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1. Introduction

In this paper, we focus on the modeling of three-way three-mode binary
data. An example of such data, which we will use throughout the paper, is a
binary situation by behavior by person data array D with dijr = 1 if situa-
tion ¢ elicits behavior j from person k and 0 otherwise. For the modeling of
such data, Ceulemans, Van Mechelen, and Leenen (2003) recently proposed
the Tucker3-HICLAS model as a new member of the family of hierarchical
classes models for n-way n-mode binary data (De Boeck and Rosenberg, 1988;
Van Mechelen, De Boeck, and Rosenberg, 1995; Leenen, Van Mechelen, De
Boeck, and Rosenberg, 1999; Leenen, Van Mechelen, and De Boeck, 2001;
Ceulemans et al., 2003; Ceulemans and Van Mechelen, in press).The Tucker3-
HICLAS model reduces each of the three modes of D to a few binary variables,
called bundles, and links the three sets of bundles in a three-mode binary core
array; the bundles are further restricted to represent the quasi-order relations
among the elements of a mode. Obviously, the Tucker3-HICLAS model is the
hierarchical classes counterpart of the Tucker3/3MPCA model for three-way
three-mode real-valued data (Tucker, 1966; Kroonenberg and De Leeuw, 1980;
Kroonenberg, 1983) which, as a generalization of two-way two-mode princi-
pal component analysis (PCA), reduces each mode of a three-mode real-valued
data array to a few components and interrelates the three sets of components by
means of a three-mode real-valued core array. Both the Tucker3-HICLAS and
the Tucker3/3MPCA model have been successfully applied in various substan-
tive contexts (e.g., Kuppens, Van Mechelen, Smits, De Boeck, and Ceulemans,
2003; Realo, Koido, Ceulemans, and Allik, 2002; Kroonenberg, 1983).

An algorithm has been proposed to fit the Tucker3-HICLAS model to
data. The resulting solutions can be considered unconstrained in that the algo-
rithm may look in the whole solution space for the best fitting solution. How-
ever, in some substantive applications it may be desirable to search only a part
of the solution space as one may wish to incorporate substantive knowledge
or hypotheses into the analysis. For the Tucker3/3MPCA model, several au-
thors have shown that the latter may be achieved by imposing constraints on
the model and by developing an algorithm for fitting the constrained model
to data (see e.g., Bro, 1998; Kiers, Ten Berge, and Rocci, 1997). For exam-
ple, in the area of chemometrics one may wish to estimate physical properties
like concentrations by means of a Tucker3/3MPCA model. As concentrations
can only have non-negative values, this implies that one wishes to consider
Tucker3/3MPCA solutions with non-negative component scores only. Bro and
De Jong (1997) showed that the latter can be accomplished by means of an
algorithm that fits Tucker3/3MPCA models that are constrained to include non-
negative component scores only.

P
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In this paper, we describe how in Tucker3-HICLAS applications the ex-
isting Tucker3-HICLAS model (i.e., 'the formal’) may be adapted to substan-
tive questions and hypotheses associated with specific data sets (i.e., ‘the sub-
stantive’). In particular, we show that one may take such substantive knowledge
on the data into account by imposing constraints on the model. Considering
some of the constraints that have been proposed for the real-valued counter-
part of the Tucker3-HICLAS model - non-negative component scores (Bro and
De Jong, 1997), component scores with equal values (Kiers and Smilde, 1998),
unimodal component scores (Bro and Sidiropoulos, 1998), fixing a number of
core entries to zero (Kiers, 1992; Kiers et al., 1997), and smooth component
scores (Timmerman and Kiers, 2002) -, one may realize that the number and
variety of possible Tucker3-HICLAS constraints is huge. Therefore, we orga-
nize a wide range of possible Tucker3-HICLAS constraints into a taxonomy;
this taxonomy may also be useful for classifying a variety of Tucker3/3AMPCA
constraints. Furthermore, we investigate which features of the existing Tucker3-
HICLAS algorithm have to be adapted for fitting the different types of con-
strained Tucker3-HICLAS models, and propose three examples of appropri-
ately adapted algorithms for fitting three specific constraints.

