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Abstract

The concepts of tensor algebra and vector space geometry provide a unifying framework for multilinear data
analysis which simplifies notation and leads to economy of thought. Avoiding too much abstraction too soon in
defining tensor products makes these concepts accessible. Examples are given of the use of tensor algebra in the

analysis of bilincar and trilincar models arising in Huorescence spectroscopy.
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1. Introduction

The terminology and notation of tensor prod-
ucts and vector space geometry offer a framework
which greatly simplifies the notational complexity
often associated with multiway data analysis. This
simplification leads to an economy of thought
which makes the salient features of multilincar
models and algorithms easier to understand.

Unfortunately, aithough the concepls of tensor
algebra have been around for a long time, most

of the extant literature on the subjcct is unneces-
sarily esoteric and emphasizes material with little
relevance to multiway data analysis. It can be
discouraging after struggling to understand the
concepts of covariance and contravariance Lo dis-
cover that they have little Lo do with thc analysis
of multiway data.

This Tutorial has a twofold objective. The first
is to present basic tensor product concepts in a
form that is readily accessible to a reader with a
knowledge of introductory linear algebra. The
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second is to give some examples that illustrate
the usefulness ol these concepts in the analysis of
two-way and thrce-way data arrays.

2, Pefinitions and notation

We begin by reviewing some basic terminalogy
from linear algebra.

Definition 1 (vectors and vectror spaces)

The symbol RY denotes the Euclidean vector
space consisting of all vectors x with real coordi-
nates {xy,....xnh X ={x,,..., x,) is a set of
vectors in RN, then the set %, of all linear combi-
nations of the vectors in X is the linear span of X,
written Spl X']. The linear span %, is a linear
subspace of R™. If the vectors in X are linearly
independent, then X is a basis for #,. If % is a
linear subspace of R™, the dimension of # is the
number of vectors in any busis for #.

Definition 1 is given in formal language for the
sake of rigor and precision. Informally, we can
think of vectors as entities that can be added
together or multiplied by scalars. Any mathemati-
cal construct, e.g. function, which has the funda-
mental properties of vector addition and scalar
multiplication can be regarded as a vector. For
our purposcs, though, a vector will be an array of
real numbers and a scalar will also bc a rcal
number. Even with this limitation we have flexi-
bility in the arrangement of the numbers in the
array. Horizontal rows of numbers, vertical
columns of numbers, matrices, and three-way ar-
rays can all be regarded as vectors because they
can be added and multiplicd by scalars.

Definition 2 (matvices)

The vector space of all 1XJ matrices will be
denoted by #[1, J). The subspace of R’ spanned
by the columns of an I X J matric M iy called the
column space of M. Similarly, the row space of M
is the subspace of R’ spanned by the rows of M.
The rank of M is defined to be the dimension of its
column space.

There are other ways (o define the notion of
matrix rank. The dimension of the row space is
an cquivalent alternative, because the row and

column spaces of a matrix can readily be shown
to have the samc dimcnsion.

If x and y are nonzero column vectors in R’
and R’, respectively, the I x J matrix xy' (where
¥ ' denotes the transpose of y) is a matrix of rank
1. Conversely, every rank 1 matrix can be ex-
pressed as the matrix product of a nonzero col-
umn vector by a nonzero row vector. More gener-
ally, an I X J matrix M has rank R if and only if
there exist linearly independent vectors x,,...,X,
in R’ and linearly independent vectors Yis- s ¥n
in R such that

R
M= 3 xy
re=1

We are now ready to define the tensor product
of vectors, which serves as the fundamental basis
for subsequent definitions of tensor product of
vector spaces and tensor product of linear trans-
formations.

Definition 3 (tensor products of vectors)

Let x be a vector with [ coordinates given by {x }
and y be a vector with I coordinates given by {y,}.
A / The tensor product of x and y, denoted x ®y,
is a vector with 11 coordinates given by (x;y,}.

The vagucness in Definition 3 concerning the
arrangement of the vector coordinates is deliber-
ate. Either of the vectors x and y or their tcnsor
product could be represented by a multiway array
or a column vector, and the representation, ¢spe-
cially for the tensor product, could change from
one context to the next.

