
Introduction

Most of chemometric methods are based on the theory of the
matrix or the bilinear model.  However, it is difficult to obtain
physical resolutions due to the indeterminacy of the rotation.
For this reason, the methods for three-way data analysis came
into being.  There are two main types of methods for three-way
data analysis in chemometrics.  Methods of the first type are
based on generalized eigenanalysis, exemplified by generalized
rank annihilation method (GRAM)1 and its extension, direct
trilinear decomposition (DTLD) method.2 The second type of
methods, typically represented by the parallel factors analysis
(PARAFAC) method,3–9 seek to fit a trilinear model to the three-
way data using an iteration procedure.  These methods not only
provide unique physical resolutions but also implement direct
calibration for the components of interest with unknown
components co-existing, due to the so-called “Second-order
calibration advantage”.  Although successful applications of the
PARAFAC algorithm to many chemical problems10,11 have been
made in recent years, there still remain several obstacles
limiting its further applications in many areas.  Among those,
the annoyingly slow convergence problem, often requiring a
much too long procedure to accomplish a three-way data
analysis and the problem of requiring an accurate estimate of
the component number, always leading to great deviations from
the model, are both aspects worthy of detailed considerations.

For the sake of solving the slow convergence problem, several
methods have been reported.3,5,12,13 A more convenient
technique used to accelerate the computing speed is the
combination of compression and alternative least squares.
Alsberg and Kvalheim,14 Kiers and Harshman,15 Bro and

Anderson16 and Kiers17 have utilized this technique to improve
the computing speed.  They accelerated the computing speed by
reducing the size of the original data array to a smaller one with
a principal component analysis procedure.

Jiang et al.18 have proposed an algorithm, coupled vector
resolution algorithm, for chemometric calibration with three-
way data array.  However, there is a requirement of a priori
chemical information while using this method.  That is to say, it
can not be applied to resolve a black system.  On the basis of
what Jiang et al. have done, the present authors provided an
algorithm, alternatively minimizing the coupled vector (COV)
resolution error and the PARAFAC error algorithm (COV-
PAR), to resolve a black system, which has 11 samples
consisting of salicylic acid, gentisic acid and p-aminobenzic
acid.  In the 11 samples, the concentrations of the three drugs
are linearly independent.  The resolved results illustrated that
this algorithm can not only overcome the annoying slow
convergence problem but also the problem of requiring an
accurate estimate of the number of the actual underlying factors.

Theory

The model
In second calibration, each element xijk of X will be expressed

as a sum of a series of products:

(1)

where ai, bj and ck are respectively, the i-th row of A, the j-th row
of B and the k-th row of C and eijk is the error of the element.  In
matrix notation, the trilinear model can be written as follows:

xijk =
F

f = 1

aifbjfckf + eijk

i = 1, 2, ···, I; j = 1, 2, ···, J; k = 1, 2, ···, K.
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X..k = Adiag(ck)B t + E..k k = 1, 2, ···, K (2)

where diag(ck) symbolizes the diagonal matrix of F × F in
which the corresponding diagonal elements are those of the
vector ck and E..k is the residual matrix and “t” denotes the
transpose of matrix.

The algorithm
From Eq. (2), one can obtain the following equation:

(3)

Assume qm to be the m-th coupled vector of factors matrix B,
which satisfies the following equation with m and n varying
from 1 to N.

(4)

Utilizing Eq. (4), one can transform the model Eq. (3) to the
following equation:

X..kqn = cknan + ek,n
a k = 1, 2, ···, K (5)

L1 = ||X..kqn – cknan ||22 k = 1, 2, ···, K (6)

where ek,n
a has been defined as the error vector and || • ||2 defines

the norm of a vector.
Similarly, assume pn as the n-th coupled vector of factor

matrix A, one can obtain:

L2 = ||X..k
Tpn – cknbn ||2 k = 1, 2, ···, K (7)

Here, L1 and L 2 were defined as coupled vector resolution errors
by Jiang.18

This algorithm computes factor matrices A and B with C
fixed using the least squares fit of coupled vector resolution
error L1 and L 2 (COV procedure).  Then it calculates matrix C
with A and B fixed using least squares fit (PAR).

