1, 2, 3, 4 
and j = 1, 2, 3 as the coordinates  ra ther  than (Yi) 
for i = 1 . . . .  ,12. 

Finally, we define the tensor product  of  linear 
transformations.  

Definition 5 (tensor products o f  linear transforma- 
tions) 
Let  P be a linear transformation f rom R 1 to R K 
and let Q be a linear transformation f rom R s to 
R L. The tensor product o f  P and Q is the linear 
transformation f rom R 1 ® R s to R K ® R L defined 
by 
( P ®  Q ) [ x  ® y] = P x  ® Q y  (2) 

where x and y are arbitrary ~,ectors in R 1 and R J, 
respectit,ely. Notice that Expression (2) defines ( P  
® Q)[w] explicitly only for  those t~ectors w ~ R I ® 

R J which happen to be tensor products. I f  instead 
w = ErR= l(Xr ® yr)  , the lineari~ o f  P ® Q implies 
that 

R 

(P®O)[wl  = }2 (Px~®QYr) 
r = l  
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Turning to our examples, we have: 
1. If x ® y is the I × J matrix xy T and Px  ® Qy 

is the K ® L  matrix ( P x ) ( Q y )  x, then for any 
matrix A in A ' [ I ,  J]  

( P ® Q ) [  A ] = P A Q  T 

2. If the tensor product of x and y and the 
tensor product of Px  and Qy are both Kronecker 
products as in Example 2, then P ® Q is a linear 
transformation from R H to R ~:L. As such, it has 
a representation as a KL × H matrix, which in 
fact is the Kronecker product of the K × I and 
L × J matrices associated with P and Q, respec- 
tively. Symbolically, we have 

P x ® Q y = ( P ® Q ) [ x ® y ]  

where all tensor products are interpreted as Kro- 
necker products. The demonstration of this result 
for Kronecker products is straightforward but te- 
dious and will be omitted for the sake of brevity. 

Some important properties of tensor products 
of linear transformations are: 

Extendability. The definition can be easily ex- 
tended to tensor products of three or more linear 
transformations. 

Composition. Using juxtaposition to denote 
composition of linear transformations or, when 
appropriate, matrix multiplication, we have 

(PI  ® Q1)(P2 ® Q2) = PIPe ® Q1Q2 

Factorability. The tensor product P ® Q is a 
linear transformation from R I ® R y to R K ® R L, 
but not every linear transformation from R 1 ® R j 
to R K ® R L can be factored as the tensor product 
of a linear transformation from R K to R I and a 
linear transformation from R L to R J. 

The tensor products of vectors, vector spaces, 
and linear transformations are concepts that can 
be usefully applied in many areas of multivariate 
statistics as well as multiway analysis of variance. 
It is beyond the scope of this Tutorial to cover all 
the potential uses of tensor algebra in statistical 
data analysis. Instead we focus multilinear mod- 
els to illustrate applications of the tensor product 
concepts we have introduced. 

3. Mult i l inear  models  

In this section we describe the specification 
and fitting of multilinear models for two-way and 
three-way data arrays using the ideas of tensor 
algebra. Specifying a model for an array involves 
identifying special characteristics that the array is 
to have. Fitting a model to a particular data array 
involves finding another array which has the spec- 
ified characteristics and best represents the data. 

For example, in fluorescence spectroscopy it 
may be desired to find a rank R matrix which 
best approximates an I x J excitation-emission 
matrix. Specifying the rank to be R is an example 
of a bilinear model specification. Other natural 
ways that come to mind of specifying and fitting 
bilinear models turn out to be equivalent. Fitting 
R principal components to an observations by 
variables data matrix, for example, is equivalent 
to finding the best rank R approximation to the 
matrix after its columns have been centered. 

The situation for trilinear models is more com- 
plicated. Different approaches that would in the 
end coincide for two-way data lead to the quite 
distinct P A R A F A C  and Tucker models when ap- 
plied to three-way data. Tensor algebra can help 
to explain the greater complexity and the associ- 
ated greater opportunities for obtaining useful 
results afforded by trilinear models. 

3.1. Bilinear models 

In this section we present two equivalent defi- 
nitions of the main bilinear model. This approach 
is taken to facilitate comparison with trilinear 
models. Each bilinear model definition has a 
natural extension to three-way data, but the two 
definitions of trilinear models are not equivalent. 

