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Some recent probabilistic choice models for paired com- 
parisons data are reviewed. First, the differences between 
various forms of stochastic transitivity are explained. It 
is then argued that in order to be realistic, a pairwise 
choice model should be a moderate utility model; that is, 
it should imply moderate stochastic transitivity, but not 
necessarily strong stochastic transitivity. Subsequently, 
three recent families of  pairwise choice models are intro- 
duced that satisfy this requirement. These models are for- 
mulated mainly in an informal manner, stressing their 
rationale rather than their formal derivation. The models 
are illustrated from data about celebrities collected by 
Rumelhart and Greeno (1971). In the conclusion it is 
argued that the present models may very well form the 
basis for a new paradigm for studying multiattribute 
choice behavior. 

Preferential choice data compose one of  the most im- 
portant classes of  data on human judgment  to be under- 
stood and modeled by psychologists and other behavioral 
scientists (e.g., sociologists, political scientists, and mar- 
keting researchers). Whether one is (a)  a social psychol- 
ogist or a sociologist concerned with understanding the 
basis for social preferences, (b)  a political scientist con- 
cerned with political choice by voters (or potential voters) 
o r - -even  more impor tan t ly - -by  political figures such as 
congressmen and senators, or (c) a marketer concerned 
with understanding and predicting consumer behavior 
involving choice among different brands or products, 
preferential choice is a pervasive and exceedingly impor- 
tant human behavioral function. In fact, because every 
human behavior can be viewed as defining a choice among 
some set of available alternatives, one might argue that 
choice is the most  fundamental characteristic of  human 
behavior (or of  the behavior of  nonhuman organisms). 

Restricting ourselves to human  behavior, we may 
define a choice experiment as one in which a human 
subject must choose one from a finite set of  alternatives 
on each of  a number  of  different occasions. Perhaps the 
simplest such choice experiment is the forced choice, 
paired comparisons experiment in which the subject 
chooses one of two presented alternatives on each occa- 
sion (or trial). A complete paired comparisons experi- 
ment  is one in which each subject makes such choices 

for all pairs of  some finite set of  n stimuli or objects. A 
replicated paired comparisons experiment is one in which 
the subject makes choices among each pair more than 
one time, with an assumed independence of  the choices 
involving the same pair from trial to trial. With many 
classes of  stimuli (e.g., well-known political candidates) 
it is unrealistic to assume independent replications be- 
cause memory  of  the choice made on the previous trial(s), 
coupled with a tendency toward (apparent)  consistency 
in behavior, would tend to induce a strong positive cor- 
relation among these choices from trial to trial. Therefore, 
in most cases, replicated data are only possible by rep- 
licating over different individual subjects, who are often 
treated as if they were independent replications of a single 
subject. 

Given a single (unreplicated) set of  paired compar- 
isons data, we can construct a rank order of  preference 
for the subject making those judgments, if  the data are 
completely consistent. By consistent, we mean that if  a 
is preferred to b, and b to c, then a is always (by tran- 
sitivity) preferred to c. However, inconsistencies or fail- 
ures of  transitivity (sometimes called circular triads) often 
occur in actual choice data. Even in this case, one can 
usually construct an approximate rank order that mini- 
mizes the number  of  choices inconsistent with that order 
(or some other criterion), which will typically give a fairly 
good account of  the data. With replicated data, rather 
than an all-or-none choice for one element of  each pair, 
we have an observed frequency that can be easily trans- 
formed into a relative frequency estimating the proba- 
bility of  choosing a over b, written as 
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p(a, b) -- Prob(a ~- b), 

where >- means is preferred to. Of course, in a forced 
choice situation, p(a, b) + p(b, a) = 1, because we are 
excluding the option of no choice or indifference. In this 
case, the notion of transitivity in a deterministic sense (if 
a >- b and b >- c, then a >- c) must be replaced by a 
weaker and more probabilistic notion called stochastic 
transitivity. First, we need to define the concept of sto- 
chastic dominance. Because we do not necessarily assume 
complete consistency over replicated choices, p( a, b) will 
generally deviate from 0 or l, being somewhere in be- 
tween. We say that stimulus a stochastically dominates b 
i fp (a ,  b) > 1/2 (i.e., i f a  is chosen over b more often than 
not). The weakest form of stochastic transitivity states 
that if a stochastically dominates b, and b stochastically 
dominates c, then a stochastically dominates c. In prob- 
ability notation, this can be stated as p (a ,  b) > i/2 and 
p(b, c) > 1/2 implies p(a ,  c) > 1/2. Actually, weak stochastic 
transitivity (WST) states something a bit more general, 
in which >- is replaced by ~ ,  meaning is preferred to or 
is equally preferred as, reflecting the fact that if a is equally 
preferred to b, and b to c, we would expect the same to 
hold for a and c (i.e., indifference is assumed transitive, 
as well as stochastic dominance). Later in this article, we 
define some stronger forms o f  stochastic transitivity, 
moderate stochastic transitivity (MST) and strong sto- 
chastic transitivity (SST), which are central to our overall 
thesis. 

Assume for the moment that for a given individual 
there is a single underlying preference order of the stimuli. 
It is plausible in this case to assume that preference order 
reflects an underlying scale or dimension of preference, 
which, to use a more economic term, might be associated 
with the utility of the stimulus for that subject. The more 
utility a stimulus has, the greater the subject's degree or 
order of preference for that stimulus. When we translate 
this into probability of choice of a over b, it is reasonable 
to assume that in general, the greater the difference in 
the utility, the more that probability will deviate from a 
neutral value of i/2. One plausible assumption in fact is 
to assume that the probability of preferring a to b is a 
strictly increasing function of the difference in utility of 
stimulus a and b, or 

p(a, b) = F [ u ( a ) -  u(b)],  (1) 

where u(a) denotes the utility of a and where F is an 
increasing function so that F[0]  = 1/2 (i.e., no difference 
in utility values leads to indifference between the alter- 
natives). Because p( a, b) + p( b, a) must, as discussed, 
equal 1, F must satisfy F[u(a)] = 1 - F[-u(a)] .  It 
turns out that a large and very important class of prob- 
abilistic or stochastic choice models leads to probabilities 
of pairwise choice of exactly this form. Any pairwise 
model that satisfies Equation 1 is a strong utility model 
(SUM). Perhaps the best-known and most widely used 
SUM is Thurstone's (1927) model of comparative judg- 
ment Case V, in which the function F is simply the stan- 
dard normal ogive (i.e., the standard normal cumulative 
distribution function), whereas the utility defining pref- 

erence scale values, u(a) ,  u(b) . . . . .  constitutes a latent 
variable that is estimated from replicated paired com- 
parisons data (e.g., Torgerson, 1958). Another well- 
known example of a SUM is what is sometimes called 
the Bradley-Terry-Luce model (Bradley & Terry, 1952; 
Lute, 1959 ), in which F is the logistic function. Although 
Bradley and Terry had originally proposed this model 
simply because it had useful statistical properties and 
seemed empirically to describe human choice behavior 
quite well, Luce derived this form from more fundamental 
principles in his seminal work on individual choice be- 
havior. 

