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SUMMARY

A statistical framework is developed to contrast methods used for parameter estimation for a latent variable
multivariate regression (LVMR) model. This model involves two sets of variables,X andY, both with multiple
variables and sharing a common latent structure with additive random errors. The methods contrasted are partial
least squares (PLS) regression, principal component regression (PCR), reduced rank regression (RRR) and
canonical co-ordinate regression (CCR). The framework is based on a constrained maximum likelihood analysis
of the model under assumptions of multivariate normality. The constraint is that the estimates of the latent
variables are restricted to be linear functions of theX variables, which is the form of the estimates for the methods
being contrasted. The resulting framework is a continuum regression that goes from RRR to PCR depending on
the ratio of error variances in theX andY spaces. PLS does not arise as a member of the continuum; however, the
method does offer some insight into why PLS would work well in practice. The constrained maximum likelihood
result is also compared with the unconstrained maximum likelihood analysis to investigate the impact of the
constraint. The results are illustrated on a simulated example. Copyright 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper deals with a general model for latent variable data, the latent variable multivariate
regression (LVMR) model. The model has many applications in the field of chemometrics and is
discussed in detail as a statistical model by Burnhamet al.1 It has also been discussed in a less formal
way in many papers.2–4This model deals with two spaces,X andY, both with multiple variables and
both containing latent structure and error. In this model it is also assumed that there is some overlap
between the latent structures in the two spaces. Several models that have been discussed previously in
the literature, including factor analysis5 and errors-in-variables,6,7 are special cases of this model. A
method often used by chemometricians for parameter estimation for data of this type is partial least
squares (PLS) regression. It has been a matter of some debate as to when PLS is the best choice of

JOURNAL OF CHEMOMETRICS
J. Chemometrics13, 49–65 (1999)

* Correspondence to: A. J. Burnham, Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7,
Canada.
Contract/grant sponsor: Natural Sciences and Engineering Research Council (NSERC) of Canada.

CCC 0886–9383/99/010049–17 $17.50
Copyright  1999 John Wiley & Sons, Ltd.

Received 19 March 1998
Accepted 9 December 1998



method for multivariate regression data.8–10This question is not a simple one. There are many papers
which deal with PLS, most of them dealing strictly with the univariate case of a singleY variable. The
papers that deal with multivariateY discuss PLS from an algorithmic point of view,11–13

geometrically14 and from the point of view of the objective function satistified by the basis for the
underlying latent variable subspace.15–17However, to the best of our knowledge, there is no research
that has dealt with PLS from the standpoint of a parameter estimation method for a statistical model.
If PLS could be derived as a method arising from the application of a reasonable statistical parameter
estimation technique to a believable statistical model for the data, this would lend some strength to the
argument that it is a good choice of parameter estimation method for such data. However, we would
like to stress that this would still be far short of an answer to the more general question of when it
would be the ‘best’ choice.

In this paper we consider the LVMR model with a reasonable set of assumptions for the data and
apply a maximum likelihood analysis with a constraint that the estimators for the latent variables be
linear functions of theX data. This constraint restricts the estimators to be of the same form as those
resulting from methods such as PLS, principal component regression (PCR), reduced rank regression
(RRR) and canonical co-ordinate regression (CCR). This analysis results in a parameter estimation
method that depends on the error covariance matrices for theX andY data. In the special case of
diagonal covariance matrices with equal diagonal elements, this results in a framework in which
methods with estimators of this restricted form can be compared.

The framework derived in this paper is numerically identical to that given by de Jong and Kiers18 as
principal covariate regression (PCovR). However, in that work the method is derived from a least
squares analysis rather than from maximum likelihood. There is also considerable overlap between
this work and that of Wentzellet al.19 In their paper they consider the same model and apply
maximum likelihood to estimate the parameters, resulting in maximum likelihood latent root
regression (MLLRR). It is presented here for comparison with the constrained maximum likelihood
method derived in this paper.

