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SUMMARY

A statistical framework is developed to contrast methods used for parameter estimation for a latent variable
multivariate regression (LVMR) model. This model involves two sets of variailes)dY, both with multiple
variables and sharing a common latent structure with additive random errors. The methods contrasted are partial
least squares (PLS) regression, principal component regression (PCR), reduced rank regression (RRR) and
canonical co-ordinate regression (CCR). The framework is based on a constrained maximum likelihood analysis
of the model under assumptions of multivariate normality. The constraint is that the estimates of the latent
variables are restricted to be linear functions ofXheariables, which is the form of the estimates for the methods
being contrasted. The resulting framework is a continuum regression that goes from RRR to PCR depending on
the ratio of error variances in thiéandY spaces. PLS does not arise as a member of the continuum; however, the
method does offer some insight into why PLS would work well in practice. The constrained maximum likelihood
result is also compared with the unconstrained maximum likelihood analysis to investigate the impact of the
constraint. The results are illustrated on a simulated example. Copytig809 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper deals with a general model for latent variable data, the latent variable multivariate
regression (LVMR) model. The model has many applications in the field of chemometrics and is
discussed in detail as a statistical model by Burnleami ! It has also been discussed in a less formal

way in many paper$.* This model deals with two space$,andY, both with multiple variables and

both containing latent structure and error. In this model it is also assumed that there is some overlap
between the latent structures in the two spaces. Several models that have been discussed previously in
the literature, including factor analy3iand errors-in-variable%! are special cases of this model. A
method often used by chemometricians for parameter estimation for data of this type is partial least
squares (PLS) regression. It has been a matter of some debate as to when PLS is the best choice of
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50 A.J. BURNHAM ET AL.

method for multivariate regression d&f@° This question is not a simple one. There are many papers
which deal with PLS, most of them dealing strictly with the univariate case of a sthgigiable. The

papers that deal with multivariat®y discuss PLS from an algorithmic point of view,*?
geometrically* and from the point of view of the objective function satistified by the basis for the
underlying latent variable subspate’’However, to the best of our knowledge, there is no research
that has dealt with PLS from the standpoint of a parameter estimation method for a statistical model.
If PLS could be derived as a method arising from the application of a reasonable statistical parameter
estimation technique to a believable statistical model for the data, this would lend some strength to the
argument that it is a good choice of parameter estimation method for such data. However, we would
like to stress that this would still be far short of an answer to the more general question of when it
would be the ‘best’ choice.

In this paper we consider the LVMR model with a reasonable set of assumptions for the data and
apply a maximum likelihood analysis with a constraint that the estimators for the latent variables be
linear functions of the&X data. This constraint restricts the estimators to be of the same form as those
resulting from methods such as PLS, principal component regression (PCR), reduced rank regression
(RRR) and canonical co-ordinate regression (CCR). This analysis results in a parameter estimation
method that depends on the error covariance matrices foX taedY data. In the special case of
diagonal covariance matrices with equal diagonal elements, this results in a framework in which
methods with estimators of this restricted form can be compared.

The framework derived in this paper is numerically identical to that given by de Jong and®¢isrs
principal covariate regression (PCovR). However, in that work the method is derived from a least
squares analysis rather than from maximum likelihood. There is also considerable overlap between
this work and that of Wentzelét al'® In their paper they consider the same model and apply
maximum likelihood to estimate the parameters, resulting in maximum likelihood latent root
regression (MLLRR). It is presented here for comparison with the constrained maximum likelihood
method derived in this paper.