Each model under discussion represents the 
data array as the sum of a signal array and a 
noise array, i.e. 

A = S + N  

where the signal array S is assumed to have some 
special structure. The nature of the special struc- 
ture is what characterizes the model. Different 
structures lead to different models. In the bilin- 
ear case there are two alternative model defini- 
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tions which are equivalent because the structures 
they describe are identical. The first represents 
the signal matrix as a sum of rank one terms 
[SOROT]. 

Definition 6 (SOROT) 
The R-component S O R O T  model for an I × J data 
matrix A assumes that the signal matrix S can be 
written as the sum o f  R rank one matrices. In other 
words, there exist vectors {x r} in R I and {Yr} in R J 

such that 

R 

S =  E X r ~ Y r  
r-1 

The rank o f  S will be less than or equal to R with 
equality holding if  both the {x r} and {Yr} are lin- 
early independent. Conversely, i f  S has rank R or 
less, then S satisfies the R-component S O R O T  
model. 

The special structure required of S by the 
SOROT model is that it have rank R (or less). 
Since rank is by definition the dimension of the 
column (or row) space of a matrix, we have the 
following alternative model definition: 

Definition 7 (TPS) 
For an I × J data array the tensor product subspace 
(TPS) model with dimension parameters R and Q 
assumes that there exist linear subspaces ? Z c R  ~ 
a n d  ~ c R  J with d i m ( X / ) = R  and d im(7~)= Q 
such that 

A = S + N  

and 

The use of two dimension parameters in the 
definition of the two-way TPS model anticipates 
the three-way TPS model to be defined in the 
next section. One dimension parameter would be 
enough for two-way data. If the rank of S is R 
then S ~ ?Z® 7/  where ~ is the R-dimensional 
column space of S and 7/ is the R-dimensional 
row space of S. If ggD Y" and dim(Y/Y) = Q > R, 
then also 

but the increased dimensionality for ~ does not 
increase the set of possibilities for the signal 

matrix S. For three-way data, however, the story 
is different. 

To avoid the too much abstraction too soon 
syndrome, we turn to fluorescence spectroscopy 
for an example of the SOROT model. If fluores- 
cence emission intensity from a sample is mea- 
sured at each of J wavelengths when the sample 
is stimulated at each of 1 excitation wavelengths, 
the resulting l × J  data matrix A is called an 
excitation-emission matrix (EEM). Each fluores- 
cent component in the sample has an excitation 
spectrum x whose coordinates x i reflect its 
propensity to absorb energy at the ith excitation 
wavelength and an emission spectrum y whose 
coordinates yj reflect its propensity to emit fluo- 
rescent light at the j th emission wavelength. If 
there are R components in the sample and their 
concentrations G are not too large, they con- 
tribute additively to the signal EEM, yielding 

R 

s = E crxrY7 (3) 
r 1 

Factoring the c r into either x or y converts (3) 
into the defining expression for the SOROT 
model. 

The SOROT model can be used to estimate 
the number of fluorescent components in the 
sample, at least when the signal-to-noise is suffi- 
ciently high. Linear independence of the con- 
stituent spectra in an R component sample im- 
plies that the EEM would have rank R in the 
absence of noise. If the noise is not too large, we 
would expect a good fit of the data to the R-com- 
ponent model, but not to the ( R -  l)-component 
model. 

If we could also extract the individual rank 1 
terms in (3), we could estimate the excitation and 
emission spectra of the individual components, 
which might enable us to identify them. Unfortu- 
nately, this is not generally possible because the 
representation of a rank R matrix as the sum of 
rank 1 matrices is highly nonunique whenever 
R >~ 2. In statistical jargon the coordinates of the 
excitation and emission spectra are nonidentifi- 
able parameters of the model. 

It is instructive to explore further the nature of 
the nonidentifiability of the spectral resolution 
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parameters.  The rank R of an I x J matrix S is 
also the dimension of its column space. Let {x r} 
be an arbitrary basis for the column space of S. 
Then each column of S can be expressed as a 
linear combination of the xr. Let {yj~} denote the 
coefficients of these linear combinations so that 
the j th  column of S is given by 

R 

~_, yj~x~ (4) 
r - 1  

If yr is the vector in R j with coordinates {yjr}, it 
follows from (4) that 

B 

S = E Xr®Yr ( 5 )  
r - 1  

In other words there is a distinct S O R O T  repre- 
sentation for S corresponding to each choice of a 
basis for its column space. A similar relationship 
exists between S O R O T  representations and bases 
for the row space of S. 