In Section 2 the general latent variable multivariate regression model is reviewed. In Section 3.1
we fit the model by maximum likelihood under the assumption of fixed latent vectors, multivariate
normality for the errors, known covariance matrices and the constraint that the estimates of the latent
variables are a linear function of theX variables. In Section 3.2 the unconstrained maximum
likelihood estimates are derived for this model and assumptions in terms of the parametrizations
given in this paper. This is included to show the impact of the constraint on the resulting parameter
estimates. In Section 4 the framework is obtained by considering the special case of equal,
independent measurement errors within each observation for bothX andY. The resulting framework
is a continuum regression method depending on a single parameter, the ratio of the error standard
deviations betweenX andY. This framework is used as a basis for comparison of the commonly used
methods for latent variable multivariate regression (PLS, PCR, CCR and RRR). It is also compared
with two other continuum regression methods, PCovR18 and joint continuum regression.16 In Section
5 we present the results of a simulation study aimed at illustrating the framework derived and
contrasting the quantitative performance of the various methods for estimation of the latent variables.
Section 6 contains the conclusions and some directions for future research.

2. THE LATENT VARIABLE MULTIVARIATE REGRESSION MODEL

The general latent variable multivariate regression model of interest in this paper is discussed in more
detail in Reference 1. The basic model structure is
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X � TP� E �1�
Y � TQ � F �2�

whereX (n� k) andY (n�m) are the data onn observations,T is ann� a (a�m� k) matrix whose
columns provide a basis for the common latent variable space, andP (a� k) andQ (a�m) are the
coefficient matrices for that particular choice of basis.E (n� k) andF (n�m) are the matrices of
random errors. These errors would be made up of measurement errors, sampling errors and the effects
of unmeasured disturbances. In this model bothX andY are random variables. In many applications
the latent variable space is of much smaller dimension than eitherX or Y.1

In this model there is no intrinsic difference between theX andY spaces. Certainly there is no
assumption of a causality direction. In practice the division intoX andY spaces is done based on the
intended use of the model.Y is defined as those data that are only available for the building of the
model. When future data are collected, they will consist ofX data only. This may be because theY
data are too expensive or difficult to collect. Such would be the case in a process-monitoring
application where theY variables are off-line laboratory measurements available only on an
infrequent basis. It may also be because the goal of the modelling is to predictY. This is the more
standard use of the term ‘regression’.

Note that the model for bothX andY is unchanged ifT, P andQ are respectively replaced with
T* = TC, P* = C71 P andQ* = C71 Q in (1) and (2), whereC is any non-singulara� a matrix. This
is a change-of-basis transformation for the columns ofT; the space spanned remains unchanged. Thus
in this model it is the space spanned by the columns ofT that is important rather than thet i vectors.

3. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

3.1. Constrained maximum likelihood analysis

As in all maximum likelihood analyses, some assumptions must be made about the distributions of
the random quantities in the model.T in (1) and (2) can be considered fixed (up to the indeterminancy
discussed previously) or random. IfT is fixed, then the elements ofT become parameters to be
estimated. IfT is considered random, then our analysis is conditional on the given values ofT,
effectively fixing them. This removes the necessity of specifying a distribution forT. Accordingly,
the only statistical uncertainty is that arising from the errorsE andF. We assume that the errors in (1)
and (2) are independent and identically distributed (i.i.d.) across observations (rows) with a
multivariate normal distribution. We also assume that the errors in each space are independent of the
errors in the other space. Thus the rows ofE and F have distributionsNk(0, Sx) and Nm(0, Sy)
respectively. The general forms ofSx andSy indicate that although errors in different observations
(rows) are independent, errors in different variables in the same observation (row) need not be. We
consider the case where bothSx andSy are known and positive definite. We additionally assume that
the dimensiona of T is known.

Some of the more commonly used methods (e.g. PLS, PCR, RRR and CCR) produce estimates of
the form

T̂ � XŴ �3�

whereŴ (k� a) is a function of thetraining data (X, Y). In order to gain insight into these methods,
we will restrict our estimate to have this form. Note that this is not a model constraint of the form

T � XW �4�
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since (4) substituted into (1) results in a nonsensical reflexive model forX, i.e. X = XWP � E.
SinceT is only a basis for the latent variable space, we lose no generality in constrainingT̂ to be

orthonormal:

T̂
T
T̂ � Ia �5�

Under these assumptions and constraints the relevant part of the joint log-likelihood function of (W,
P, Q) is