The remainder of this paper is organized as follows: In Section 2, the
existing Tucker3-HICLAS model is briefly recapitulated and a taxonomy of
Tucker3-HICLAS constraints is proposed. In Section 3, we describe the exist-
ing Tucker3-HICLAS algorithm and report an algorithmic analysis. In Section
4, we illustrate constrained Tucker3-HICLAS with three applications from re-
search on psychiatric diagnosis and on personality. Section 5 contains some
concluding remarks. »

2. Model

2.1 The Existing Tucker3-HICLAS Model

The Tucker3-HICLAS model approximates an I (situations) x J (behav-
iors) X K (persons) binary data array D by an I x J X K binary model array M,
which can be further decomposed into an I x P binary situation bundle matrix
A, a J x @ binary behavior bundle matrix B, a K X R binary person bundle
matrix C, and a P x Q x R binary core array G, where (P, Q, R) denotes the
rank of the model. In the following, the hypothetical situation by behavior by
person array M in Table 1 will serve as a guiding example; Table 2 presents a
(2,2,2) Tucker3-HICLAS decomposition of M.

As all hierarchical classes models, a Tucker3-HICLAS model rcpresents
two types of structural relations in M: the association relation among the three
modes and the quasi-order relation on each of the three modes.

Association. The association relation is the ternary relation among the
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Table 1. Hypothetical Tucker3-HICLAS reconstructed data array

Pers. 1 Pers. 2 Pers. 3
Beh. Beh Beh.

Sit. 1 2 3 4 Sit. 1 2 3 4 Sit. '1 2 3 4
1 1 0 0 1 1 0 0 0 O 1 1 0 0 1
2 1 0 0 1 2 0 0 0 O 2 1 0 0 1
301 1 1 3 1 1 1 1 3 11 1 1
4 1 1 1 1 4 1 1 1 1 4 1 1 1 1

situations, behaviors, and persons as defined by the 1-entries of the array M.
The Tucker3-HICLAS model represents the association relation by the follow-
ing association rule:

P Q@ R

Myjk = @ @ @ @ipb;§ChrIpgrs ¢y

p=lg=1r=1

where €D denotes the Boolean sum. The latter implies that a situation i, a be-
havior 5, and a person k are associated in M iff a situation bundle, a behavior
bundle, and a person bundle exist, to which 4, j, and k respectively belong, and
that are associated in G. For example, in Table 2, Situation 3 elicits Behavior
1 from Person 2, because the second situation bundle (SBs), the first behav-
ior bundle (BB;), and the second person bundle (PB,), to which Situation 3,
Behavior 1, and Person 2 belong, respectively, are associated in G.

Quasi-order. A quasi-order < is defined on each mode of M. In the
case of the situation mode, situation 7 < situation ¢’ in M iff the set of (behav-
ior, person) pairs associated with i constitutes a subset of the set of (behavior,
person) pairs associated with 7'. The Tucker3-HICLAS model represents the
quasi-order relation among the situations in that i < ¢ iff a; < a; (i.e., in
terms of subset-superset relations among the corresponding bundle patterns).
For example, Situation 1 and Situation 2 have identical association patterns in
Table 1; consequently, Situations 1 and 2 have identical bundle patterns in the
Tucker3-HICLAS model of Table 2. Furthermore, in Table 1, the association
pattern of Situation I is a proper subset of that of Sitnation 4; hence, in Table 2,
the bundle pattern of Situation 1 is a proper subset of the bundle pattern of Situ-
ation 4. The quasi-order relations among the behaviors and persons are defined
and represented similarly. )

Ceulemans et al. (2003) also proposed a comprehensive graphical repre-
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Table 2. Tucker3-HICLAS Model for the Data in Table 1

Bundle matrices Core array
Sit. Beh. " Pers. Pers.
bundle bundle bundle bundle
‘ Sit. Beh.