Although stochastic choice models of this form seem 
very intuitively appealing, they all have strong stochastic 
transitivity, which has counterintuitive (and empirically 
invalid) consequences for certain classes of  stimuli that 
belong to strongly multidimensional domains. Strong 
stochastic transitivity implies that if stimulus a stochast- 
ically dominates b and b stochastically dominates c, then 
p(a, c) must be at least as large as the largest o fp (a ,  b) 
and p(b,  c). Although this property seems appropriate 
for highly unidimensional stimuli, such as different 
amounts of  money or grades of beef, differing only in a 
well-defined attribute of quality (in which utility is a 
monotonic or order-preserving function of  this single un- 
derlying dimension), it is not so clearly appropriate in 
domains in which the stimuli are inherently multidimen- 
sional. For example, a strong utility model implies that 
if one is indifferent to the choice between a vacation to 
Hawaii and a vacation to Acapulco, and the probability 
of choosing Hawaii-plus-$1 over Hawaii-alone is 1.0, then 
the probability of choosing Hawaii-plus-$1 over Acapulco 
must also be equal to 1.0. Although realistically the ad- 
dition of the dollar to the same vacation (say, Hawaii) 
presumably would always be chosen (by a "rational" de- 
cision maker) over that vacation alone, the addition of a 
dollar to the Hawaii vacation package would be very un- 
likely to increase the probability of  choosing that very 
slightly enhanced Hawaii package (over that of a vacation 
to Acapulco) to any measurable degree at all. 

Thus, it would seem that for many realistic multi- 
dimensional stimulus domains SST seems too strong. On 
the other hand, WST seems too weak. Weak stochastic 
transitivity would allow p(a, c) to be only, say, 0.51, al- 
though p(a, b) = p(b, c) = 0.99, for example, which 
certainly seems counterintuitive in most realistic choice 
situations. An intermediate condition, moderate sto- 
chastic transitivity, would seem more appropriate. It states 
that i f p ( a ,  b) > t/2 and p(b, c) > 1/2, then p(a, c) must 
simply be at least as great as the smaller o f p ( a ,  b) and 
p(b, c). Thus, in our Hawaii, Acapulco, and Hawaii- 
plus-$1 example, the probability of choosing Hawaii-plus- 
$1 over Acapulco need only be at least as large as that of 
choosing Hawaii (alone) over Acapulco. 

A model that exhibits MST, but not necessarily SST, 
is called a moderate utility model (MUM; Halff, 1976). 
As already suggested, the essential ingredient for a MUM 
is that the stimuli be multidimensional. In our vacation 
example, there were at least two clear dimensions--type 
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of  vacation ( Hawaii vs. Acapulco) and money (the extra 
dollar). 

Although choices for multidimensional stimuli may 
satisfy SST (e.g., when the subject, as it were, combines 
the dimensions in some fashion to define a single utility 
dimension, which then determines the choice probabil- 
ities by Equation 1 ), the existence of more than a single 
dimension seems almost a conditio sine qua non for MST, 
but not SST, to hold. Thus, we assume henceforth that 
there are at least two, but possibly more, psychological 
dimensions in terms of which the stimuli can be described. 
Perhaps the simplest model for combining two or more 
dimensions to get a single utility value is to simply take 
a linear combination of  them to arrive at a utility u = 
W l X  1 "~- W 2 X  2 -~-" ° " +  W R X R ,  where xt ,  x2, . . . ,  xR are 
values on R stimulus dimensions, w~, w2 . . . . .  wR are R 
weights, and u is the utility value resulting from taking 
the weighted combination of the R dimensions defined 
by these weights. If these weights are fixed once and for 
all, then we have the situation in which a single utility 
scale determines choice behavior on all trials or occasions. 
Suppose, however, that these weights are not fixed, but 
vary according to some multivariate distribution function 
from trial to trial. This is the central assumption of  the 
first and simplest model we discuss in this article--the 
wandering vector (WV) model. 

Wandering Vector and Wandering 
Ideal Point Models  

To introduce the WV model, we need to define more 
precisely the idea of a vector in a multidimensional space. 
For present purposes, a vector is a directed line segment 
in an R-dimensional space, emanating from the origin of 
the coordinate system. The terminus of a vector defines 
its direction from the origin and its length. A vector can 
be uniquely defined by the coordinates of its terminus 
on the R dimensions, or coordinate axes, that characterize 
the R-dimensional space. These coordinates can be 
thought of  as simply the perpendicular projections of  the 
terminus of  the vector on the R coordinate axes. Given 
the vector, these coordinates are uniquely defined; con- 
versely, given the coordinates, the vector is uniquely de- 
fined. A vector w, then, can be thought of as simply a 
collection of  coordinates (w~, WE . . . . .  WR). A point in 
a space is, geometrically, simply a special kind of vector 
that is conceived in terms of the locus of the terminus 
only, rather than as a directed line segment. So a point, 
x, in an R-dimensional space with a fixed origin and 
coordinate system can also be represented as a vector x = 
(x,, x2 . . . . .  xR). 

An operation that is very important in the mathe- 
matics of vector spaces is the scalar product. Given the 
coordinate representation of  two vectors, say w = (wt, 
WE . . . . .  WR)' and x -- (xl,  x2 . . . . .  xR)', the scalar product 
o fw  and x, often written w-x ,  can be defined to be the 
number (or scalar) 

R 

W *  X -~- ~_j W r X  r = W I X  1 + W 2 X  2 "~- . . . "~- W R X  R .  

r = l  

Thus, the scalar product of two vectors is a weighted 
combination of the coordinates of  one vector (x) ,  with 
the coordinates of  the other (w) defining the weights. The 
geometric interpretation of the scalar product operation 
is that its value is simply the length of the projection of  
the point x onto the vector w, multiplied by the length 
of  vector w. Or, to turn this around, the projection of x 
onto w is the scalar product of  x and w divided by the 
length of  w. But the Pythagorean theorem tells us (at 
least for Euclidean spaces, which we will assume for now) 
that the length of a vector w, denoted by [ I w l I, is simply 
the square root of the scalar product with itself; that is 

I lwll = C~ .w- -  w?. 