ÿ 1
2

tr �X ÿ XWP�Sÿ1
x �X ÿ XWP�T

h i
ÿ 1

2
tr �Y ÿ XWQ�Sÿ1

y �Y ÿ XWQ�T
h i

�6�

The maximum likelihood estimators ofP andQ for W fixed, denoted byP̃ andQ̃, are

~P�WTXTX �7�
~Q �WTXTY �8�

Note that (7) and (8) are actually the ordinary least squares regression estimates for the regression of
X andY ontoXW respectively. The profile log-likelihood ofW is

1
2

tr WT�XTXSÿ1
x XTX � XTYSÿ1

y YTX�W
h i

�9�

From standard maximum likelihood theory,20 maximizing (9) will produce the overall maximum
likelihood estimator ofW. The details of the derivations of (7)–(9) are given in Appendix I.

The maximum of (9) subject to the constraint (5) is that the columns ofŴ are the generalized
eigenvectors corresponding to thea largest eigenvalues of the generalized eigenvalue equation

�XTXSÿ1
x XTX � XTYSÿ1

y YTX�W � XTXWD �10�

whereD is a diagonal matrix with the associated eigenvalues on the diagonal. This result is proved in
Appendix II. The matricesW andD satisfying this equation can be found numerically using Matlab
(The Mathworks, Inc., Nantick, MA) or similar mathematical software.

A more general solution to the maximum of the likelihood function under the restriction (3) is that
T̂ is any basis for the space spanned byXŴ . This follows from the invariance of (1) and (2) to a
change-of-basis transformation on the latent variable subspaceT.

To predict for new observationsXnew, we useŴ to give

T̂new� XnewŴ �11�
This parameter estimation method could be called the constrained maximum likelihood latent

variable multivariate regression method. For simplicity in this paper it will be referred to as ML.

3.2. Unconstrained maximum likelihood analysis

The unconstrained maximum likelihood estimates for the parametersT, P and Q can easily be
derived for comparison. The following analysis produces a result equivalent to that given in
Reference 19 for the assumptions given in Section 3.1. In Reference 19 the error covariance matrices
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are constrained to be diagonal but are allowed to vary between observations.
Under the same assumptions as in Section 3.1 but without the constraint (3), the relevant part of the

joint log-likelihood function of (T, P, Q) is

ÿ 1
2

tr �X ÿ TP�Sÿ1
x �X ÿ TP�T

h i
ÿ 1

2
tr �Y ÿ TQ�Sÿ1

y �Y ÿ TQ�T
h i

�12�

Following a similar analysis to that done in Appendix I, one can show that the maximum likelihood
estimates ofP andQ for T fixed, denoted byP̃ andQ̃, are

~P� TTX �13�
~Q � TTY �14�

Following a similar derivation to that given in Appendix I, the profile log-likelihood forT is

1
2

tr TT�XSÿ1
x XT � YSÿ1

y YT�T
h i

�15�

This has its maximum when the columns ofT are the eigenvectors corresponding to thea largest
eigenvalues of the matrix

A � XSÿ1
x XT � YSÿ1

y YT �16�

This result follows from the application of Lemma 1 in Appendix II.A can also be written as

A � �XSÿ1=2
x jYSÿ1=2

y ��XSÿ1=2
x jYSÿ1=2

y �T �17�

This shows that the estimate is coming from a principal component analysis of the combinedX* Y*
matrix, whereX* and Y* have been rotated and scaled to have i.i.d. errors across each row. This
provides an estimate forT for the training data, but extending this to thetest set is not quite as
straightforward as for the restricted estimate. In order to get an estimate forTnew we proceed as
follows. First fix P at its estimated value from thetraining data. Then the likelihood function for a
new set of observationsXnew would be a function ofTnew only:

ÿ 1
2

tr �Xnewÿ TnewP�Sÿ1
x �Xnewÿ TnewP�T

h i
�18�

The maximum of (18) can be found by differentiating (18) byTnew and setting the derivative to
zero:21

T̂new� XnewSÿ1
x PT�PSÿ1

x PT�ÿ1 �19�

This estimate will be used in the comparisons made in Section 5. The unconstrained maximum
likelihood method is referred to as maximum likelihood latent root regression (MLLRR).19
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4. CONTINUUM REGRESSION FRAMEWORK

4.1. The continuum regression method

Consider the case whereSx = �2
x Ik andSy = �2

y Im. That is, within an observation (row) the errors are
independent and identically distributed. Note that withSx andSy both known, the data can always be
rotated and scaled to this case. This could be considered a pretreatment of the data.