In Section 2 the general latent variable multivariate regression model is reviewed. In Section 3.1
we fit the model by maximum likelihood under the assumption of fixed latent vectors, multivariate
normality for the errors, known covariance matrices and the constraint that the estimates of the latent
variables are a linear function of th¢ variables. In Section 3.2 the unconstrained maximum
likelihood estimates are derived for this model and assumptions in terms of the parametrizations
given in this paper. This is included to show the impact of the constraint on the resulting parameter
estimates. In Section 4 the framework is obtained by considering the special case of equal,
independent measurement errors within each observation fodbattadY. The resulting framework
is a continuum regression method depending on a single parameter, the ratio of the error standard
deviations betweeK andY. This framework is used as a basis for comparison of the commonly used
methods for latent variable multivariate regression (PLS, PCR, CCR and RRR). It is also compared
with two other continuum regression methods, PC8\dd joint continuum regressidfiln Section
5 we present the results of a simulation study aimed at illustrating the framework derived and
contrasting the quantitative performance of the various methods for estimation of the latent variables.
Section 6 contains the conclusions and some directions for future research.

2. THE LATENT VARIABLE MULTIVARIATE REGRESSION MODEL

The general latent variable multivariate regression model of interest in this paper is discussed in more
detail in Reference 1. The basic model structure is
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MULTIVARIATE LATENT VARIABLE REGRESSION METHODS 51
X=TP+E (1)
Y=TQ+F (2)

whereX (n x k) andY (n x m) are the data on observationsT is ann x a(a < m+ k) matrix whose
columns provide a basis for the common latent variable spaceR §ac k) andQ (a x m) are the
coefficient matrices for that particular choice of ba&gn x k) andF (n x m) are the matrices of
random errors. These errors would be made up of measurement errors, sampling errors and the effects
of unmeasured disturbances. In this model B$thndY are random variables. In many applications

the latent variable space is of much smaller dimension than eittary .

In this model there is no intrinsic difference between ¥handY spaces. Certainly there is no
assumption of a causality direction. In practice the division Xi@ndY spaces is done based on the
intended use of the modeY. is defined as those data that are only available for the building of the
model. When future data are collected, they will consisKafata only. This may be because tfie
data are too expensive or difficult to collect. Such would be the case in a process-monitoring
application where theY variables are off-line laboratory measurements available only on an
infrequent basis. It may also be because the goal of the modelling is to pYedittis is the more
standard use of the term ‘regression’.

Note that the model for botK andY is unchanged iff, P andQ are respectively replaced with
T*=TC,P*=C *PandQ*= C 'Qin (1) and (2), wher€ is any non-singulaa x amatrix. This
is a change-of-basis transformation for the columnE;dhe space spanned remains unchanged. Thus
in this model it is the space spanned by the columnE tifat is important rather than thievectors.

3. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION
3.1. Constrained maximum likelihood analysis

As in all maximum likelihood analyses, some assumptions must be made about the distributions of
the random quantities in the modelin (1) and (2) can be considered fixed (up to the indeterminancy
discussed previously) or random. Tf is fixed, then the elements df become parameters to be
estimated. IfT is considered random, then our analysis is conditional on the given valu€s of
effectively fixing them. This removes the necessity of specifying a distributiofi fékccordingly,
the only statistical uncertainty is that arising from the eréendF. We assume that the errorsin (1)
and (2) are independent and identically distributed (i.i.d.) across observations (rows) with a
multivariate normal distribution. We also assume that the errors in each space are independent of the
errors in the other space. Thus the rowsEond F have distributiondN,(0, X,) and N0, %)
respectively. The general forms Bf and2., indicate that although errors in different observations
(rows) are independent, errors in different variables in the same observation (row) need not be. We
consider the case where b&h and2, are known and positive definite. We additionally assume that
the dimensiora of T is known.