So, the projection o fx  onto w is proportional to the scalar 
product of  x and w, with 1 / I I w [ I being the cons tant  of 
proportionality. Thus, if we assume that the utility of  a 
stimulus, u, is defined by a weighted linear combination 
of the R stimulus dimensions, it is geometrically equiv- 
alent to saying that utility is proportional to the projec- 
tions of the stimulus points onto a vector (w) in that 
space. I fw is a unit length vector, so that I I wl I -- 1, then 
the utility equals this projection. 

In the WV model (Carroll, 1980; De Soete & Carroll, 
1983) we assume that the vector that determines the 
weights of the linear combination is not fixed, but varies 
from trial to trial. It is, however, fixed on a particular 
trial. Our assumption is that, on each paired-comparisons 
trial, the subject projects each of the two stimuli being 
compared onto the momentarily fixed vector, and chooses 
the stimulus with the largest projection. Because we have 
seen the connection between projecting a point onto a 
vector and defining a weighted combination of dimen- 
sions, we can equally well say that the subject evaluates 
the same weighted combination of  the values of the two 
stimuli on the R dimensions, and chooses the element of  
the pair for which that weighted combination value yields 
the higher value. This assumed process is illustrated geo- 
metrically in Figure l, for the standard WV model. In 
this standard WV model, the distribution of vectors is 
assumed to be multivariate normal, with mean or centroid 
vector tz, and with zero covariances and equal variances 
for all dimensions. This simply means that the particular 
vector y = (y~, Y2 . . . . .  yR)' sampled on a given trial is 
sampled from a distribution in which each component 
Yr (r  = l, 2, . . . ,  R)  is itself a (univariate) normally 
distributed random variable with a mean/z,  (where #, is 
the rth component of the centroid vector #) and a com- 
mon variance that can (without loss of generality) be 
assumed equal to 1. The fact that the covariances of every 
pair of  coordinates, say Yr and Ys (r  # s) are zero, means 
(for the multivariate normal distribution) that yr and ys 
are independent random variables. 

We summarize this by saying that Y,., where II,- de- 
notes the multivariate random variable whose value on 
a particular trial is Yi (the momentarily sampled vector), 
has a distribution that is N(tz;, I) ,  which denotes a mul- 
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Figure 1 
Illustration of the Wandering Vector Mode/ for  a 
Single Subject i 

"Standard" Wandering Vector (WV) Model 
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tivariate normal distribution with mean or centroid vector 
~,i and covariance matrix equal to the identity matrix I. 
(I is a square matrix with all off-diagonal entries = 0, 
and all diagonal entries = 1.) As we can see in Figure 1, 
this process will result in different momentary orderings 
of preference. In the example shown, we can see that 
stimulus j ,  represented by point xj, is preferred to stimulus 
k by subject i on that particular trial, as the projection 
of xj onto the momentarily sampled vector y~ is greater 
than that of Xk onto y~ (so the corresponding momentary 
weighted linear combination of the R = 2 dimensions is 
greater fo r j  than for k, in the judgment of subject i). It 
is easy to see that the order of projections o f j  and k on 
other vectors (sampled on other trials) could easily reverse 
that momentary preference--in fact, the projections on 
the centroid vector, #~, which can be viewed as the most 
likely vector to be sampled for subject i, reverses that 
order. 

The circle shown in Figure 1 is what is called the 
ellipse of concentration for the bivariate distribution of 
the two dimensions of the wandering vector, Yi, for subject 
i. We can think of this as defining the region of the space 
in which some fixed percentage (say 95%) of the termini 
of the vectors will fall. For bivariate normal distributions, 
these regions of concentration will generally be ellipses 
of arbitrary orientation and degree of ellipticity. For the 

special case in which the covariance matrix is a scalar 
matrix (all variances are equal and all covariances are 
zero), the ellipse of concentration becomes a circle. In 
the standard WV model, the covariance matrix is a special 
scalar matrix, called the identity matrix, in which the 
value of the variances is 1. If R were greater than 2, we 
would be dealing with the generalized multivariate case. 
Here the ellipse of concentration becomes an ellipsoid, 
whereas in the special case of an identity covariance ma- 
trix (or some other scalar matrix), the circle becomes an 
R-dimensional sphere. The WV model can also account 
for individual differences in preference behavior by dif- 
ferent subjects (or different subgroups of subjects) by as- 
suming each subject (or subgroup) to have a different 
centroid vector t~i. In the standard WV model, all of the 
subjects would be assumed to have the same (identity) 
covariance matr ix--but  in the general formulation of the 
WV model (De Soete & Carroll, 1986, in press), different 
subjects (or subgroups) could have different covariance 
matrices, Z,-, as well. For a single subject (or subgroup), 
one can always assume, without loss of generality, that 
the (single) covariance matrix is an identity (so the stan- 
dard WV model is general enough for a single subject), 
but in the general case of more than one subject, this 
assumption imposes real constraints on the model! Re- 
turning to Figure 1, then, we may think of the circle (or 
sphere) of concentration in the standard WV model as 
defining the region in which (say) 95% of termini of the 
sampled vectors will fall. Sampling a vector with a ter- 
minus outside that region is possible, but unlikely. 

The next model we consider is the wandering ideal 
point (WlP) model (De Soete, Carroll, & DeSarbo, 
1986). This generalizes the Coombs (1950, 1964) and 
the Bennett and Hays (1960) multidimensional unfolding 
model, in which preference is assumed to be based on 
closeness to an ideal stimulus point, rather than to pro- 
jections of stimuli onto a vector. The standard WlP model 
(in which, again, the covariance matrix ~i is constrained 
to be an identity matrix) is illustrated in Figure 2. Here, 
the general principle is exactly the same as in the WV 
model, except that the individual, i, is assumed to evaluate 
subjectively the distance (assumed here to be Euclidean ) 
between xj and yi, and compare that with the distance of 
Xk to Yi. Stimulusj is chosen over k whenever d(xj, y~) < 
d(Xk, yi), whereas stimulus k is preferred to j if the op- 
posite order of these distances obtains. In the paired com- 
parisons choice trial illustrated in Figure 2, xj is closer to 
Yi than is xk, so j  is preferred to k on that trial. 