In this case the generalized eigenvalue equation (10) becomes

1
�2

x

XTXXTX � 1
�2

y

XTYYTX

 !
W � XTXWD �20�

Multiplying (20) by �y�x and letting�x/�y = � gives

1
�

XTXXTX � �XTYYTX
� �

W � XTXWD � �21�

whereD* = �y�xD. Equation (21) now gives an expression for a continuum regression depending on
the parameter�, which represents the ratio of the error standard deviations in the two spaces. This
parameter can vary from zero to infinity.

In the case where�→ ?, the magnitudes of the errors inX are much larger than those inY. In this
case, equation (21) becomes

�XTYYTX�W � XTXWD �22�

The solution to this equation is that the columns ofŴ are the redundancy variates for predictingY
from X.22 Thus the solution in this case approaches that of RRR.

In the case where� → 0, the magnitudes of the errors inY are much larger than those inX. In this
case, equation (21) becomes

�XTXXTX�W � XTXWD �23�

The solution to this equation is that the columns ofŴ are the firsta principal components ofX.
Therefore the solution in this case approaches that of PCR.

Thus in this special case the maximum likelihood solution provides a continuum regression from
RRR to PCR depending on the parameter�, which is the ratio of the overall error standard deviations
betweenX andY.

4.2. Related continuum regression methods

The continuum regression method developed above is mathematically equivalent to principal
covariate regression (PCovR).18 However, PCovR was defined as a simultaneous least squares fit to
bothX andY with a weighting parameter�. That is, the objective function for determiningT is

max
T

�kX ÿ TPk2� �1ÿ ��kY ÿ TQk2 �24�

subject to

54 A. J. BURNHAM ET AL.

Copyright  1999 John Wiley & Sons, Ltd. J. Chemometrics, 13, 49–65 (1999)



TTT � I �25�
T � XW �26�

The constraintT = XW is given as a model constraint rather than as a parameter estimation constraint.
The parameter� varies from zero to one. In Reference 18 the parameter� is not given any
interpretation and it is suggested that it be determined from cross-validation.

Another multivariate continuum regression method has been proposed by Brooks and Stone.16

Here the objective function is a multiplicative one where the latent vectorst i = Xci satisfy

max
ci ;l i

cT
i XTYl i

ÿ �2
cT

i XTXci
ÿ ���=�1ÿ���ÿ1 �27�

subject to

cT
i ci � 1; lTi l i � 1 �28�

with future latent directions being chosen such thatcT
i XT Xcj = 0 for all i = j. This objective function

is justified simply as a compromise between maximizing the variance of the vectorst i = Xci in the
predictor space and its predictive ability forY. No physical interpretation is given for�, which is
again estimated using cross-validation on the data. This continuum goes from PCR as� → 1 to RRR
as� → 0. At � =

1
2 the method is equivalent to SIMPLS15 (a method very similar to PLS). This

objective function is also not justified from any statistical model but rather from an intuitive criterion.
It should give somewhat similar results to the special case of ML for appropriate values of�, since the
objective function is roughly the product of the two terms summed in the objective function for
PCovR.18

4.3. Maximum likelihood methods that assume no latent structure in X

In some recent papers that include discussions of PLS, the problem of multivariate regression has
been considered using the standard regression model

Y � XB � F� �29�

with X and Y having the same dimensions as in Section 2.B is a k�m matrix of regression
coefficients andF* is an n�m matrix of random errors. In this model,X is assumed to be full rank,
with any errors being small relative to those inY so that they can be ignored. Thus no structure is
assumed forX. In some cases a latent structure is assumed forY by constraining the rank ofB to be
less than or equal toa<m. This model is called the reduced rank regression model.