Sitt §By SBy; Beh. BBy BB; Pers. PB, PB, bundle bundle PB, PB;
1 1 o 1 1 0 1 1 0 $SB, -.BB; 1 0
2 1 0 2 0 1 2 0 1 SB, BB, 0 0
3 0 1 30 1 31 1 $SB, BB, 0 1
4 1 1 4 1 1 SB, BB, 1 1

sentation of a Tucker3-HICLAS model from which the two types of structural
relations can be read; the latter will be introduced in the illustrative applications
section.

2.2 Taxonomy of Constraints

Imposing a constraint on a Tucker3-HICLAS model may be formalized
as follows: One requires A, B, C and/or G to belong to a precisely defined
subset of the set of Boolean arrays of the prespecified size. To obtain a firmer
grip on the wide range of possible Tucker3-HICLAS constraints, we propose
to classify them into a taxonomy based on four features of the constraints. (1)
What is the locus of the constraint: does it pertain to a bundle matrix or to
the core array? (2) What is the nature of the constraint: are the values of the
parameters constrained - i.e., is the value of specific bundle matrix/core entries
fixed -, or is the structure of the parameter set constrained - i.e., do the bundle
matrix/core entries have to fulfil a specific structural property, without their
values being fixed (similar to Thurstonian simple structure in factor analysis or
to the binary relations described in Coombs’ theory of data, which in matrix
form, upon an appropriate permutation of the rows and columns, come down
to d specific geometric pattern of ones such as a triangle or a parallelogram)
- 7 (3) What is the extent of the constraint: is the constraint imposed on the
whole bundle matrix/core array or just on a part of it? (4) Is the constraint
imposed with or without making use of external information - i.e., information
that is not part of the actual three-way data array under study? Combining these
four features, we end up with a2 x 2 x 2 x 2 taxonomy of Tucker3-HICLAS
constraints. B :

In the-following paragraphs, we will make the latter taxonomy more con-
crete by providing some examples and formalizations of different types of con-
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.
1

crete by providing some examples and formalizations of different types of con-
strained Tucker3-HICLAS models. For clarity’s sake, we will primarily focus
on the first two features of the taxonomy: locus and nature. In particular, we
will give examples and formalizations of each of the resulting 2 x 2 types of
constrained models, these examples, however, also differing with respect to the
last two features of the taxonomy: extent and external information. Through-
out, we will use a fixed substantive context as a basis of our examples, that
is, a context of personality psychology research in which binary data are avail-
able on the (non)occurrence of different types of anger behaviors for different
persons in a series of frustrating situations.

2.2.1 Value Constraints orra Bundle Matrix

This type includes all Tucker3-HICLAS constraints that (with or without
making use of external information) specify the exact value of one or more
bundle matrix entries. For example, the bundle matrix entries of all or a subset
of the situations may be fixed to the values that were obtained in a previous
study (value constraint on the whole or a part of a bundle matrix depending
on external information); for the whole bundle matrix this constraint may be

formalized as follows:
Acurrent — Aprem’ous. (2)

When applied to a subset of the situations, this constraint may be useful, amongst
other cases, if one wishes to expand a set of situations used in previous studies,
as it allows to investigate the relations between an already well-studied subset
of situations and a new subset. _

As a second example, one may consider fixing the number of person
bundles E to 1 as well as all person bundle matrix entries to 1 (value constraint
on the whole bundle matrix without using external information); formally, this
constraint may be written as ’

VE:1...K :¢x1 = 1. 3)

The latter constraint is useful if one hypothesizes that there are no differences
in the situation - behavior profiles of the persons, implying that the persons may
be considered replications of one another.

2.2.2 Structure Constraints on a Bundle Matrix

This type includes all Tucker3-HICLAS constraints that (with or with-
out making use of external information) specify a structural property that (part
of) a bundle matrix has to satisfy. As a first example, consider the property
that a bundle matrix has to take the form of a Guttman scale (Guttman, 1944)
(structure constraint on the whole bundle matrix without making use of external
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information):
Vkl, ko:1...K: (Ckl_ - ck2_) vV (Ckl‘. 2 Ck2.)- “)

Such a ‘Guttman scale can be considered as a quantitative dimension (Gati and
Tversky, 1982). In personality research, such a quantitative dimension may be
postulated for the person mode, as an obvious formalization of a personality
trait.