In the WIP model, unlike the WV model, the as- 
sumption that ~ = I, even for the case of only one subject 
(or subgroup), cannot be made without loss of generality, 
and so puts definite constraints on the model. In the stan- 
dard model, which is illustrated in Figure 2, this as- 
sumption is made, so the ellipse (or ellipsoid) of concen- 
tration (of the distribution of wandering ideal points) 
again becomes a circle (or sphere). 

Although the WV model appears to be quite differ- 
ent, it can be shown that it is a special limiting case of 
the WIP model, which obtains when the ideal points be- 
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Figure 2 
Illustration of the Wandering Ideal Point Model for a 
Single Subject i 

"Standard" Wandering Ideal Point (WIP) Model 

Y i -N  (I,J.i, I) 

\ \  
d(x 
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come infinitely distant from the stimuli, in some direction. 
As derived in De Soete and Carroll (1983) and De Soete 
et al. (1986), a general expression for the probability of 
preferringj to k, written as Pjk, for the standard versions 
of the WV and WlP models (for one subject) can be 
stated as follows: 

with 

( u: - ur I 

u7 -- u j "  u ' x j  

for the WV model (where uj = t~" xj  is simply a mathe- 
matical shorthand for the scalar product of  the centroid 
vector tt and the stimulus vector xj, as discussed earlier), 
whereas 

1 u7 = ~ . x j -  ~ I lxjl 12 
(2) 

1 
= u j -  ~ I lxjl 12 

for the WIP model. The quantity d(xj,  x~) denotes the 
Euclidean distance between the points representing stim- 
uli j and k. This general form of the choice model, in 
which the probability is an increasing function F (such 
as ¢ ) ,  of  a difference in utility between j and k, divided 
by a metric function defining dissimilarities between j 
and k, was shown by Halff(1976) to provide a necessary 

and sufficient condition for such a model to be a MUM. 
It turns out that the WIP model is of  the same general 
form, but simply with the term 1/21 I xjl 12 subtracted from 
uj. We can also see from this equation that the WV model 
is a special case of the WIP model. This occurs when the 
squared lengths of  the vectors representing the stimulus 
points, xj, all become "vanishingly small" relative to the 
quantities uj. This happens when the centroid ~ grows 
infinitely large relative to the typical (say, the maximum) 
length of  vectors representing the stimuli (assuming the 
centroid of those stimulus points is constrained, without 
loss of  generality, to be at the origin of the coordinate 
system). Stating this in a more precise mathematical way, 
as the ratio of  the length of  tt to the maximum (over all 
stimuli j )  of  the length of any stimulus vector approaches 
infinity, u* approaches u j, so that the equation for Pjk in 
the WIP model approaches that for pjk in the WV model. 
Thus, the WV model is a limiting case of  the WIP model 
with the centroid of the ideal point distribution ap- 
proaching infinity (in some direction). Although we have 
stated this only for the special case of the WlP model 
with only one subject, and with identity covariance ma- 
trix, the same is true when the covariance matrix is more 
general, and when there is more than one subject (cf. De 
Soete & Carroll, 1986, in press; De Soete, Carroll, & 
DeSarbo, 1989). (A closely related discussion of the de- 
terministic vector model as a special case of the deter- 
ministic unfolding model can be found in Carroll, 1972, 
1980. In the latter, this is demonstrated geometrically, as 
well as algebraically.) 

Stochast ic  Tree Unfolding M o d e l s  
The third family of models we consider are discrete tree- 
structure models of choice. Here, we no longer assume 
that the stimuli can be represented spatially by means of 
a small number of continuous dimensions. Rather, it is 
assumed that the choice objects can be characterized by 
means of  discrete stimulus features that are organized in 
a particular way, namely a tree. These stochastic tree un- 
folding (STUN)  models either assume a hierarchically 
organized t ree-- the  type often associated with hierar- 
chical clustering--or a so-caUedJ?ee or unrooted tree in 
which no (necessary) hierarchical organization is implied. 
Associated with these two types of tree structures are two 
types of  metrics that are most naturally associated with 
each. Just like in the spatial unfolding model on which 
the WIP model is based, the subjects and the stimuli are 
jointly represented in a single structure in the same way. 
Whereas in the spatial unfolding model the subjects and 
the stimuli are presented by points in a Euclidean space, 
in the STUN models the subjects and the stimuli are rep- 
resented by terminal nodes of a tree on which a metric 
is defined. The distance between the nodes representing 
a subject and a stimulus determines the utility of that 
stimulus for that subject. 

A general tree with stimuli and subjects both rep- 
resented as terminal nodes, is illustrated in Figure 3. This 
tree can  be viewed either as a hierarchical tree or as an- 
other type of nonhierarchically organized tree commonly 
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Figure 3 
Illustrative Two-Set Tree 

h7 

h5 h6 

$ ' ~ h  4 

A 1 B C D 2 E F 
Note. "rile terminal nodes labeled 1 and 2 represent subjects, whereas the 
nodes labeled A-F represent stimuli. 

I I 

called a free tree, additive tree, or path-length tree. In the 
case of hierarchical trees, the most natural metric or dis- 
tance function is the ultrametric. It can be viewed as being 
defined by associating heights with internal nodes of  the 
hierarchical tree and defining the distance between two 
terminal nodes as the height of their least common ances- 
tor node (i.e., the first internal or ancestral node at which 
the two meet as one ascends the hierarchical tree toward 
the root or universal ancestral node in that tree). This is 
illustrated in Figure 3 for a hierarchical tree with eight 
terminal nodes. The tree in Figure 3 is what is sometimes 
called a two-set tree, in which the terminal nodes (those 
at the bottom of  this inverted t ree--with the root at the 
top) are from two sets of entities. The nodes labeled l 
and 2 can be thought of as corresponding to subjects (in- 
dividuals making preferential choice judgments), and the 
nodes labeled by letters correspond to the stimuli about 
which the preference judgments are m. ade. The heights 
in an ultrametric tree must satisfy a partial order; that 
is, the height of  a superordinate node must be greater or 
equal to that of one subordinate to it. Thus, h5 must be >_ 
hi and h2, and h6 ~ h3 and h4, whereas h7 must be >__ any 
of  the other six heights. Therefore, in this illustrative ex- 
ample, d~a = hi, dis = d~c = h5 > hi, whereas did = 
d~E = d~F = h7 (->h5 > hi),  so that if this were a tree 
unfolding representation, Subject 1 would be predicted 
to prefer A to any of the other stimuli, to prefer either of 
stimuli B or C to any of D, E ,  or F,  but to be indifferent 
between the pair A and B or among the set D, E ,  and F.  
(Analogous statements could be inferred about the quite 
different preferences of  Subject 2 in Figure 3). We can 
view such a hierarchical tree as representing the stimuli 
in terms of  discrete features that happen to be hierar- 
chically organized in a fashion consistent with such a 
tree; then the internal nodes correspond to these features. 
The terminal node at which a subject appears would rep- 
resent that subject's most preferred stimulus, character- 
ized in terms of  these features. A subject's ideal stimulus 
may correspond to one of the actual stimuli represented 

in the same feature tree or may correspond to a set of 
features not corresponding to any actual stimulus. 