A simple introduction to the computation of factor matrices A
and B by minimizing coupled vector resolution error with
matrix C fixed is presented below.  For further details, the
readers are recommended to consult Ref. 18.

From Eqs. (6) and (7), one can obtain the following equations

using the partial differential equations = 0, = 0,

= 0 and = 0.

(8)

(9)

(10)

K

k = 1

ckn
2

K

k = 1

cknX··kqn

an =

K

k = 1

ckn
2

K

k = 1

cknX··kUS–1α
qn =

2

S–1Ut
K

k,h = 1

cknchnX··k
tX··hUS–1α = α

∂L 2——
∂bn

∂L 2——
∂pn

∂L1——
∂an

∂L1——
∂qn

1   m = n
0   m ≠ n

bn
tqm = 

X··k =
n

cknanbn + E··k    k = 1, 2, ···, Kt

(11)

(12)

(13)

Here U, S and V can be obtained by truncating the first N
columns of matrices, the singular value decomposition of

matrices and ; and are the

eigenvectors of Eqs. (8) and (9), whose corresponding
eigenvalue is the maximal value among all eigenvalues.  This
algorithm calculates the whole A and B matrices with n changed
from 1 to N, using Eqs. (8) – (13) with matrix C fixed.  Then it
computes C with A and B fixed, which is a least-squares-fit
procedure and the same for the following PARAFAC
procedure.

ck
t = [(AtA)*(BtB)]+ diag(AtX..kB)1 (14)

where “ *” defines the hadarmand product of matrices, 1 is a
vector whose elements are all equal to one.

Based on the descriptions above, the algorithm could be
designed as follows: Step 1, Randomly initialized A and B; Step
2, Compute C according to Eq. (14) with A and B fixed (PAR
procedure); Step 3, Calculate A and B according to Eqs. (8) –
(13) with C fixed (COV procedure); Step 4, Update C, A and B
using Step 2 and Step 3 till a pre-assigned stop criterion has
been fulfilled.

Experimental

Salicylic acid, gentisic acid and p-aminobenzoic acid, three
drugs that are difficult to be simultaneously analyzed due to
their closely overlapping fluorescence spectra, are taken as
object analytes of simultaneouly determination in analytical
samples.  The steady state fluorescence of eleven samples of the
aforementioned three drugs was measured in aqueous medium
at pH 7 provided by the addition of phosphate buffer solution.
The real concentrations of each species in eleven samples are
listed in Table 1.  The excitation wavelength was set from 265
to 350 nm at intervals of 5 nm and the emission wavelength
varied from 305 and 550 nm with intervals of 5 nm.  The scan
rate was 1200 nm min–1.  The effect of Rayleigh’s scattering on
each sample was compensated by subtracting the measurement
of a blank from the sample measurement.  Thus a 50 × 18 × 11
data array was collected.  This data array was analyzed using
the COV-PAR algorithm and the ordinary PARAFAC
algorithm, respectively, to recover profiles of each component.

Results and Discussion

Figure 1 shows the resolved excitation spectral and emission
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spectral profiles using the COV-PAR method and the
PARAFAC algorithm as well with N = 3, which is the true
dimensionality of this model.  The concentrations are listed in
Table 1.  The required iteration number of the COV-PAR was 8,
which is less than that (55) of the PARAFAC.  These results
further exemplified the point that the COV-PAR algorithm can
greatly improve the computing speed without loss of accuracy.

To further explore the property of being insensitive to the
estimation of component number, we decomposed the real data
array with N = 4, which is greater than F, using the COV-PAR
algorithm.  The recovered excitation spectral, emission spectral
and concentration profiles shown in Fig. 2 explain that the
profiles of the actual underlying components can be perfectly
resolved, provided that the number of component used in
computation is no less than that of the actual underlying factors.
However, it is well known that the traditional PARAFAC
algorithm will provide a frustrated resolution under such
circumstances.