The nonuniqueness associated with an arbi- 
trary choice of basis occurs fairly often. The rota- 
tion problem is the common name for this type of 
nonuniqueness. 

3.2. Trilinear models 

The S O R O T  and TPS model definitions can 
be readily extended to the threeway case. 

Definition 8 (PARAFAC) 
The R-component SOROT model for an I X I x K 
data array A assumes that there exist vectors {x r} c 
RI, {Yr} cRJ, and {Zr} c R  K such that 

R 

S =  ~ x r ® y r ® z  r 
r = l  

where S is the signal array for the model. The 
three-way SOROT model is commonly called the 
PARAFAC model [1] and that term will be used in 
lieu of  three-way SOROT for the rest of  this Tuto- 
rial. 

Definition 9 (Tucker3) 
For an I x J X K array A the tensor product sub- 
space (TPS) model with dimension parameters R, 

S, T assumes there exist linear subspaces gZ c R 1, 
7 / o R  J, and ~ Y c R  K with d i m ( ~ ) =  R, d im(Y / )=  
S, and dim(TU)= T such that the tensor product 
subspace ~ ® Y/® ~ contains the signal array ]:or 
A.  The three-way TPS model is also called the 
Tucker3 or T3 model. 

The extensions of the S O R O T  and TPS defini- 
tions to the three-way case are straightforward 
and natural, but there are striking differences 
between the trilinear and bilinear versions. One 
is that P A R A F A C  and Tucker3 are distinct mod- 
els, while the S O R O T  and TPS bilinear models 
are equivalent. Another  important difference is 
the fact that under quite general conditions the 
P A R A F A C  resolution is unique, apart  from triv- 
ial reindexing and rescaling [2]. This stands in 
stark contrast to the bilinear S O R O T  model, 
where the expression of a rank R matrix as the 
sum of R rank 1 matrices is highly nonunique. 

The uniqueness of the P A R A F A C  resolution 
has important applications in analytical chem- 
istry. Returning to fluorescence spectroscopy, 
suppose there are two samples, the first contain- 
ing R components  at known concentrations {c~r} 
and the second containing those same compo- 
nents at unknown concentrations {c2r}. Taking 
EEMs for both samples yields an I x J x 2 array 
and the P A R A F A C  model with the mode Z 
vectors given by z r = (ac~r, ac2r) T. The factor a is 
included because of the scale indeterminacy in 
the resolution, but it does not affect the ratio 
Z2r//Zlr=C2r//Clr. Thus, the ratios of the un- 
known concentrations to the known concentra- 
tions can be extracted by fitting an R-component  
P A R A F A C  model to the I x J x 2 data array. 
The generalized rank annihilation method [3] is a 
data analytic method for fitting the P A R A F A C  
model in order to obtain this type of calibration. 

Using new samples at different concentrations 
is not the only way to build excitation-emission 
data into a trilinear three-way array. Unique reso- 
lutions have been successfully obtained for a sin- 
gle sample by fitting the P A R A F A C  model to 
three-way data by the technique of phase-re- 
solved fluorescence spectroscopy [4,5]. Examples 
of resolutions obtained by fitting the P A R A F A C  
model to other types of three-way data in chem- 
istry can also be found in the literature [6,7]. 
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The P A R A F A C  model forms the basis for the 
definition of rank for three-way arrays. 

Definition 10 (rank) 
The rank of a three-way array A is defined to be 
the smallest value such that the R-component 
PARAFA C model fits A exactly. 

This definition extends the concept of matrix 
rank to three-way arrays. A similar definition, 
based on the SOROT model, of matrix rank 
would agree with the definition of rank as the 
dimension of the column (or row) space. 

Rows and columns are subarrays of a matrix 
which are quite useful for describing its proper- 
ties. Extending these concepts to three-way arrays 
is also quite useful but somewhat more compli- 
cated than one might at first expect. 

Definition 11 (fibers and slabs) 
Let A be an I × J × K array with coordinates ai j  k. 