Some of the more commonly used methods (e.g. PLS, PCR, RRR and CCR) produce estimates of
the form

T=XW (3)

whereW (k x a) is a function of theraining data &, Y). In order to gain insight into these methods,
we will restrict our estimate to have this form. Note that this is not a model constraint of the form

T = XW (4)
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since (4) substituted into (1) results in a nonsensical reflexive mode{,foe. X = XWP + E.
SinceT is only a basis for the latent variable space, we lose no generality in constraininge
orthonormal:

TT=I, (5)

Under these assumptions and constraints the relevant part of the joint log-likelihood functin of (

P, Q)is
—%tr[(x — XWP)S L (X — XWP)T} - %tr [(Y XWQ)Z, (Y — XwQ)T (6)

The maximum likelihood estimators & andQ for W fixed, denoted by andQ, are
P=WT"XTX (7)
Q=wWTXTy (8)

Note that (7) and (8) are actually the ordinary least squares regression estimates for the regression of
X andY onto XW respectively. The profile log-likelihood & is

1 -1 -1
St [WT(xszx XTX + XTYE, YTX)W} (9)

From standard maximum likelihood thed®ymaximizing (9) will produce the overall maximum
likelihood estimator ofV. The details of the derivations of (7)—(9) are given in Appendix I.

The maximum of (9) subject to the constraint (5) is that the columné#/ aire the generalized
eigenvectors corresponding to thdargest eigenvalues of the generalized eigenvalue equation

(XTXE XX + XTY2 Y TX)W = XTXWD (10)

whereD is a diagonal matrix with the associated eigenvalues on the diagonal. This result is proved in
Appendix II. The matrice$V andD satisfying this equation can be found numerically using Matlab
(The Mathworks, Inc., Nantick, MA) or similar mathematical software.

A more general solution to the maximum of the likelihood function under the restriction (3) is that
T is any basis for the space spannedX. This follows from the invariance of (1) and (2) to a
change-of-basis transformation on the latent variable subspace

To predict for new observation$,e,, we useW to give

TneW: Xneww (11)

This parameter estimation method could be called the constrained maximum likelihood latent
variable multivariate regression method. For simplicity in this paper it will be referred to as ML.

3.2. Unconstrained maximum likelihood analysis

The unconstrained maximum likelihood estimates for the paramé&tes and Q can easily be
derived for comparison. The following analysis produces a result equivalent to that given in
Reference 19 for the assumptions given in Section 3.1. In Reference 19 the error covariance matrices
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are constrained to be diagonal but are allowed to vary between observations.
Under the same assumptions as in Section 3.1 but without the constraint (3), the relevant part of the
joint log-likelihood function of T, P, Q) is

f%tr (X — TP H(X — TP)T] - %tr{(v ~TQ)E, MY - TQ)" (12)

Following a similar analysis to that done in Appendix I, one can show that the maximum likelihood
estimates oP andQ for T fixed, denoted by andQ, are

P=T"X (13)

Q=T"Y (14)

Following a similar derivation to that given in Appendix I, the profile log-likelihood Tois
Li TTXEXT+ Y3 YT (15)
2 X y

This has its maximum when the columnsTfare the eigenvectors corresponding to #hlargest
eigenvalues of the matrix

A=XEXT+ Y3 YT (16)
This result follows from the application of Lemma 1 in AppendixAl.can also be written as
A = (XY s Y2 (X A YR AT (17)

This shows that the estimate is coming from a principal component analysis of the corKbirved
matrix, whereX* and Y* have been rotated and scaled to have i.i.d. errors across each row. This
provides an estimate fof for the training data, but extending this to thtestset is not quite as
straightforward as for the restricted estimate. In order to get an estimaig, fgrwe proceed as
follows. First fix P at its estimated value from theaining data. Then the likelihood function for a
new set of observations,,.,, would be a function off e, only:

1 _
= 51| (Xnew = TrewP) X, ' (Xnew — TnewP)" (18)

The maximum of (18) can be found by differentiating (18) By.w and setting the derivative to
21
zero:

Thew = XnewSy PT(PEPT) 1 (19)

This estimate will be used in the comparisons made in Section 5. The unconstrained maximum
likelihood method is referred to as maximum likelihood latent root regression (MLLRR).
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4. CONTINUUM REGRESSION FRAMEWORK

4.1. The continuum regression method

Consider the case whekg = aﬁl kandX, = a;‘jl m- That is, within an observation (row) the errors are
independent and identically distributed. Note that W¥thand2., both known, the data can always be
rotated and scaled to this case. This could be considered a pretreatment of the data.