Conclusion

A method that alternatively minimizes coupled vector resolution
error and PARAFAC error for three-way data resolution was
developed in this paper.  This algorithm reduced the three-step
computation in each iteration in the ordinary PARAFAC
algorithm to two steps.  It can not only overcome the slow
convergence problem but also is insensitive to the estimation of
component number, which is of great importance for second-
calibration.
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Fig. 1 Resolved profiles (dashed lines) of COV-PAR and PARAFAC and true profiles (solid lines) in real
data array with N = 3.  (a), (b) COV-PAR against true and (c), (d) PARAFAC against true.

Table 1 Recovered concentration using the COV-PAR and the 
PARAFAC with N = 3 (ppm)

Sample
Real

concentration
COV-PAR PARAFAC

A B C A B C A B C
1 560 640 0 572 640 –3 572 639 –7
2 720 960 0 729 963 –3 729 962 –12
3 560 0 800 542 1 812 542 1 805
4 720 640 800 733 640 815 733 638 801
5 0 960 800 4 963 809 4 965 826
6 720 0 1200 6 3 1186 706 2 1170
7 0 640 1200 6 618 1186 8 619 1201
8 560 960 1200 567 963 1196 567 962 1188
9 0 0 800 1 2 809 0 5 825

10 0 960 0 9 965 –2 –10 967 19
11 720 0 0 710 2 –6 709 1 16

MAE 9.5 4 8.3 9.6 4.5 14

All values have been multiplied by 104.
MAE is defined as the mean absolute error between the expected 
profiles and the actual profiles.  
A, Salicylic acid; B, gentisic acid; C, p-aminobenzoic acid.



References

1. E. Sanchez and B. R. Kowalski, Anal. Chem., 1986, 58,
499.

2. E. Sanchez and B. R. Kowalski, J. Chemometrics, 1990, 4,
29.

3. P. Paatero, Chemometrics Intell. Lab. Syst., 1997, 38, 223.
4. J. D. Carroll and J. J. Chang, Psychometrica, 1970, 35, 283.
5. R. A. Harshman, UCLA Working Papers Phonet., 1970, 16,

1.
6. H. A. L. Kiers and W. P. Krijnen, Psychometrica, 1991, 56,

147.
7. W. P. Krijnen, “The Analysis of Three-way Arrays by

Constrained PARAFAC Methods”, 1993, DSWO Press,
Leiden.

8. R. Bro, Chemometrics Intell. Lab. Syst., 1997, 38, 149.

9. W. S. Rayens and B. C. Mitchell, Chemometrics Intell.
Lab. Syst., 1997, 38, 173.

10. P. Geladi, Chem. Intell. Lab. Syst., 1980, 7, 11.
11. R. Bro, Chem. Intell. Lab. Syst., 1997, 38, 149.
12. B. C. Mitchell and D. S. Burdic, J. Chemometrics, 1994, 8,

155.
13. R. Bro and Sijmen De Jong, J. Chemometrics, 1997, 11,

393.
14. B. K. Alsberg and O. M. Kvalheim, Chem. Intell. Lab.

Syst., 1994, 24, 43.
15. H. A. L. Kiers and R. A. Harshman, Chem. Intell. Lab.

Syst., 1997, 36, 31.
16. R. Bro and C. A. Anderson, Chem. Intell. Lab. Syst., 1998,

42, 105.
17. H. A. L. Kiers, J. Chemometrics, 1998, 12, 155.
18. J.-H. Jiang, H.-L. Wu, Z.-P. Chen, and R.-Q. Yu, Anal.

Chem., 1999, 72, 4254.

756 ANALYTICAL SCIENCES   MAY 2003, VOL. 19

Fig. 2 Resolved profiles (solid lines) of COV-PAR and true profiles (dashed lines) in real data array with
N = 4.  (a) Emission profiles against True, (b) excitation profiles against true and (c) concentration profiles
against True.