The Mode X fibers of  A are vectors a.i k in R I 

obtained from A by fixing the index j and k and 
letting the index i vary. The Mode X slabs of A are 
the J × K matrices obtained as subarrays of A by 
fixing the i index and letting the j and k indices 
vary. The Mode Y (or Mode Z )  fibers and slabs 
are similarly defined as subarrays obtained by let- 
ting j (or k)  be the only varying or the only fixed 
index. The fiber spaces of A are the subspaces 
spanned by its fibers e.g. the Mode X fiber space of 
A is the subspace of R I spanned by the Mode X 
fibers of  A.  

If A ~ ~ ®  7"® 7f, then the Mode X, Mode 
Y, and Mode Z fiber spaces of A must be sub- 
spaces of ~ ,  • ,  and 7&, respectively. An I × J × 
K array can be arranged as an I × JK matrix, in 
which case its columns are the Mode X fibers. 
Similar arrangements are the J × IK matrix with 
the Mode Y fibers as its columns and the K × IJ 
matrix with the Mode Z fibers as its columns. 
This process of representing a three-way array as 
a matrix is sometimes called unfolding. 

We conclude by demonstrating how tensor 
concepts applied to the unfolded three-way array 
can help to show why trilinear models differ so 
markedly from their bilinear analogs. Let 2" be 
the Mode X fiber space for an I × J x K  array 
and suppose d i m ( ~ ) =  R. Let {xr} be a basis for 

2 ~ and let A be represented in its unfolded 
I x JK form. As in (5) we can find vectors {w r} in 
R JK such that 

R 

A = E Xr®Wr (6) 
r = l  

Expression (6) gives an R-component bilinear 
SOROT representation of A as an I ×JK ma- 
trix, but it is not a trilinear PARAFAC represen- 
tation. Even though each w r is in R JK = R J ® R K, 
the vectors w r are not necessarily themselves ten- 
sor products. If each of them were, (6) would 
indeed be an R-component PARAFAC represen- 
tation of A. 

This analysis demonstrates that the rank of a 
three-way array must be at least as great as the 
dimension of its Mode X fiber space. In fact, 
writing Y and 2" for the Mode Y and Mode Z 
fiber spaces, respectively, we have that 

r ank(A)  > / m a x { d i m ( S ) ,  d i m ( y ) ,  dim(_~)} 

This brief introduction to bilinear and trilinear 
models provides only a sample of the uses of 
tensor algebra and notation. For more about ten- 
sor algebra in the context of multilinear models, 
see Refs. [8,9]. A discussion of multilinear models 
that does not explicitly involve tensor terminology 
is in Ref. [10]. For an extensive survey of the 
literature on trilinear models up to 1983, includ- 
ing many psychometric applications, see Ref. [11]. 

4. Conclusion 

The value of tensor algebra to the practicing 
data analyst can be compared to the value of 
matrix algebra. Either subject requires some ef- 
fort to learn and neither is necessary if one is 
willing to use formulas with lots of subscripts and 
summation signs. However, the rewards that ac- 
crue from learning these subjects are substantial. 
A valuable economy of thought results from con- 
cepts and notation that disencumber the tedious 
details from key ideas. The effort spent to learn 
matrix algebra is rarely regretted. 

Experience with tensor algebra has been less 
positive. It is not uncommon for someone to 
begin a study of tensor algebra and then quit in 



D.S. Burdick / Chemometrics and Intelligent Laboratory Systems 28 (1995) 229-237 237 

discouragement when he or she encounters the 
obstacles of too much abstraction too soon or 
applications to physics that seem irrelevant to 
data analysis of multilinear models. Under these 
circumstances the effort to achieve the rewards 
that result from learning tensor algebra has been 
stymied by the obstacles along the way. These 
obstacles need not loom so large. Tensor algebra 
does not have to be a difficult esoteric subject for 
data analysts. 

This Tutorial introduces basic concepts of ten- 
sor algebra in a way that should be accessible to 
most readers. It also gives a brief introduction to 
bilinear and trilinear models as an illustration of 
the utility of these concepts. There are many 
more things that could be said about multilinear 
models. The point is that the concepts and nota- 
tion of tensor algebra provide a convenient unify- 
ing framework in which to say them. 
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