In this case the generalized eigenvalue equation (10) becomes

1 1
(—2 XTXXTX + —ZXTYYTX> W = XTXWD (20)
oy ay

Multiplying (20) by oyoy and lettingo,/oy = ¢ gives
GxTxxTx + qSXTYYTX)W = X"XWD* (22)

whereD* = o,0,D. Equation (21) now gives an expression for a continuum regression depending on
the parametep, which represents the ratio of the error standard deviations in the two spaces. This
parameter can vary from zero to infinity.

In the case where — oo, the magnitudes of the errorsihare much larger than thoseYh In this
case, equation (21) becomes

(XTYYTX)W = XTXWD (22)

The solution to this equation is that the columnd/dfare the redundancy variates for predictivig
from X.?2 Thus the solution in this case approaches that of RRR.

In the case where — 0, the magnitudes of the errorsYhare much larger than thoseX In this
case, equation (21) becomes

(XTXXTX)W = XTXWD (23)

The solution to this equation is that the columnsViéfare the firsta principal components oX.
Therefore the solution in this case approaches that of PCR.

Thus in this special case the maximum likelihood solution provides a continuum regression from
RRR to PCR depending on the parametgwhich is the ratio of the overall error standard deviations
betweenX andY.

4.2. Related continuum regression methods

The continuum regression method developed above is mathematically equivalent to principal
covariate regression (PCovE)However, PCovR was defined as a simultaneous least squares fit to
both X andY with a weighting parametet. That is, the objective function for determinifigis

max o X —TP|* + (L - a)|lY ~ TQ|/* (24)

subject to
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TT =1 (25)
T =XW (26)

The constrainT = XW is given as a model constraint rather than as a parameter estimation constraint.
The parametery varies from zero to one. In Reference 18 the parametdés not given any
interpretation and it is suggested that it be determined from cross-validation.

Another multivariate continuum regression method has been proposed by Brooks and®Stone.
Here the objective function is a multiplicative one where the latent vetter¥c; satisfy
max(ciTXTYIi)z(ciTXTXci)(“/uﬂ))*l

Cisl\

(27)

subject to

cdea=1INi=1 (28)

with future latent directions being chosen such ttiTaxT Xc; = 0foralli # j. This objective function

is justified simply as a compromise between maximizing the variance of the véctoxg; in the
predictor space and its predictive ability fgr No physical interpretation is given far, which is
again estimated using cross-validation on the data. This continuum goes from PCR &40 RRR

asa — 0. At a =7 the method is equivalent to SIMPES(a method very similar to PLS). This
objective function is also not justified from any statistical model but rather from an intuitive criterion.
It should give somewhat similar results to the special case of ML for appropriate valugsio€e the
objectivlcz function is roughly the product of the two terms summed in the objective function for
PCovR:

4.3. Maximum likelihood methods that assume no latent structure in X

In some recent papers that include discussions of PLS, the problem of multivariate regression has
been considered using the standard regression model

Y =XB+F (29)

with X and Y having the same dimensions as in SectiorB2is a k x m matrix of regression
coefficients and~* is an n x m matrix of random errors. In this mode{, is assumed to be full rank,
with any errors being small relative to thoseYnso that they can be ignored. Thus no structure is
assumed foK. In some cases a latent structure is assumed floy constraining the rank d to be
less than or equal ta < m. This model is called the reduced rank regression model.