One-set trees have frequently been used to represent 
the conceptual structure of stimuli as reflected in simi- 
larity data (cf. Carroll, 1976; Carroll & Chang, 1973; 
Carroll & Pruzansky, 1980; De Soete, 1983, 1984; John- 
son, 1967; Sattath & Tversky, 1977). In the case of a one- 
set ultrametric tree, a very strong condition, called the 
ultrametric inequality, can be shown to hold for the dis- 
tances. The ultrametric inequality states that for any three 
points A, B, and C, the following inequality holds 

dAc <- max(dan, dBc), 

which can easily be shown to be equivalent to the con- 
dition that every triangle must be acute isosceles (i.e., 
isosceles with the two largest distances equal). The ul- 
trametric inequality is a special case of, and thus a much 
stronger condition than, the triangle inequality 

dac <- dab + dBc, 

which is one of the metric axioms that hold for any metric 
(e.g., the Euclidean metric or distance function most often 
assumed in one form or other in multidimensional scaling 
of similarity data). As shown by Furnas (1980), given a 
two-set tree, for which only the between-set distances are 
known, a somewhat more general condition holds, called 
the two-set ultrametric condition. This can be stated in 
terms of the following inequality: 

dla < max(dtB, d2a, d2s), 

1 and 2 being any two objects from the first set (say, 
subjects) and A and B any two from the second set (say, 
stimuli). This two-set ultrametric condition was used by 
De Soete, DeSarbo, Furnas, and Carroll ( 1984a, 1984b) 
to implement a method of fitting an ultrametric tree un- 
folding model to rating scale judgments of preference, in 
the form of a subject by stimuli matrix of preference rat- 
ings (or other "dominance" values). In unfolding theory, 
such a rectangular preference score matrix can be inter- 
preted as an off-diagonal proximity matrix, so that the 
entries can be viewed as linearly or monotonically related 
to distances between these two sets (with no data relating 
to distances within either se t - -among subjects or among 
stimuli). 

The second form of  metric associated with a tree is 
a path-length or additive metric, in which each branch, 
or link, in the tree has associated with it a length (some- 
times called a weight), and the distance between two ter- 
minal nodes (or two internal nodes, for that matter) is 
the length of the unique path connecting them. In Figure 
3 we have indicated lengths for the subtree of the larger 
tree that falls below Internal Node 5. In this case, the 
distance from Subject 1 to Stimulus A is d~a = X1 + ~,2, 
whereas d~s = ~2 + ~5 + ~ + X3, and dlc = ~2 + ~5 + 
X6 + M. There is no constraint on these lengths (except 
nonnegativity), so the order of these three distances could 
be anything whatever ( dis can be greater than or less than 
d~c depending on whether Xa is greater than or less than 
M, whereas each of the two distances could be either 
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larger or smaller than dla depending on the values of these 
branch lengths). A two-set path-length (or additive) tree 
does impose structure on the possible preference ordering 
however, when a larger number of objects (or stimuli) 
and subjects is involved. In fact, going back to the case 
of a one-set tree structure, there is a certain four-point 
condition that must hold on the distances for them to be 
consistent with a path-length tree. We shall not state that 
four-point condition here, but we refer the reader to Car- 
roll (1976) for a discussion of this. It turns out that a 
certain six-point condition derived by Brossier (1986) 
obtains for a two-set path-length (or additive) tree. Thus, 
there must be at least six points (three from each set) for 
nontrivial constraints to be imposed on preference or- 
derings by this model. Although ultrametric and path- 
length trees may seem to be quite different, there are some 
well-defined relationships between them. Every ultra- 
metric tree can be easily converted into a path-length 
tree, whereas every additive tree can be decomposed into 
the sum of an ultrametric tree and a tree with a single 
internal node (often called a star tree by graph theorists). 
For a further discussion of these relationships, see Carroll 
(1976) and Carroll and Pruzansky (1980). 

The STUN models were first introduced by Carroll, 
DeSarbo, and De Soete (1987), with further develop- 
ments published by Carroll, DeSarbo, and De Soete 
( 1988, 1989); Carroll and De Soete ( 1990); and DeSarbo, 
De Soete, Carroll, and Ramaswamy (1988). The name 
given to the most general family of STUN models is 
GSTUN. The GSTUN model can begin with either an 
ultrametric or a path-length tree as the structural com- 
ponent, entailing a two-set tree with n stimuli and m (> 1 ) 
subjects. In GSTUN the continuous parameters--the 
heights of the internal nodes in the case of an ultrametric 
tree or the lengths of the branches in the case of a path- 
length tree--are assumed to vary independently from one 
paired-comparison trial to another, following a multivar- 
iate normal distribution. This leads to a form for the 
model that is remarkably similar to the WV or WIP 
models, namely 

/ ,  (3) 

where d o. is the expected tree distance between subject i 
and stimulus j and 6ijk a generalized Euclidean distance 
defined in terms of a matrix called the path matrix. The 
path matrix is an indicator matrix that defines the heights 
or branch lengths, as the case may be, that are included 
in the definition of the distance for a particular subject- 
stimulus pair. 