Examples are:

1. If x is an I x 1 column vector and y is a

Jx 1 column vector, the tensor product defined
by
x®y=xy'

is an { xJ matrix. In particular, if F=3 = and

X1 ¥y
X=1x1s ¥= 1|V,
Xy Y3
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the tensor product xy_ is

Xi¥1 XY X ¥3
Xa¥1 Xa¥2 XaYs
X3¥y X3¥z X3¥3

2. if xeR! and y= R’ as above, the tensor
product defined by

x@x=(x¥y, xy",..., x,yT)T

is an IJ X 1 column vector. Herc for the particu-
lar case =3 =J we have

¥
X1¥2
X1¥3
X2¥
X@y= |x,¥,
X2¥3
X3y

X3¥,
X3¥3

3. The Kronecker product of matrices is a
tensor product. If x = (x,,) is a K X I. matrix and
y=(y,,.) is an M XN matrix, the Kronecker
product of x and y is the KM X LN matrix de-
fined by

XY s XY
X@y= e#[ KM, LN ]
X ¥ oo Xgy ¥
In particular if
X X
x=|*n 12
X X
and
Yn Yz
y=
Yor Y=o
then
Yiu¥n ¥ X¥n Yede
Xy Xy XV X5V
X®y= 11Y21 1y 12¥21 12¥2
¥ X V2 XV YV
¥z Yau¥m XV Xn¥Yan

Examples 1 and 2 illustrate the ambiguity in
the arrangement of the coordinates of a tensor
product. Both x and y are column vectors in these
examples, but their tensor product is an {x.J
matrix in Example 1 and an 7 X 1 column vector
in Example 2. The difference between these ar-
rangements is, in a sense, trivial because we can
readily obtain the column vector from Lthe matrix
and vice versa. If we want to distinguish carelully
between the arrangements, we can call Example 1
a tensor product of x and y and Example 2
another.

Alternatively, we could decide that the particu-
lar arrangement is a minor detail that should not
be an encumbrane to the concept of tensor prod-
uct. In that case we may define the tensor prod-
uct as a collection of coordinates that we are free
to rearrange at our convenience.

The latter altermative is an example of the
abstraction process in which only the essence of a
concept that apphes to various particular situa-
tions is incorporated into the definition of that
concept. Details that serve only to distinguish the
particular applications and are irrelevant to the
abstract concept are stripped from its definition
by the abstraction process. Abstractions of this
sort are the heart and soul of mathematics and
are cxtremely valuable aids to thought. It is very
uscful to have the notion of the number ‘two’
without having to ask whether it refers to two
apples, two dollars, or two inches.

Although abstraction is important and poten-
tially very useful, too much too soon can be a
pedagogical mistake. To appreciate fully the value
of an abstract concept, the student should be
allowed to participate in the abstraction process.
If an uninitiated student is presented at the out-
sel with a rigorous, highly abstracted definition,
he or she may find the concept impossible to
appreciate. That, in this author’s opinion, is a
major problem with much of the extant literature
on tensors and helps to explain why this poten-
tially useful subject is not morc widely used in
practice. Avoidance of the pedagogical trap of
too much abstraction too soon is an important
abjective of this Tutorial.

The following properties of tensor products of
vectors arc worth emphasizing:
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Extendability. The definition is easily extended
1o tensor products of three or more vectors. For
xR, veR/, ze R¥, the tensor product x®y
@ z is a vector with coordinates x;y,z,.

Independence. Tcnsor products prescrve linear
independence. In other words, if the R vectors
{x,,...,xg} are linearly independent, and the §
vectors {y,...,¥.} are linearly independent, then
the RS vectors {x, ® y,} will also be linearly inde-
pendent. The proof of this result is straightfor-
ward but somewhat tedious, and will be omitted
for the sake of brevity.