If the standard or reduced rank regression model is assumed, then the methods OLS, CCR and RRR
can be derived from them as maximum likelihood methods under certain model assumptions. OLS is
the maximum likelihood solution if the standard regression model is considered with the rows ofF
assumed i.i.d. multivariate normal with covariance matrix�2I . RRR and CCR can be derived as
maximum likelihood methods if the reduced rank model23,24 is considered. Here the rows ofF are
once again considered to be i.i.d. multivariate normal with covariance matrixS. If S is unknown,
then the maximum likelihood solution for estimatingB is equivalent to regressingY on the firsta
canonical co-ordinates ofX, thus resulting in CCR23. If S is known and equal to�2Im, then the
maximum likelihood solution for estimatingB is equivalent to regressingY on the firsta redundancy
variates ofX, thus resulting in RRR.24
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4.4. Fitting the methods into the framework

In order to fit the methods into the continuum regression framework, it is useful to consider the
objective functions that the estimated latent variables from each method satisfy. In order to do this,
we will consider the SIMPLS version of PLS, as it satisfies a simpler objective function than PLS but
gives very similar estimates in most cases.15,17The derivation of these objective functions is given in
Reference 17. The estimated latent variables for PCR satisfy the objective of maximum variance inX.
They do not take into account any information aboutY. The other three methods, SIMPLS, RRR and
CCR, all consider the correlation between the latent variable estimate and a corresponding vector in
Y; however, they all consider different objectives relative to the variance of the estimated latent
vectors and the corresponding vectors inY. CCR considers only correlation; RRR considers
correlation and high variance for the vector inY; and SIMPLS considers covariance, i.e. correlation
plus high variance in bothX andY.

In Section 4.1 the maximum likelihood method gave a continuum regression between PCR and
RRR depending on the ratio of the error standard deviations. This continuum therefore moves from
estimatingT using the high-variance directions inX, regardless of their relationship with any
directions inY, to estimatingT using the directions inX that have high correlation with high-variance
directions inY, regardless of their variance. We hypothesize that the middle of the continuum should
estimateT with vectors that have high variance in both spaces and high correlation within each pair.
This would give an objective function similar to SIMPLS or PLS. CCR alone of all the methods does
not consider variance in either space as a criterion. Therefore it does not seem to have any place in the
framework formed by the special case of the constrained maximum likelihood method.

Also notice that the two methods that were derived from a maximum likelihood analysis of a model
without any latent structure inX, CCR and RRR, resulted in methods that did not consider the
variance of the latent vector inX in their objective functions. The constrained maximum likelihood
method (ML) and the unconstrained maximum likelihood method (MLLRR), both based on the
LVMR model, did consider variance of the latent vector in theX space in their objective functions.
PLS also considers variance in theX space in its objective function. This suggests that it is this latent
structure inX that leads to the variance of the latent vectors inX being considered in the objective
function. This explains some of the confusion that has arisen when PLS has been compared on the
basis of the standard or reduced rank models with such methods as ordinary least squares (OLS),
multivariate ridge regression (RR),25 shrinkage methods,8,26 CCR and RRR. For examples of such
comparisons see References 8–10. When the data do not have any latent structure in theX space, it
would seem likely that methods that arise from models that reflect this would be more effective. In the
framework derived in Section 4.1, the variance inX is not considered at the extreme where the errors
in X are very large relative to those inY. This arises more from the practical point that if the errors in
X are very large, it will be impossible to separate the latent structure from the error inX based on a
variance criterion.

5. SIMULATION STUDY

The simulation study considers the continuum regression method derived in Section 4.1. To enable
easy illustration of the results, this study is done for a system whereT has a single dimension, i.e. is a
vectort. For each run the vectort is generated as a vector of randomN(0,1) variables.X andY both
containm= k = 5 variables andn = 30 observations and were generated for each run for both the
training and testsets. The model for the data is
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X � t�11111� � E �30�
Y � t�11111� � F �31�

where the rows ofE andF are multivariate normal with zero mean and covariance matrices�2
x I5 and

�2
y I5 respectively. A designed experiment is run as a full factorial on two factors,�2

x and�2
y , both at

four levels (0⋅2, 0⋅4, 0⋅8 1⋅6). This provides a range for the square of the ratio of the two standard
deviations (�2 = �2

x /�2
y) from 0⋅125 to 8. The experiment was run 1000 times.