As a second example, consider the constraint that the person bundle ma-
trix C is the Boolean matrix product of a given K x C partition matrix P, in
which each person is assigned to one of C partition classes, and a C' X R par-
tition class bundle matrix C* (structure constraint on the whole bundle matrix
based on external informration): ‘

C=PgC* (5

Such a property may be of substantive interest when additional data are avail-
able on the grouping of the persons into a number of partition classes like per-
sonality disorders, cultures or education levels, and one is interested in studying
the situation - behavior profiles characterizing each of these partition classes.

2.2.3 Value Constraints on the Core Array

This type includes all Tucker3-HICLAS constraints that (with or without
making use of external information) specify the exact value of one or more
core entries. As a first example, the core entries may be fixed to the values
that were obtained in a previous study (value constraint on the whole core array
depending on external information):

chrrent Gprevzous (6)

usually, such a constraint will be supplemented by constraints that also fix the
entries of the situation and behavior bundle matrices to the values that were
found in this previous study. Such constraints may be considered when one
wishes to replicate a situation hierarchy, a behavior hierarchy and the linking
structure that characterizes the person hierarchy in terms of specific situation -
behavior profiles. Also, such constraints may be useful if one wishes to classify
a number of persons into a person typology that is defined in terms of a set of
well-established situation - behavior profiles.
As a second example, the core array may be constrained to take the form
of a "unit superdiagonal’ array I: '
G=1L ™)
with I being defined by (1) P = Q = Rand (2) gpgr = 1l iff p = ¢ =7

(value constraint on the whole core array without making use of external infor-
mation). The latter constraint implies that the Tucker3-HICLAS model reduces
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to the more simple INDCLAS model (Leenen, Van Mechelen, De Boeck, and
Rosenberg, 1999), and, hence, that the linking structure among the situation,
behavior and person bundles takes the form of a one-to-one correspondence.
Note that a unit superdiagonal constraint could also be considered a structure
constraint; however, by way of convention, we classify all constraints that im-
ply fixing the value of (at least some) specific bundle matrix/core entries, as
value constraints.

2.2.4 Structure Constraints on the Core Array

This type includes all Tucker3-HICLAS constraints that (with or without
making use of external information) specify a structural property that (part of)
the core array has to satisfy. As a first example, consider the property that the
core array can be further decomposed into a P x R binary matrix G! and a
Q x R binary matrix G? as follows:

Gpgr = gérggr (®)

(structure constraint on the whole core array without making use of external
information). In personality research, this could formalize the mechanism that
each person type r reacts to each situation type p that it deems frustrating (i.e.,
gpr = 1) with all the behavior types ¢ that belong to the behavioral repertorium
of that person type (i.e., gqr =1).

As a second example, one may think of the constraint that the core array
includes a small, prespecified number n of 1-entries (structure constraint on the
whole core array without making use of external information):

Q@ R
Z Z ngqr =n. &)

P
p=lg=1r=1

Such a constraint may be interesting from an interpretational point of view,
as a core array that implies fewer associations among situation, behavior and
person bundles may imply a model that is easier to interpret. From a technical
point of view, such a constraint also implies a more parsimonious model, which,
therefore, may prove to be more stable in replication research.
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3. Algorithm

3.1 The Existing Tucker3-HICLAS Algorithm

Given an I X J X K data array D and a rank (P, Q, R), the existing
Tucker3-HICLAS algorithm searches by means of two routines for arrays A, B,
C and G that combine by (1) to an I X J X K model array M that has a minimal
value on the loss function

I J K
FM) =373 (dije — mije)®. (10)

i=1j=1k=1

The first routine is an alternating least squares routine, in which A, B,
C and G are re-estimated conditional upon all the others by means of Boolean
regression (Leenen and Van Mechelen, 1998). This routine starts from an ini-
tial configuration for A, B and C that can be obtained rationally (by a built-in
heuristic) or randomly, and continues until no updating of a bundle matrix or
core array further improves the loss function (10). Whereas G has to be up-
dated array-wise, note that, due to a separability property of the loss function
(Chaturvedi and Carroll, 1994), A, B and C can be updated row-wise by suc-
cessively optimizing each of the bundle patterns a; , bj. and ¢ . -

As the thus obtained A, B, C are only restricted to represent the associa-
tion relation in M, the second routine transforms these arrays, without altering
M, such that they also represent the quasi-order relations. The latter is achieved
by applying a closure operation to A, B, C, which boils down to changing 0-
entries of the bundle matrices into 1-entries if these modifications do not alter
M.