Nonclosure. In general linear combinations of
tensor products are not themselves tensor prod-
ucts. In particular if x, is linearly independent of
X, and y, I8 lincarly independent of y,, it is
impossible to find vectors u and v for which

X9y, +x, 9y, =u®v {1

The impossibilily of satisfying (1) is casy to see
from Example 1 where tensor products are rank 1
matrices. Under the stipulated conditions of lin-
ear independence the sum of two rank 1 matrices
will have rank cqual to 2 and cannot therefore be
a tensor product of two vectors. In formal jargon
the tensor product of vectors is a bilinear map
whose range is not closed under vector addition.

By the nonclosure property not every /xJ
matrix i1s 4 tensor product, ie. a rank 1 matrix.
However, cvery matrix in .#[f, J] can be ex-
pressed as a sum of rank 1 matrices. This feature
forms the basis for a definition of a/the tensor
product of vector spaces.

Definition 4 (tenser praducts of vector spaces)
Suppose a tensor product x ®y has been defined
for xe 2 and ye %, where % CR' and R’
vector spaces. The tensor product of % and 7,
denoted by % ® 77, is defined to be the vector space
consisting of all linear combinations of vectors of
the form x ® y, where x €% and y € ¥". Continu-
ing our examples yields:

1. R"®@R) =#[1, 7. If Ais an I X1 matrix with
% and 7 as its column and row spaces, respec-
tively, then A €% @ 7 .

2. R ®RJ RV

3. 4K, L1o#IM, N]=#[KM, LN

Some important properties of tensor products
of vector spaces are:

Fxrendability, The extension to tensor products
of more than two vector spaces is straightforward.

Dimensionality. 1f {x,...,xz} is a basis for %
and {y,,...,y,} is a basis for 77, then preservation
of lincar independence implics that the RS vec-
tors {x,®y,) are a basis for #® 7", Thus, if
dim(%)=R and dim(#7) =S, it follows that
dim(Z® %) =

Factorabifity. The tensor product Z ® 7 is a
linear subspace of R’ ® R’, but not every linear
subspace of R'® R’ can be factored as # ® %
with % CR' and %< R’. This property is analo-
gous to the nonclosure property, since not every
matrix can be expressed as the tensor product of
vectors.

A tensor product of vector spaces is a vector
space with cxtra structure. This structure permits
it to be factored into a product of lower dimen-
sional vector spaces. A fensor 1S just a vector in a
tensor product vector space. A natural conse-
quence of the tensor product structure is the usc
of multiple subscripts for the coordinates of a
tensor. When we write x e R* @ R? instead of
y < R', it is natural to use (v )for i=1,2,3 4
and j=1, 2, 3 as the coordmate‘; rather than {y)
fori=1,...,12.

Finally, we define the tensor product of linear
transformations.

Definition 5 (tensor products of linear transforma-
tions)

Let P be a linear transformation from R’ to R¥
and let Q be a linear transformation from R’ to
R, The tensor product of P and Q is the linear
transformation from R' @ R’ to R* @ RY defined
by

(PeQ)[x®y]=Px2Qy (2)
where x and y are arbitrary vectors in R and R,
respectively. Notice that Fxpression (2) defines (P
® Qw] explicitly only for those vectors wc R' ®
R’ which happen to be tensor products. If instead
w=1LF (x, ®y,), the linearity of P®Q implies
that

Z(PX®Qn)

r=1

(PeQ)w] =
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Turning to our examples, we have:

1.1 x®yis the [ XJ matrix xy" and Px ® Qy
is the K®L matrix {(PxXQy)", then for any
matrix A4 in .#[I, /]

(PeQ)[A]=PAQ"

2. If the tensor product of x and y and the
tensor product of Px and Qy are both Kronecker
products as in Example 2, then P ® () is a linear
transformation from R™ to R¥%. As such, it has
a representation as a KL x [J matrix, which in
fact is the Kronecker product of the K x I and
L % J matrices associated with P and (2, respec-
tively. Symbolically, we have

PxeQy=(PeQ)[xey]

where all tensor products are interpreted as Kro-
nccker products. The demonstration of this result
for Kronecker products is straightforward but te-
dious and will be omitted for the sake of brevity.

Some important properties of tensor products
of linear transformations are:

Extendability. The definition can be casily ex-
tended to tensor products of three or more linear
transformations.