The responses measured are the correlations between the true vectort and the estimated vectort̂ for
each parameter estimation method (PLS, CCR, RRR, PCR, ML and MLLRR) for both thetraining
andtestsets. The estimates of the latent variable for thetestset are done using (11) for the methods
PLS, CCR, RRR, PCR and ML, and using (19) for MLLRR.

As discussed in Section 4.1, at low variance ratios (high error variance inY relative to that inX),
ML and PCR are expected to be close, and at high variance ratios (high error variance inX relative to
that inY), ML and RRR are expected to be close. It is the purpose of this study to illustrate this point
and also to compare ML with the other methods (PLS, CCR and MLLRR) for various values of the
variance ratio. MLLRR is included to demonstrate the impact of the constraint (3).

Figure 1 gives the average value of the correlation between the true vectort and its estimatet̂ for
the ML method as a function of the log of the variance ratio. It can be seen here that for this
simulation, ML gives reasonably high average correlations for both thetraining andtestsets. It also
demonstrates that the correlation is lower for the higher values of the ratio of the variances. This is
because the estimates of the latent variable were restricted to be a function of theX data. Therefore
they are more adversely affected by high errors inX than by high errors inY.

Figure 2 contrasts estimates obtained by ML with those obtained by PLS, RRR, CCR and PCR for
thetraining set. The quantity plotted is the difference between the correlations between the estimated
and true values of the vectort obtained by ML and one of the other methods. A positive difference
implies that the ML method is providing estimates oft that are closer to the truth than the other
method. The plots are box-and-whisker plots with the whiskers extending to cover 95% of the points

Figure 1. Average of correlation between true and estimatedt vectors versus log of ratio of variances (�2
x /�2

y )
for ML
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obtained in the simulation (cutting off 2⋅5% at either end). The top and bottom of each box are the
75th and 25th percentiles respectively. The middle of the box is the median value for the simulation.
In Figure 2(a), ML and PCR are contrasted, and in Figure 2(b), ML and RRR are contrasted. These
graphs are a clear illustration of the continuum regression framework presented in Section 4.1,

Figure 2. Box-and-whisker plot of differences between correlation between true and estimatedt vectors for
training set for ML and other four methods versus log of ratio of variances (�2

x /�2
y ): (a) ML 7 PCR; (b) ML7

RRR; (c) ML7 PLS; (d) ML7 CCR
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showing that ML reduces to PCR at low variance ratios and to RRR at high variance ratios. Figure
2(c) compares ML and PLS. It shows that PLS gives correlations very close to those given by ML for
all values of the ratio. This suggests that for this simulation, PLS adapts to the different values of the
error variance ratios in a way similar to that of ML. The difference is highest when the error variance
in X is greatest relative to that inY. This is because PLS is maximizing covariance and thus is heavily
influenced by the error variance inX. Figure 2(d) shows a very different result for the relationship
between CCR and ML. Here we see large differences for all values of the ratio, with the differences
being most pronounced when the variance inY is large relative to that inX (directly the opposite of
PLS). This makes sense when one considers that PLS and CCR fall on opposite sides of RRR: PLS
considers both variance inX andY, RRR variance inY only and CCR variance in neither. Since the
special case of ML tends to consider onlyX variance at the low values for the ratio and ignores
correlation information, CCR will be very different, as its criterion does not includeX variance and
depends only on correlation between the two spaces. Another feature to note in Figures 2(a)–(d) is
that in general the majority of differences in correlations between this special case of ML and these
methods are positive. This shows that the special case of ML is coming closest to the true vector in the
majority of cases, among the methods considered. Given that estimation of the latent variable basis in
T is its main objective, this result was not unexpected.

In Figure 3 we see that for thetestset the relationships are somewhat different. It is still possible to
see the continuum regression relationship between PCR, RRR and ML in Figures 3(a) and (b).
However, PCR is now performing better than ML on average, whereas RRR seems to be performing
much worse than ML on average. It seems for this particular simulation that ignoring the variance
structure ofX causes the estimates of the latent variables to be further away from the truth even when
X has large errors. This is reinforced by Figures 3(c) and (d), which show PLS (which does consider
the variance structure ofX) doing better than ML, and CCR (which does not consider the variance
structure inX) doing worse than ML.