More recently, Carroll and De Soete (1990) pro- 
posed a particularly interesting special case of GSTUN, 
assuming a path-length tree and a very special structure 
on the covariance matrix of the multivariate normal dis- 
tribution of the branch lengths. First, we assume that the 
(off-diagonal) covariances are all zero, so that the co- 
variance matrix is diagonal. We then assume that these 
diagonal values, the variances, are equal to the means of 

the corresponding variables. A simpler way to describe 
this model is to say that it is a path-length tree model (on 
n stimuli and m subjects) in which the lengths Lb of the 
2(n + m) - 3 branches b are assumed to be independently 
univariate normally distributed with mean ~b and vari- 
ance ~b 2 =/~b; that is, 

We initially called this model a quasi-Poisson case of the 
GSTUN model, as the distribution of each branch length 
simulates an independent Poisson process that has a mean 
equal to its variance. A Poisson process, although leading 
to a discrete distribution, is a not unnatural process to 
assume for such branch lengths. Hence, this model seems 
particularly appealing as a first approximation to a 
GSTUN model replacing normal with Poisson distri- 
butions. Because the variables that directly affect the Piyk'S, 
and thus are of most importance in this model, are sums 
oftbese independently distributed random variables, the 
central limit theorem would tend to guarantee that the 
results of our quasi-Poisson model would not differ too 
much from a true Poisson model, in which the branch- 
length distributions follow precisely a Poisson distribu- 
tion. There is, after all, a theoretical problem in assuming 
branch lengths, which should be positive, to be normally 
distributed, as this implies at least the possibility of a 
negative branch length occurring. But the robustness im- 
plied by the central limit theorem would seem to spare 
us this embarrassment, at least asymptotically! More re- 
cently, we have noted that a more general model, assum- 
ing the variances to be merely proportional, not equal, 
to the respective branch length means, leads to exactly 
the same form of the choice probabilities Pijk. We have 
also renamed this model the Probabilistic Additive Tree 
Unfolding (PATU) model (see De Socte & Carroll, in 
press, for a further discussion). 

Thus, the PATU model is a special case of GSTUN, 
assuming a path-length or additive tree, in which the 
branch lengths are independent random variables, Lb, 
with 

Lb "~ N(Ub, ot~), 

for some positive constant a. The choice probabilities 
predicted by the PATU model are 

= ~[ d i k -  do) 

where do. , duo and d/k are all path-length distances between 
the relevant pair of entities--subject and stimulus pair 
for the numerator distances; stimulus pair for the distance 
appearing in the denominator oftbe expression to which 
the standard normal distribution function is applied. (As 
proved in the article by Carroll & De Soete, 1990, the 
generalized Euclidean distance 60k that appears in the 
denominator of Equation 3 becomes the square root of 
the additive tree distance between stimuli j and k and is 
independent of i under the distributional assumptions 
made in this PATU model. Thus, the PATU model is a 
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moderate utility model leading to pairwise choice prob- 
abilities that are a function of only distances in a single 
two-set path-length tree, leading to the probability that 
subject i prefers stimulus j to stimulus k being a strictly 
increasing function of the difference in tree distance be- 
tween the subject and the two stimuli divided by the 
square root of the tree distance between the stimuli.) 

Illustrative Applications 
We now illustrate the models and associated (maximum 
likelihood) methods of fitting them to paired comparisons 
data on some data collected by Rumelhart and Greeno 
( 1971 ). Rumelhart and Greeno collected pairwise pref- 
erence judgments for interviewsmeach lasting 15 min- 
utes-with  various celebrities. The nine celebrities con- 
sisted of three politicians (Charles De Gaulle, Lyndon B. 
Johnson, and Harold Wilson), three female movie stars 
(Bri0tte Bardot, Sophia Loren, and Elizabeth Taylor), 
and three male athletes (A. J. Foyt, Johnny Unitas, and 
Carl Yastrzemski). The subjects, 234 undergraduates, 
were treated as replications of each other, so that only 
the aggregate-level paired comparisons data are available. 
Each subject was asked, for each pair of celebrities, whom 
he or she wanted to interview for 15 minutes. At the time 
the data were collected, all of the celebrities were alive 
and both considerably younger and more relevant to these 
student subjects than they would be today. The actual 
9 × 9 paired comparisons matrix, whose general entry is 
the relative frequency for the corresponding pair for which 
the row stimulus (celebrity) was preferred to the column 
stimulus, is listed in the article by Rumelhart and Greeno 
(1971). 

Spatial Analyses 
Both the WV and WIP models were applied to these data. 
Because the fitting procedure uses a maximum likelihood 
procedure, it is possible to use the associated statistical 
test of significance to infer both the appropriate dimen- 
sionality and the comparative fit of the models. It was 
found that the WIP model fit the data better than did the 
WV model. Thus, we were able to draw the rather precise 
conclusion, statistically speaking, that out of this partic- 
ular class of spatial multidimensional models for pairwise- 
choice data, the two-dimensional WIP model represented 
these data most accurately. Not only that, but we could 
conclude that the WIP model with a general covariance 
matrix did not fit these data statistically better than did 
the standard WIP model, in which the covariance matrix 
is constrained to be an identity matrix. Thurstone's 
(1927) model of comparative judgment Case V was also 
fit to these data, and it was found that this strong utility 
did not fit the data very well. The fact that a two-dimen- 
sional WIP model, rather than the Thurstone Case V 
model, was selected is consistent with the conclusion 
reached by Rumelhart and Greeno ( 1971 ) that the con- 
dition of strong stochastic transitivity was violated in these 
data. Not only are we able to infer a specific two-dimen- 
sional model, but we can construct, via our analysis, the 
two dimensions on which this model is based, as well as 

the position of the centroid of the distribution of ideal 
points. Because the standard WIP model was fit, both 
the orientation of the coordinate axes in this two-dimen- 
sional space and its orion are arbitrary. The solution we 
obtained is shown in Figure 4, with a rotation of coor- 
dinates and location of the orion chosen so as to optimize 
interpretability of the resulting configuration. The first 
axis can be interpreted as political versus entertainment 
figures, with the three politicians on the right and the 
various movie stars and sports figures on the left. (Re- 
flection of the axes is permissible, of course, so we could 
have reversed the left-right polarity of these two types of 
celebrities had we desired.) We have placed the orion of 
this two-dimensional configuration so that we can further 
divide it into four quadrants. The lower fight quadrant 
contains the three political figures (who all happen to be 
male). The lower left quadrant contains all of the athletes 
(who also happen to be all male), and the upper left 
quadrant contains the movie stars (all female). Thus, the 
second (vertical) dimension could be interpreted simply 
as gender (male vs. female) or as contrastingmfor the 
entertainment figures, those who are movie stars with 
those who are sports figures. Unfortunately, because the 
gender attribute is completely confounded with the movie 
stars versus athlete distinction, while there are no female 
political figures included, we cannot use these data to 
conclude with certainty whether the second dimension is 
gender, actors versus athletes, or (most likely ) a composite 
of the two. It would be interesting to replicate this study 

Figure 4 
Representation of the Rumelhart and Greeno (1971) 
Data According to the Two-Dimensional Wandering 
Ideal Point Model 
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with a larger group of celebrities including male movie 
stars, female athletes, and such female political leaders 
as Margaret Thatcher, Indira Ghandi, or Golda Meir. We 
would speculate that, if some of the latter (none of whom, 
with the exception ofGolda Meir, were politically prom- 
inent when these data were actually collected, however) 
were included, they would at least fill the now empty 
fourth upper right quadrant in Figure 4--or, even more 
likely, would serve to unconfound the gender and the actor 
versus athlete dimensions. 