Composition. Using juxtaposition to denote
composition of linear transformations or, when
appropriate, matrix multiplication, we have

(PL®Q WP,®Q,)=P P800,

Factorability. The tensor product P8 (@ is a
linear transformation from R’ ® R’ to R ® R",
but not every linear transformation from R’ ®R’
to R¥® RL can be factored as the tensor product
of a linear transformation from R* to R’ and a
linear transformaltion from R™ to R’

The tensor products of vectors, vector spaces,
and linear transformations are concepts that can
be vsefully applied in many areas of multivariate
statistics as well as multiway analysis of variance.
It is bevond the scope of this Tutorial to cover all
the potential uscs of tensor algebra in statistical
data analysis. Instead we focus multilinear mod-
els to illustrate applications of the tensor product
concepts we have introduced.

3. Multilinear models

In this section we describe the specification
and fitting of multilinear models for two-way and
three-way data arrays using the ideas of tensor
algebra. Specifying 4 model for an array involves
identifving special characteristics that the array is
to have. Filting a modcl to a particular data array
involves finding another array which has the spec-
ilied characteristics and best represents the data.

For cxample, in fluorescence spectroscopy it
may be desired to find a rank R matrix which
best approximates an I xJ excitation-emission
matrix. Specifying the rank to be R is an example
of a bilinear model specification. Other natural
ways that come to mind of specifying and fitting
bitinear maodels turn out to be equivalent. Fitting
R principal components to an obscrvations by
variables data matrix, for examplc, is cquivalent
to finding the best rank R approximation to the
maltrix alter its columns have been centered.

The situation for trilinear models is more com-
plicatcd. Different approaches that would in the
end coincide for two-way data lead to the quite
distinct PARAFAC and Tucker models when ap-
plied to three-way data. Tensor algebra can help
to explain the greater complexity and the associ-
ated greater opportunitics for obtaining useful
results afforded by trilincar models.

3.1. Bilinear models

In this section we present two equivalent defi-
nitions of the main bilinear model. This approach
is taken to facilitate comparison with trilinear
models. Each bilinear model definition has a
natural cxtension to three-way data, but the two
definitions of trilinear models are not equivalent.

Each model under discussion rcpresents the
data array as the sum of a signal array and a
noise array, L.c.

A=8+N

where the signal array S is assumed to have some
special structure. The nature of the special struc-
ture is what characterizes the model. Different
structures lead to different models. In the bilin-
ear case there arc two alternative model delini-
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tions which are equivalent because the structures
they describe are identical. The first represents

the signal matrix as a sum of rank one terms
[SOROT

Definition 6 (SOROT)

The R-component SOROT model for an I X J data
matrix A assumes that the signal matrix S can be
written as the sum of R rank one matrices. In other
waords, there exist vectors {x } in R" and {v.} in R’
such that

R
S=3x, 8y,

r=1
The rank of S will be less than or equal to R with
equality holding if both the {x,} and {y,} are Iin-
early independent. Conversely, if S has rank R or
less, then § satisfies the R-component SOROT
model,

The special structure required of § by the
SOROT maodel is that it have rank R (or less).
Since rank is by definition the dimension of the
coluran (or row) space of a matrix, we have the
following alternative model definition:

Definition 7 (1PS)
For an I X J data array the tensor product subspace
(TPS) model with dimension parameters R and O
assumes that there exist linear subspaces & TR
and FCR’ with dind#)=R and dim{7)=0
such that
A=8+N
and
Sewe

The use of two dimension parameters in the
dcfinition of the two-way TPS model anticipates
the three-way TPS modc! to be defined in the
next section. One dimension paramcter would be
enough for two-way data. If the rank of § is R
then S €% ® % where % is the R-dimensicnal
column space of § and 77 is the R-dimensional
row space of §. If 2% and dim{(#)=Q > R,
then also
Sevew
but the increased dimensionality for % does not
increase the set of possibilities for the signal

matrix §. For three-way data, however, the story
is different.