If the standard or reduced rank regression model is assumed, then the methods OLS, CCR and RRR
can be derived from them as maximum likelihood methods under certain model assumptions. OLS is
the maximum likelihood solution if the standard regression model is considered with the réws of
assumed i.i.d. multivariate normal with covariance matrfk. RRR and CCR can be derived as
maximum likelihood methods if the reduced rank médéf is considered. Here the rows Bfare
once again considered to be i.i.d. multivariate normal with covariance n&trik 3 is unknown,
then the maximum likelihood solution for estimatiBgis equivalent to regressing on the firsta
canonical co-ordinates of, thus resulting in CCR. If X is known and equal te?l,, then the
maximum likelihood solution for estimatirg is equivalent to regressing on the firsta redundancy
variates ofX, thus resulting in RRE?
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4.4. Fitting the methods into the framework

In order to fit the methods into the continuum regression framework, it is useful to consider the
objective functions that the estimated latent variables from each method satisfy. In order to do this,
we will consider the SIMPLS version of PLS, as it satisfies a simpler objective function than PLS but
gives very similar estimates in most cas&s’ The derivation of these objective functions is given in
Reference 17. The estimated latent variables for PCR satisfy the objective of maximum varidnce in
They do not take into account any information ab¥ui he other three methods, SIMPLS, RRR and
CCR, all consider the correlation between the latent variable estimate and a corresponding vector in
Y; however, they all consider different objectives relative to the variance of the estimated latent
vectors and the corresponding vectors Yn CCR considers only correlation; RRR considers
correlation and high variance for the vectorMnand SIMPLS considers covariance, i.e. correlation
plus high variance in botiX andY.

In Section 4.1 the maximum likelihood method gave a continuum regression between PCR and
RRR depending on the ratio of the error standard deviations. This continuum therefore moves from
estimatingT using the high-variance directions X, regardless of their relationship with any
directions inY, to estimatingr using the directions iX that have high correlation with high-variance
directions inY, regardless of their variance. We hypothesize that the middle of the continuum should
estimateTl with vectors that have high variance in both spaces and high correlation within each pair.
This would give an objective function similar to SIMPLS or PLS. CCR alone of all the methods does
not consider variance in either space as a criterion. Therefore it does not seem to have any place in the
framework formed by the special case of the constrained maximum likelihood method.

Also notice that the two methods that were derived from a maximum likelihood analysis of a model
without any latent structure iX, CCR and RRR, resulted in methods that did not consider the
variance of the latent vector i in their objective functions. The constrained maximum likelihood
method (ML) and the unconstrained maximum likelihood method (MLLRR), both based on the
LVMR model, did consider variance of the latent vector in ¥aiepace in their objective functions.

PLS also considers variance in thespace in its objective function. This suggests that it is this latent
structure inX that leads to the variance of the latent vectorXibeing considered in the objective
function. This explains some of the confusion that has arisen when PLS has been compared on the
basis of the standard or reduced rank models with such methods as ordinary least squares (OLS),
multivariate ridge regression (R&J,shrinkage method$?® CCR and RRR. For examples of such
comparisons see References 8-10. When the data do not have any latent structukespabe, it

would seem likely that methods that arise from models that reflect this would be more effective. In the
framework derived in Section 4.1, the variancé&iins not considered at the extreme where the errors

in X are very large relative to those Yh This arises more from the practical point that if the errors in

X are very large, it will be impossible to separate the latent structure from the eiXobased on a
variance criterion.

5. SIMULATION STUDY

The simulation study considers the continuum regression method derived in Section 4.1. To enable
easy illustration of the results, this study is done for a system whéias a single dimension, i.e. is a
vectort. For each run the vectaris generated as a vector of randdifD,1) variablesX andY both
containm=k =5 variables and = 30 observations and were generated for each run for both the
training andtestsets. The model for the data is
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Figure 1. Average of correlation between true and estimatazttors versus log of ratio of varianceﬁ(gﬁ)
for ML

X =1[11111 + E (30)
Y =t[11111 + F (31)

where the rows o andF are multivariate normal with zero mean and covariance matdf:l&_,sand

o§|5 respectively. A designed experiment is run as a full factorial on two faoi@randof,, both at

four levels (@2, 04, 0B 18). This provides a range for the square of the ratio of the two standard
deviations ¢*= 02/02) from 01125 to 8. The experiment was run 1000 times.