The location of the centroid of the ideal point dis- 
tribntion (centroid ideal point in Figure 4 ) indicates that 
the average of these 234 subjects tended to prefer to in- 
terview Lyndon B. Johnson over other figures, and gen- 
erally preferred to interview politicians over either movie 
stars or athletes. It should be kept in mind that the two 
dimensions displayed in Figure 4 were inferred entirely 
from a single (aggregated) matrix of paired comparisons 
preference data (although we did have the freedom to 
rotate the axes and shift the origin of the space to optimize 
interpretability). This is remarkable in view of the fact 
that it was once the popular view among most psychol- 
ogists that the most one could hope to infer from such a 
matrix of paired comparisons preferences would be a sin- 
gle best order or unidimensional preference scale. That 
we can infer information not only about the utility of the 
choice alternatives but also about the similarity structure 
of the alternatives, seems astounding when viewed from 
this perspective, which was prevalent as recently as, say, 
25 or 30 years ago. Both our sophistication in modeling 
such complex data and (perhaps even more importantly) 
the enormous power provided by today's high-speed 
computers, coupled with appropriate statistical meth- 
odology and elegant numerical analysis techniques, have 
made what once seemed a virtual impossibility a relatively 
straightforward routine analytical tool. 

Tree-Structure Analysis 

Next, we illustrate the application of a particular version 
of a stochastic tree unfolding model that was discussed 
in the previous section, namely the PATU model, to the 
same preferences for interviewing these nine celebrities. 
The resulting additive tree structure is shown in Figure 
5. This specific analysis was first reported in Carroll and 
De Soete (1990), although the tree was drawn in a some- 
what different way. Here, we have drawn the tree structure 
not only to emphasize, as well as possible, how analogous 
conclusions can be drawn about the preference judgments 
of these subjects, but also to emphasize the differences 
necessarily implied by these rather different structural 
models (a tree structure vs. a two-dimensional spatial 
structure). We see that the longest internal branch in this 
unrooted tree separates the politicians from the enter- 
tainment figures--consistent with the distinction implied 
by the first dimension in Figure 4. Although, as drawn 
here, there is a branch separating the (female) movie stars 
from the (male) athletes, it is not, by any means, one of 
the larger ones in the tree. In fact, we can see that Brigitte 
Bardot is closer to the male athletes in this tree-structure 

I 

Figure 5 
Representation of the Rumelhart and Greeno ( 1971) 
Data According to the Probabilistic Additive Tree 
Unfolding Model 
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representation than she is to either of the other female 
movie stars. Furthermore, the political figures (all men 
in this example) are all closer in the tree representation 
to the (female) movie stars than to the (male) athletes. 
This is somewhat inconsistent with the interpretation of 
the second dimension in Figure 4 as gender. It suggests, 
in fact, that perhaps the second dimension really reflects 
an actors versus athletes distinction and correlates with 
gender only because of the accidental confounding of 
those two attributes. In the PATU representation in Figure 
5, we can see that the ideal point node is, again, closest 
to the node representing Lyndon B. Johnson and generally 
closer to the politicians than to the entertainment figures. 
Thus, we can conclude that the two different types of 
representation of these paired comparisons data lead to 
highly similar conclusions in many respects, although 
there are some obvious differences between the two rep- 
resentations. Hence, the two types of representations 
should not be regarded as competitive but rather as com- 
plementary, as we argued elsewhere for the case of prox- 
imities data (Carroll, 1976; Carroll & Pruzansky, 1980 ). 

Conclusion 
As we have seen quite clearly in the two rather different 
analyses of the same data set in the previous section, the 
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class o f  mode l s  and  associa ted  me thods  discussed in this  
ar t ic le  provide  poten t ia l ly  powerful  p rocedures  for infer- 
r ing under ly ing  con t inuous  d imens ions  or  discrete  fea- 
tures  f rom pa i r ed -compar i sons  data.  I t  is i m p o r t a n t  to 
note  tha t  these d imens ions  or  features ( the  la t ter  in the  
form of  a discrete  t ree  s t ruc tu re )  are  inferred ent i rely 
f rom these preference  da t a  alone,  wi thout  any  a pr ior i  
i n fo rma t ion  or  theore t ica l  a s sumpt ions  as to wha t  these 
d imens ions  or  features  a re  or  migh t  be. N o t  only is this  
a powerful  me thodo logy  for the  s tudy o f  m a t u r e  h u m a n  
choice behavior,  it  also provides  a po ten t ia l  me thodo logy  
for inferr ing percep tua l  (o r  even conceptua l  ) d imens ions  
or  features  under ly ing  the behavior  o f  infants,  m e m b e r s  
o f  p r imi t ive  cu l tu res  lacking the  verbal  skills requi red  to  
make  such relat ively complex  s imi lar i ty  judgments ,  or  
even o f  lower organisms.  For, a l though j u d g m e n t s  o f  s im- 
i lar i ty  or  d i ss imi la r i ty  usual ly  require  some degree of  ver- 
ba l  or  at  least symbol ic  ability, choice behavior,  par t ic-  
ular ly  the  s imple  behav ior  exhib i ted  in m a k i n g  a forced 
choice be tween two alternatives,  is abou t  the  mos t  fun- 
damen ta l  form of  behavior  observable on the par t  o f  either 
h u m a n  or  n o n h u m a n  organisms,  at  all stages o f  ma tu -  
ra t ion  or  educa t iona l  a t t a inment .  Thus,  mode l s  and  
me thods  of  the  type  i l lus t ra ted  in this  ar t ic le  could  very 
well fo rm the basis  for a new p a r a d i g m  in which  the es- 
sential  mu l t i d imens iona l i t y  o f  the  behavior  o f  organisms 
at  all levels o f  evo lu t ionary  and  ma tu ra t iona l  scales can 
u l t imate ly  be discovered.  