To avoid the too much abstraction too soon
syndrome, we turn to fluorescence spectroscopy
for an example of the SORQOT modecl. If fluores-
cence cmission intensity from a sample s mea-
surcd al cach of J wavelengths when the sample
is stimulated at each of I cxcitation wavclengths,
the resulting /X J data matrix A4 is called an
excitation—cmission matrix {EEM). Each fluores-
cent component in the sample has an excitation
spectrum x whose coordinates x, reflect its
propensity to absorb energy at the /th excitation
wavelength and an emission spectrum y whose
coordinates y, reflect its propensity to emit {luo-
rescent light at the jih emission wavelength. If
there are R components in the sample and their
concentrations ¢, arc not too large, they con-
tribute additively to the signal EEM, vielding

R
S= Loxy (3)
r=1

Factoring the ¢, into either x or y converts (3)
into the defining expression for the SOROT
modcl.

The SOROT model can be used to estimate
the number of fluorescent components in the
sample, at least when the signal-to-noise is suffi-
ciently high. Linear independence of the con-
stituent spectra in an R component sample im-
plies that the EEM would have rank R in the
absence of noise. If the noise is not too large, we
would expect a good fit of the data to the R-com-
ponent model, but not to the (R — 1)-component
modcl,

If we could also extract the individual rank 1
terms int (3}, we could estimate the excitation and
emission spectra of the individual components,
which might enable us to identify them, Unfortu-
nately, this is not generally possible because the
representation of a rank R matrix as the sum of
rank 1 matrices is highly nonunique whenever
R » 2. In statistical jargon the coordinatcs of the
excitation and emission spectra arc nonidentifi-
able parameters of the model.

It is instructive to explore further the nature of
the nonidentifiability of the spectral resolution
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parameters. The rank R of an I XJ matrix S is
also the dimension of its column space. Let {x,}
be an arbitrary basis for the column space of §.
Then each column of § can bc cxpressed as a
linear combination of the x,. Let {y,,} denatc the
coefficients of these linear combinations so that
the jth column of § is given by

R

E yjrxr (4)
r=1

If y, is the vector in R’ with coordinates {y,}, it
follows from (4) that

R

=Y x, @y, (5)
r=1

In other words there is a distinct SOROT repre-

sentation for § corresponding to each choice of a

basis for its column space. A similar relationship

exists between SOROT representations and bascs

for the row space of S.

The nonuniqueness associated with an arbi-
trary choice of basis occurs fairly often. The rota-
tion problem is the common name for this type of
nonuniqueness.

3.2. Trilinear models

The SOROT and TPS modecl definitions can
be readily extended to the threeway case.

Definition 8 (PARAFAC)
The R-component SOROT model for an I x I XK
data array A assumes that there exist vectors {x,} C
Ri (y,} CR’, and {z,} CR¥ such thar
R

§=YYx,®y,01z,

r=1
where § is the signal array for the model. The
three-way SOROT model is commonly called the
PARAFAC model [1] and that term will be used in
liew of three-way SOROT for the rest of this Tuto-
rial.

Definition 9 (Tucker3)
For an I XJ X K array A the tensor product sub-
space (TPS) model with dimension parameters R,

S, T assumes there exist linear subspaces % C R,
¥ R, and # < RY with dim(%) =R, dim(7) =
S, and dim(# ) =T such that the tensor product
subspace % @ 7°® ¥ contains the signal array for
A, The three-way TPS model is also called the
Tucker3 or T3 model.

The extensions of the SOROT and TPS defini-
tions to the three-way case are straightforward
and natural, but there are striking differences
between the trilincar and bilinear versions. One
is that PARAFAC and Tucker3 are distinct mod-
els, while the SOROT and TPS bilinear models
are equivalent. Another important difference is
the fact that under quite genera! conditions the
PARAFAC resolution is unigue, apart from triv-
ial reindexing and rescaling [2]. This stands in
stark contrast to the bilinear SOROT modcl,
where the expression of a rank R matrix as the
sum of R rank 1 matrices is highly nonunique.