In Figure 4, ML is contrasted with the MLLRR method of Wentzellet al.19 In Figure 4(a) they are
contrasted on thetraining data, in Figure 4(b) on thetest data. In Figure 4(a) there are large
differences between the methods, with MLLRR doing uniformly better particularly when the errors
in X are large. This is because, for thetraining set, MLLRR gets the maximum likelihood estimate for
T without the restriction thatT̂ = XW . This is particularly significant when the errors inX are large
relative to those inY, since the MLLRR method makes more use of the more accurateY data. In
Figure 4(b), ML and MLLRR are compared on thetest data. Here the differences are not as
pronounced, perhaps a reflection of the fact that neither method has access to theYnew data. In this
example it seems that for the use of the model we have not lost much in restricting our estimates to
have the form (3). The loss is again most pronounced when theY data are relatively more accurate
than theX data.

6. CONCLUSIONS

A constrained maximum likelihood parameter estimation method for the multivariate latent variable
regression model has been developed for the situation where the error covariance matrices ofX andY
are known and the estimate of the latent variables is restricted to be a linear combination of theX
variables. The special case where bothX andY had i.i.d. measurement errors was used to develop a
continuum regression method depending on the ratio of the error variances inX and Y. This
continuum goes from PCR to RRR. This illustrates the dependence of the estimation method on the
relative magnitudes of the measurement errors in bothX and Y. It also provides a statistical
framework in which to place some other common methods used for estimation in practice (PLS and
CCR). The work done to date on these methods usually starts at the objective function, choosing one
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that is intuitively appealing. This work starts from a statistical model to derive the objective function
(using maximum likelihood as the optimizing criterion).

The simulation study in Section 5 serves to illustrate the performance of ML in estimating the

Figure 3. Box-and-whisker plot of differences between the correlation between true and estimatedt vectors for
thetestset for ML and the other four methods versus log of ratio of variances (�2

x /�2
y ): (a) ML 7 PCR; (b) ML7

RRR; (c) ML7 PLS; (d) ML7 CCR
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latent variables relative to the other common latent variable multivariate regression methods for the
case of i.i.d. errors within rows discussed in Section 4.1. It provides some evidence for the hypothesis
(obtained from the continuum regression formulation of ML) that in the central region of the
continuum (which is where the measurement errors inX andY are roughly equal), PLS would in fact
give very similar results to maximum likelihood. It also showed that PLS was always reasonably
close to the maximum likelihood solution for all values in the range studied.

The unconstrained maximum likelihood results were also studied for comparison. The resulting
MLLRR method19 showed far better results on thetraining set but only marginally better results on
the testset. For this example at least it appears that restricting the estimate to be a linear function of
the X data still provides reasonable estimates of the latent variable direction.

More research is required on methods of statistical inference based on this model, such as the
estimation of the rank of the latent subspace and confidence intervals for the spaces estimated and for
the predictions obtained.
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APPENDIX I: DERIVATION OF THE PROFILE LIKELIHOOD FORW

First notice that (6) is the sum of two terms, one a function ofP only and the other a function ofQ
only. Consider the first term and rearrange to obtain

Figure 4. Box-and-whisker plot of differences between the correlation between true and estimatedt vectors for
ML and MLLRR versus log of ratio of variances (�2

x /�2
y ): (a) training set; (b)testset
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ÿ 1
2

tr Sÿ1
x �X ÿ XWP�T�X ÿ XWP�

h i
�32�

Let P* = WTXTX, and subtract and addXWP* twice in (32) as follows:

ÿ 1
2

tr Sÿ1
x �X ÿ XWP� � XWP� ÿ XWP�T�X ÿ XWP� � XWP� ÿ XWP�

h i
�33�

Multiplying out the last term in (33) and noting that the cross-terms are zero gives

ÿ 1
2

tr Sÿ1
x �X ÿ XWP��T�X ÿ XWP��

h i
ÿ 1

2
tr Sÿ1

x �P� ÿ P�T�P� ÿ P�
h i

�34�

The first term is a function of the dataW (assumed fixed) and the knownSx. Thus a maximum value
overP of (34) is found at the minimum of

tr Sÿ1
x �P� ÿ P�T�P� ÿ P�

h i
�35�

This is greater than or equal to zero (Reference 5, p. 476), sinceSx is positive definite and any matrix
of the form FTF for F any a� k matrix is positive semidefinite. Thus the maximum of (32) is
obtained forP = P*, giving P̃ = WTXTX. A similar proof givesQ̃ = WTXTY. Substituting these
results into (6) gives