We believe we have only begun  to see the emergence  
of  such a new p a r a d i g m  for the  scientific s tudy o f  the  
mul t id imens iona l  s t ruc ture  o f  preferent ia l  choice.  We ea- 
gerly await  the  man i fo ld  and  as yet  to ta l ly  unan t i c ipa ted  
shapes this  new p a r a d i g m  may  assume wi th in  the next  
decades.  

REFERENCES 

Bennett, J. E, & Hays, W. L. (1960). Multidimensional unfolding: De- 
termining the dimensionality of ranked preference data. Psychome- 
trika, 25, 27-43. 

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete 
block designs: 1. The method ofpaired comparisons. Biometrika, 39, 
324-345. 

Brossier, G. (1986). Etude des matrices de proximit6 rectangulaires en 
vue de la classification [ The study of rectangular proximity matrices 
for classification]. Revue de Statistique Appliqudes, 35, 43-68. 

Carroll, J. D. (1972). Individual differences multidimensional scaling. 
In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.), Multidi- 
mensional scaling: Theory and applications in the behavioral sciences 
(Vol. 1, pp. 105-155). New York: Seminar Press. 

Carroll, J. D. (1976). Spatial, non-spatial and hybrid models for scaling. 
Psychometrika, 41, 439-463. 

Carroll, J. D. (1980). Models and methods for multidimensional analysis 
of preferential choice ( or other dominance) data. In E. D. Lantermann 
& H. Feger (Eds.), Similarity and choice (pp. 234-289). Bern, Swit- 
zerland: Huber. 

Carroll, J. D., & Chang, J.-J. (1973). A method for fitting a class of 
hierarchical tree structure models to dissimilarities data and its ap- 
plication to some "body parts" data of Miller's. Proceedings of the 
81st Annual Convention of the American Psychological Association, 
8, 1097-1098. 

Carroll, J. D., DeSarbo, W. S., & De Soete, G. (1987). Stochastic tree 
unfolding (STUN) models. Communication & Cognition, 20, 63-76. 

Carroll, J. D., DeSarbo, W. S., & De Soete, G. (1988). Stochastic tree 
unfolding (STUN) models: Theory and application. In H. H. Bock 
( Ed.), Classification and related methods of data analysis (pp. 421- 
430). Amsterdam: North-Holland. 

Carroll, J. D., DeSarbo, W. S., & De Soete, G. (1989). Two classes of 
stochastic tree unfolding models. In G. De Soete, H. Feger, & K. C. 
Klauer (Eds.), New developments in psychological choice modeling 
(pp. 161-176). Amsterdam: North-Holland. 

Carroll, J. D., & De Soete, G. (1990). Fitting a quasi-Poisson case of 
the GSTUN (General Stochastic Tree Unfolding) model and some 
extensions. In M. Schader & W. Gaul (Eds.), Knowledge, data and 
computer-assisted decisions (pp. 93- ! 02 ). Berlin, Germany: Springer- 
Veflag. 

Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling 
models. In E. D. Lantermann & H. Feger (Eds.), Similarity and choice 
(pp. 108-139). Bern, Switzerland: Hans Huber. 

Coombs, C. H. (1950). Psychological scaling without a unit of mea- 
surement. Psychological Review, 57, 145-158. 

Coombs, C. H. (1964). A theory of data. New York: Wiley. 
DeSarbo, W. S., De Soete, G., Carroll, J. D., & Ramaswamy, V. (1988). 

A new stochastic ultrametric unfolding methodology for assessing 
competitive market structure and deriving market segments. Applied 
Stochastic Models and Data Analysis, 4, 185-204. 

De Soete, G. (1983). A least squares algorithm for fitting additive trees 
to proximity data. Psychometrika, 48, 621-626. 

De Socte, G. (1984). A least squares algorithm for fitting an ultrametric 
tree to a dissimilarity matrix. Pattern Recognition Letters, 2, 133- 
137. 

De Soete, G., & Carroll, J. D. (1983). A maximum likelihood method 
for fitting the wandering vector model. Psychometrika, 48, 553-566. 

De Soete, G., & Carroll, J. D. (1986). Probabilistic multidimensional 
choice models for representing paired comparisons data. In E. Diday, 
Y. Escoufier, L. Lebart, J. Pagts, Y. Schektman, & R. Tommasone 
(Eds.), Data analysis and informatics IV(pp. 485--497). Amsterdam: 
North-Holland. 

De Soete, G., & Carroll, J. D. (in press). Probabilistic multidimensional 
models of pairwise choice. In E G. Ashby (Ed.), Multidimensional 
models of perception and cognition. Hillsdale, NJ: Erlbaum. 

De Soete, G., Carroll, J. D., & DeSarbo, W. S. (1986). The wandering 
ideal point model: A probabilistic multidimensional unfolding model 
for paired comparisons data. Journal of Mathematical Psycholog£, 
30, 28--41. 

De Soete, G., Carroll, J. D., & DeSarbo, W. S. (1989). The wandering 
ideal point model for analyzing paired comparisons data. In G. De 
Socte, H. Feger, & K. C. Klaner (Eds.), New developments in psycho- 
logical choice modeling (pp. 123-137 ). Amsterdam: North-Holland. 

De Soete, G., DeSarbo, W. S., Furnas, G. W., & Carroll, J. D. (1984a). 
The estimation of ultrametric and path length trees from rectangular 
proximity data. Psychometrika, 49, 289-310. 

De Soete, G., DeSarbo, W. S., Furnas, G. W., & Carroll, J. D. (1984b). 
Tree representations of rectangular proximity matrices. In E. Degreef 
& J. Van Bnggenhaut (Eds.), Trends in mathematical psychology (pp. 
377-392). Amsterdam: North-Holland. 

Furnas, G. W. (1980). Objects and their features: The metric represen- 
tation of two class data. Unpublished doctoral dissertation, Stanford 
University. 

Halff, H. M. (1976). Choice theories for differentially comparable al- 
ternatives. Journal of Mathematical Psychology, 14, 244-246. 

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 
32, 241-254. 

Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. 
New York: Wiley. 

Rumelhart, D. L., & Greeno, J. G. ( 197 ! ). Similarity between stimuli: 
An experimental test of the Luce and Restle choice models. Journal 
of Mathematical Psychology, 8, 370-381. 

Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychome- 
trika, 42, 319-345. 

Thurstone, U L. (1927). A law of comparative judgment. Psychological 
Review, 34, 273-286. 

Torgerson, W. S. (1958). Theory and methods of scaling. New York: 
Wiley. 

Apr i l  1991 • A m e r i c a n  Psychologist  351 