The responses measured are the correlations between the truet aectde estimated vectbfor
each parameter estimation method (PLS, CCR, RRR, PCR, ML and MLLRR) for bothathig
andtestsets. The estimates of the latent variable fortdstset are done using (11) for the methods
PLS, CCR, RRR, PCR and ML, and using (19) for MLLRR.

As discussed in Section 4.1, at low variance ratios (high error variancaéative to that inX),

ML and PCR are expected to be close, and at high variance ratios (high error variahative to
thatinY), ML and RRR are expected to be close. It is the purpose of this study to illustrate this point
and also to compare ML with the other methods (PLS, CCR and MLLRR) for various values of the
variance ratio. MLLRR is included to demonstrate the impact of the constraint (3).

Figure 1 gives the average value of the correlation between the true veatdrits estimaté for
the ML method as a function of the log of the variance ratio. It can be seen here that for this
simulation, ML gives reasonably high average correlations for botlr#iiging andtestsets. It also
demonstrates that the correlation is lower for the higher values of the ratio of the variances. This is
because the estimates of the latent variable were restricted to be a functionXofittta. Therefore
they are more adversely affected by high errorXithan by high errors iry.

Figure 2 contrasts estimates obtained by ML with those obtained by PLS, RRR, CCR and PCR for
thetraining set. The quantity plotted is the difference between the correlations between the estimated
and true values of the vectbiobtained by ML and one of the other methods. A positive difference
implies that the ML method is providing estimatestahat are closer to the truth than the other
method. The plots are box-and-whisker plots with the whiskers extending to cover 95% of the points
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Figure 2. Box-and-whisker plot of differences between correlation between true and estinvaietdrs for
training set for ML and other four methods versus log of ratio of varianoéﬁaf): (@ ML — PCR; (b) ML —

RRR; (c) ML — PLS; (d) ML — CCR

obtained in the simulation (cutting offf®% at either end). The top and bottom of each box are the

75th and 25th percentiles respectively. The middle of the box is the median value for the simulation.
In Figure 2(a), ML and PCR are contrasted, and in Figure 2(b), ML and RRR are contrasted. These
graphs are a clear illustration of the continuum regression framework presented in Section 4.1,
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showing that ML reduces to PCR at low variance ratios and to RRR at high variance ratios. Figure
2(c) compares ML and PLS. It shows that PLS gives correlations very close to those given by ML for
all values of the ratio. This suggests that for this simulation, PLS adapts to the different values of the
error variance ratios in a way similar to that of ML. The difference is highest when the error variance
in X is greatest relative to that M. This is because PLS is maximizing covariance and thus is heavily
influenced by the error variance ¥ Figure 2(d) shows a very different result for the relationship
between CCR and ML. Here we see large differences for all values of the ratio, with the differences
being most pronounced when the varianc'iis large relative to that iiX (directly the opposite of

PLS). This makes sense when one considers that PLS and CCR fall on opposite sides of RRR: PLS
considers both variance K andY, RRR variance irY only and CCR variance in neither. Since the
special case of ML tends to consider ordyvariance at the low values for the ratio and ignores
correlation information, CCR will be very different, as its criterion does not inciideriance and
depends only on correlation between the two spaces. Another feature to note in Figures 2(a)—(d) is
that in general the majority of differences in correlations between this special case of ML and these
methods are positive. This shows that the special case of ML is coming closest to the true vector in the
majority of cases, among the methods considered. Given that estimation of the latent variable basis in
T is its main objective, this result was not unexpected.

In Figure 3 we see that for thiestset the relationships are somewhat different. It is still possible to
see the continuum regression relationship between PCR, RRR and ML in Figures 3(a) and (b).
However, PCR is now performing better than ML on average, whereas RRR seems to be performing
much worse than ML on average. It seems for this particular simulation that ignoring the variance
structure ofX causes the estimates of the latent variables to be further away from the truth even when
X has large errors. This is reinforced by Figures 3(c) and (d), which show PLS (which does consider
the variance structure of) doing better than ML, and CCR (which does not consider the variance
structure inX) doing worse than ML.