ÿ 1
2

tr �X ÿ XWW TXTX�Sÿ1
x �X ÿ XWW TXTX�T

h
��Y ÿ XWW TXTY�Sÿ1

y �Y ÿ XWW TXTY�T
i

�36�

Multiplying out the terms in the trace, rearranging and simplifying gives

ÿ 1
2

tr XSÿ1
x XT � YSÿ1

y YT ÿWT�XTXSÿ1
x XTX � XTYSÿ1

y YTX�W
h i

�37�

The first two terms of (37) have fixed values, therefore a maximum overW is found at the maximum
of

1
2

tr WT�XTXSÿ1
x XTX � XTYSÿ1

y YTX�W
h i

�38�

APPENDIX II: DERIVATION OF THE GENERALIZED EIGENVALUE EQUATION RESULT

Let

M 3 � XTXSÿ1
x XTX � XTYSÿ1

y YTX; M 4 � XTX
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and let�1� �2�…� �a be thea largest generalized eigenvalues satisfying

M3hi � �iM 4hi ; i � 1; . . . ; a �39�

andh1,h2,…,ha be the associated generalized eigenvectors scaled such thathT
i M4 hi = 1. Note that if

�i = �j, thenhT
i M4hj = 0. If �i = �j, thehi andhj can be chosen such thathT

i M4hj = 0.27 Thus assume
that

hT
i M 4hj � 0 8 i 6� j �40�

We wish to show that

tr�WTM 3W� �41�
subject to

WTM 4W � Ia �42�
has a maximum value of Xa

i�1

�i

which is obtained atW = [h1,h2…,ha].

Lemma 1 28

For A any symmetrick� k matrix andgi, i = 1,…,a, mutually orthogonal vectors,

max
g1; . . . ; ga

Xa

i�1

gi
TAgi

gi
Tgi
�
Xa

i�1

��i

where ��1� ��2�…� ��a are the a largest eigenvalues ofA. This maximum is obtained at
gi, i = 1,…,a, the associated eigenvectors ofA.

The following portion of the proof depends onX being full rankk. If X is not full rank, then see
Appendix III. If X is full column rankk, M4 is positive definite. Therefore it can be expressed as the
product of a non-singular matrixM5 and its transpose:M4 = M5MT

5.
Let A = Mÿ1

5 M3(Mÿ1
5 )T. This is a symmetrick� k matrix. Thus

Xa

i�1

gi
TMÿ1

5 M 3�Mÿ1
5 �Tgi

gi
Tgi

�43�

has maximum value

Xa

i�1

�i
� �44�
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attained atgi, i = 1,…,a, thea largest eigenvectors ofA. Thusgi is defined by

Mÿ1
5 M 3�Mÿ1

5 �Tgi � ��i gi

If we now definehi = (Mÿ1
5 )T gi, then the following statements are true.

1. The maximum of

tr�WTM 3W� �
Xa

i�1

wi
TM 3wi �45�

has its maximum atwi = hi, i = 1,…,a. This can be verified by substituting forgi in (43).
2. Thehi satisfy (39).
3. Thehi satisfy (40).
4. The maximum value is the sum of the corresponding eigenvalues�i.

APPENDIX III: X NOT FULL COLUMN RANK k

If X is of rankr, a< r < k, then SVD can be used to write it as

X � USVT �46�

whereU is n� r, S is diagonal,r � r, V is r � k, UTU = I r andVTV = I r. If we multiply our model for
X by V, we get

XV � TPV � EV �47�

which can be given in terms of new variablesX̃:

~X � T~P� ~E �48�

In this model we now haveX̃ full column rankr and the distribution ofẼ is normal with covariance
matrix VTSxV.

We can now use (48) instead of our original equation with no loss of information. Once a solution
has been found, it can easily be expressed in terms of the originalX:

T̂ � ~X ~W � XV ~W � XW �49�
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