The uniqueness of the PARAFAC resolution
has important applications in analytical chem-
istrv. Returning to fluorescence spectroscopy,
suppose there are two samples, the first contain-
ing R components at known concentrations {¢,,)
and thc second containing thosc samc compo-
nents at unknown concentrations {c,,}. Taking
EEMs for both samples yields an f xJ X 2 array
and the PARAFAC model with the mode Z
vectors given by z, = (ac,,, ac,,)". The factor a is
included because of the scale indeterminacy in
the resolution, but it does not aftect the ratio
Z5,/2,,=Ca,/¢;,. Thus, thc ratios of the un-
known concentrations te the known concentra-
tions can be extracted by fitting ap R-component
PARAFAC model to the 7xJ X2 data array.
The generalized rank annihilation method [3] is a
data analytic method for fitting the PARAFAC
model in order to obtain this type of calibration.

Using new samples at different concentrations
is not the only way to build cxcitation—emission
data into a trilinear three-way array. Unique reso-
lutions have been successfully obtained for a sin-
gle sample by fitting the PARAFAC model to
three-way data by the technique ol phasc-re-
solved fluorescence spectroscopy [4,5]. Examples
of rcsolutions obtained by fitting the PARAFAC
model to other types of three-way data in chem-
istry can also be found in the literature [6,7].
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The PARAFAC model forms the basis for the
definition of rank for three-way arrays.

Deftnition 10 (rank)

The rank of a three-way array A is defined o be
the smallest value such that the R-compornent
PARAFAC model fits A exactly.

This definition extends the concept of matrix
rank to three-way arrays. A similar definition,
based on the SOROT model, of matrix rank
would agree with the definition of rank as the
dimension of the column (or row) space.

Rows and columns are subarrays of a matrix
which are quite useful for describing its proper-
ties. Extending these concepts to three-wav arrays
is also quite useful but somewhat more compli-
cated than one might at first expect.

Definition 11 (fibers and slabs)

Let A be an 1 X)X K array with coordinates a, .
The Mode X fibers of A are vectors a , in R’
obtained from A by fixing the index j and k and
letting the index i vary. The Mode X slabs of A are
the J X K matrices obtained as subarrays of A by
Jixing the i index and letiing the | and k indices
vary. The Mode Y (or Mode Z) fibers and slabs
are simmilarly defined as subarrays oblained by let-
ting § {or k) be the only varying or the only fixed
index, The fiber spaces of A are the subspaces
spanned by its fibers e.g. the Mode X fiber space of
A is the subspace of R' spanned by the Mode X
Jibers of A.

If A% ® 7@ %, then the Mode X, Mode
Y, and Mode Z fiber spaces of 4 must be sub-
spaces of %, 77, and %, respectively, An I X J X
K array can be arranged as an I X JK matrix, in
which case its columns are the Mode X fibers.
Similar arrangements are the J x JK matrix with
the Mode Y fibers as its columns and the K x [J
matrix with the Mode Z fibers as its columns.
This process of represcnting a three-way array as
a matrix is sometimes called unfolding,

We conclude by demonstrating how tensor
concepts applied to the unfolded three-way array
can help to show why trilinear models differ so
markedly from their bilinear analogs. Let 2 be
the Mode X fiber space for an I xJx K array
and suppose dim(#7) = R. Let {x,} be a basis for

Z and let A4 be represented in its unfolded
I xJK form. As in (5) we can find vectors {w,} in
R'% such that
R
A = Z xf' ® wl’ (6)
r=1
Expression (6) gives an R-component bilinear
SOROT representation of A4 as an [ xXJK ma-
trix, but it is not a trilinear PARAFAC represen-
tation. Even though each w, is in R** = R/ @ R¥,
the vectors w, arc not neccssarily themsclves ten-
sor products. If each of them wecre, (6) would
indecd be an R-component PARAFAC represen-
tation of A.

This analysis demaonstrates that the rank of a
three-way array must be at least as great as the
dimension of its Mode X fiber space. In fact,
writing Y and .2 for the Mode Y and Mode Z
fiber spaces, respectively, we have that

rank(.A) = max{dim(2"), dim( %'}, dim( )}

This brief introduction ta bilinear and trilinear
models provides only a sample of the uses of
tensor algebra and notation. For more about ten-
sor algebra in the context of multilinear modeis,
see Refs. [8,9]. A discussion of multilinear models
that does not explicitly involve tensor terminology
is in Ref. [10]. For an exicnsive survey of the
literaturc on trilinear modcls up to 1983, includ-
ing many psychometric applications, see Ref. [11].