In Figure 4, ML is contrasted with the MLLRR method of Wentzetlkl *° In Figure 4(a) they are
contrasted on théraining data, in Figure 4(b) on théest data. In Figure 4(a) there are large
differences between the methods, with MLLRR doing uniformly better particularly when the errors
in X are large. This is because, for tinaining set, MLLRR gets the maximum likelihood estimate for
T without the restriction that = XW. This is particularly significant when the errorsXnare large
relative to those irY, since the MLLRR method makes more use of the more acciratata. In
Figure 4(b), ML and MLLRR are compared on thest data. Here the differences are not as
pronounced, perhaps a reflection of the fact that neither method has acces¥ tg,fdata. In this
example it seems that for the use of the model we have not lost much in restricting our estimates to
have the form (3). The loss is again most pronounced whelY ttiata are relatively more accurate
than theX data.

6. CONCLUSIONS

A constrained maximum likelihood parameter estimation method for the multivariate latent variable
regression model has been developed for the situation where the error covariance maXriaed6f

are known and the estimate of the latent variables is restricted to be a linear combinatiorXof the
variables. The special case where bgtandY had i.i.d. measurement errors was used to develop a
continuum regression method depending on the ratio of the error variancésaimd Y. This
continuum goes from PCR to RRR. This illustrates the dependence of the estimation method on the
relative magnitudes of the measurement errors in Botand Y. It also provides a statistical
framework in which to place some other common methods used for estimation in practice (PLS and
CCR). The work done to date on these methods usually starts at the objective function, choosing one
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Figure 3. Box-and-whisker plot of differences between the correlation between true and estinetais for
thetestset for ML and the other four methods versus log of ratio of varianﬁﬂsr&): (&) ML — PCR; (b) ML —
RRR; (c) ML — PLS; (d) ML — CCR

that is intuitively appealing. This work starts from a statistical model to derive the objective function
(using maximum likelihood as the optimizing criterion).
The simulation study in Section 5 serves to illustrate the performance of ML in estimating the
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Figure 4. Box-and-whisker plot of differences between the correlation between true and estinettus for
ML and MLLRR versus log of ratio of variances3/o7): (a) training set; (b)testset

latent variables relative to the other common latent variable multivariate regression methods for the
case of i.i.d. errors within rows discussed in Section 4.1. It provides some evidence for the hypothesis
(obtained from the continuum regression formulation of ML) that in the central region of the
continuum (which is where the measurement errob$ andY are roughly equal), PLS would in fact

give very similar results to maximum likelihood. It also showed that PLS was always reasonably
close to the maximum likelihood solution for all values in the range studied.

The unconstrained maximum likelihood results were also studied for comparison. The resulting
MLLRR method® showed far better results on thraining set but only marginally better results on
thetestset. For this example at least it appears that restricting the estimate to be a linear function of
the X data still provides reasonable estimates of the latent variable direction.

More research is required on methods of statistical inference based on this model, such as the
estimation of the rank of the latent subspace and confidence intervals for the spaces estimated and for
the predictions obtained.
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APPENDIX I: DERIVATION OF THE PROFILE LIKELIHOOD FORW

First notice that (6) is the sum of two terms, one a functio® @inly and the other a function &
only. Consider the first term and rearrange to obtain
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—%tr 31X~ XWP)T(X — XWP)| (32)

Let P*= W'X "X, and subtract and addWP* twice in (32) as follows:

1
-5t [Egl(x — XWP* 4 XWP* — XWP)T(X — XWP* + XWP* — XWP)} (33)
Multiplying out the last term in (33) and noting that the cross-terms are zero gives

—%tr (3106 = XWP)T(X — XwP*)| - %tr =P - P (P - P)] (34)

The first term is a function of the da¥sl (assumed fixed) and the knol3. Thus a maximum value
over P of (34) is found at the minimum of

S 2P - P)T (P - P)} (35)

This is greater than or equal to zero (Reference 5, p. 476), Sipispositive definite and any matrix
of the form®'® for @ any a x k matrix is positive semidefinite. Thus the maximum of (32) is
obtained forP = P*, giving P=WTX"X. A similar proof givesQ =WT"XTY. Substituting these
results into (6) gives

- %tr (X = XWW TXTX)Z (X — XWW TXTX)T
(Y = XWWTXTY)S L (Y — XWWTXTY)T] (36)
Multiplying out the terms in the trace, rearranging and simplifying gives
- %tr [xz;le +YES YT - WIXTXEIXTX + XTYEQlYTX)W} (37)

The first two terms of (37) have fixed values, therefore a maximum\Waerfound at the maximum
of

1 . .
= [WT(XTXEX IXTX + XTYS, 1YTX)W} (39)

APPENDIX II: DERIVATION OF THE GENERALIZED EIGENVALUE EQUATION RESULT
Let

Mg = XTXZ, XX + XTYE YT, M, = XTX

Copyright[d 1999 John Wiley & Sons, Ltd. J. Chemometrigsl3, 49-65 (1999)



MULTIVARIATE LATENT VARIABLE REGRESSION METHODS 63
and letA; > > > ... > )\, be thea largest generalized eigenvalues satisfying
Mshi = AiMgh;, i=1,...,a (39)
andhq,h,,...,h, be the associated generalized eigenvectors scaled sucHiTﬂldathi =1. Note that if

Ai # A, thenh[ Mh; = 0. If \; = );, theh; andh; can be chosen such thgt M 4h; = 02" Thus assume
that

hiMshj =0 Vi #]j (40)
We wish to show that
tr(WTM3W) (41)
subject to
WTMW = I, (42)

has a maximum value of

>

i=1

which is obtained a¥V = [hy,h,...,h,].

Lemma 128

For A any symmetridk x k matrix andg;, i =1,...,a, mutually orthogonal vectors,

a -TA‘ a
max g gl:z)\i*

O1;---,0a i—1 giTgi i—1

where \j > A5 > ... > A} are thea largest eigenvalues of. This maximum is obtained at
0, i=1,...4 the associated eigenvectors/Aof

The following portion of the proof depends &hbeing full rankk. If X is not full rank, then see
Appendix III. If X is full column rankk, M 4 is positive definite. Therefore it can be expressed as the
product of a non-singular matrid 5 and its transposévl ;= MsM..

Let A=Mz*M3(Mg1)". This is a symmetrik x k matrix. Thus

T .
e (43)

has maximum value
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attained aty;, i = 1,...a, thea largest eigenvectors &. Thusg; is defined by
MsM3(Msh) g = X'g

If we now defineh; = (M gl)T 0, then the following statements are true.

1. The maximum of
tr(WTM3W) = Zw. M 3w, (45)

has its maximum atv; = h;, i =1,....a. This can be verified by substituting fgrin (43).
Theh; satisfy (39).

Theh; satisfy (40).

4. The maximum value is the sum of the corresponding eigenvalues

W

APPENDIX llI: X NOT FULL COLUMN RANK k

If X is of rankr, a<r <k, then SVD can be used to write it as
X = UsV' (46)

whereU isn x r, Sis diagonaly x r,Visr x k, UTU =1, andV'V =1,. If we multiply our model for
X by V, we get

XV = TPV + EV (47)
which can be given in terms of new variablés
X=TP+E (49)
In this model we now hav& full column rankr and the distribution o is normal with covariance
matrix V' 3,V.

We can now use (48) instead of our original equation with no loss of information. Once a solution
has been found, it can easily be expressed in terms of the original

T =XW =XVW = XW (49)
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