4. Conclusion

The value of tensor algebra to the practicing
data analyst can be compared to the value of
matrix algebra. Either subject requires some ef-
fort to Icarn and neither is neccssary if one is
willing to use formulas with lots of subscripts and
summation signs. However, the rewards that ac-
crue from learning these subjects are substantial.
A valuable economy of thought results from con-
cepts and notation that disencumber the tedious
dctails from key ideas. The effort spent to learn
matrix algebra is rarely regretted.

Experience with tensor algebra has been less
positive. It is not uncommon for someone to
begin a study of tensor algebra and then quit in
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discouragement when he or she encounters the
obstacles of too much abstraction (oo soon or
applications to physics that seem irrelevant to
data analysis of multilinear models. Under these
circumstances the effort to achieve the rewards
that result from learning tensor algebra has been
stymied by the obstacles along the way. These
obstacles need not loom so large. Tensor algebra
does not have to be a difficult esoteric subject for
data analysts.

This Tutorial introduces basic concepts of ten-
sor algebra in a way that should be accessible to
most readers. It also gives a brief introduction to
bilinear and trilinear models as an illustration of
the utility of these concepts. There are many
more things that could be said about multilinear
models. The point is that the concepts and nota-
tion of tensor algebra provide a convenient unify-
ing framework in which to say them.

References

[1] R.A. Harshman and M.E. Lundy, The PARAFAC model
for three-way factor analysis and multidimensional scal-
ing, in H.GG. Law, C.W. Snyder, Ir., J.P. Hattiec and R.P.
McDonald (Editors), Research Methods for Multilinear
Data Analysis, Praeger, 1984, pp. 122-215.

{2] 1.B. Kruskal, Rank, decomposition, and uniqueness for

3-way and N-way arrays, in R. Coppi and S. Bolasco
(Editors), Multiway Dara Analysis, Elsevier, Amsterdam,
1989, pp. 7-18.

[3] E. Sanchez and B.R. Kowalski, Tensorial calibration: IT.
Second-order calibration, Journal of Chemometrics, 2
(1988) 265-280.

[4] D.S. Burdick, X.M. Tu, L.B. McGown and D.W. Milli-
can, Resolution of multicomponent fluorescent mixtures
by analysis of the excitation—-emissionfrequency array,
Journa! of Chemometrics, 4 (1990) 15-28.

5] D.W. Millican and L.B. McGown, Fluorescence lifetime
resolution of spectra in the frequency domain using mul-
tiway analysis, Analytical Chermisiry, 62 (1990) 2242-2247,

(6] C.J. Appellof and E.R. Davidson, Strategies for analyzing
data {rom video fluorometric monitoring of liquid chro-
matographic effluents, Analytical Chermustry, 53 (1981)
2053-2056.

[7] R.T. Ross, C.-H. Lee, C.M. Davis, E.A. Favyad and 5.E.
Leurgans, Resolution of fluorescence spectra of plant
pigment-complexes using trilincar models, Biochimica ¢!
Biophysica Acta, 1056 (1991) 317-320.

[8] A. Franc, Multiway malrices: some algebraic results, in
R. Coppi and 8. Bolasco (Editors), Multiway Data Analy-
sis, Elsevier, Amsterdam, 1989, pp. 19-30.

[9] A. Franc, Etude algebrique des multitableaux: Apports
de I'algébre tenscrielle (An algebraic study of multi-way
tubles: Contributions of tensor algebra), Ph.D. thesis,
Universit¢ de Montpellier 11, France, 1992.

[10] S.E. Leurgans and R.T. Ross, Multilinear models: appli-
cations in spectroscopy, Statistical Science, 3 (1992) 289
39,

[11] P.M. Krocnenberg, Annotated bibliography of three-
mode factor analysis, British Journal of Mathemavical and
Statistical Psychology, 36 (1483) 81-113.