3.2 Adapting the Algorithm for Fitting Constrained Models: Algorithmic
Analysis

In this subsection, we will investigate which features of the existing
Tucker3-HICLAS algorithm should be adapted for fitting the different types of
constrained models. As a starting point for this algorithmic analysis, one should
bear in mind that the existing Tucker3-HICLAS algorithm implies structural op-
tions on different levels. On the highest level (level 1), the algorithm implies
the option of a consecutive combination of an alternating least squares routine
pertaining to the association relation and a closure operation routine pertaining
to the quasi-order relations. At an intermediate level (level 2), within the alter-
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Table 3: Overview of algorithmic possibilities and problems

Type of constraint Adaptation of the algorithm

Nature Locus Level of change Solution Application

Value=1 Bundles 3 simple -
Value=0 Bundles 1 somewhat more involved, but feasible 1
Value=0/1 Core 3 . simple ' 1
Structure: -Bundies 2 sometimes available 2

Closure-compatible

Structure: Bundles — 1 sometimes available -
Closure-incompatible :

Structure Core 3 somewhat more involved, but feasible 3

nating least squares routine, it was opted to update the bundle matrices row-
wise and the core array array-wise (depending on the existence of a separability
property). Finally, on the lowest level (level 3), Boolean regression was cho-
sen as estimation method for the bundle patterns and the core array. Below, we
will show that adapting the Tucker3-HICLAS algorithm for fitting the differ-
ent types of constrained Tucker3-HICLAS models boils down to reconsidering
some of the latter options; obviously, the higher the level of the option to be re-
considered, the more fundamental the adaptation of the algorithm becomes. As
the first two features of our taxonomy are the most decisive from an algorith-
mic point of view, we will again primarily focus on the different locus-nature
combinations. Table 3 summarizes the results of the algorithmic analysis by
specifying for the different types of constraints (1) the level on which the al-
gorithm has to be adapted, (2) the difficulty of the involved adaption, and (3)
the application in which an example of an appropriately adopted algorithm is
provided. '

Value constraints on the bundle matrix. As the closure operation routine
may alter O-entries of a bundle matrix into 1-entries, but not vice versa, the
level on which the Tucker3-HICLAS algorithm has to be adapted depends on
the value of the fixed bundle matrix entries. More specifically, whereas con-
straints that fix bundle matrix entries to 1 may simply be fitted by fixing the
corresponding Boolean regression weights to the prespecified values when op-
timizing the bundle pattérns - i.e., a level 3 change -, constraints that fix bundle
matrix entries to 0 require a level 1 change of the algorithm: the development of
an algorithm that simultaneously fits the value constraints and the quasi-order
relations. In the context of the first illustrative application, an example of the
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latter type of algorithm will be given.

Structure constraints on the bundle matrix. The level on which the
Tucker3-HICLAS algorithm has to be altered for fitting structure constrairnts
on the bundle matrix, depends on the structural property, or, more precisely,
on whether applying the closure operation routine to appropriately constrained
estimates resulting from the alternating least squares routine, may yield final
estimates that no longer satisfy the structural property. If the fulfilment of the
structural property is jeopardized by applying the closure operation, a level 1
adaptation of the algorithm is required; otherwise, a level 2 adaptation is nec-
essary as, due to the structural constraint, the séparability property no longer
holds (i.e., the best update-of the bundle pattern of a specific element depends
on the updates of the bundle patterns of the other elements), implying that the
constrained bundle matrix has to be estimated as a whole. Examples of struc-
ture constraints that require a level 2 adaptation only, include the Guttman and
partition constraints as discussed above. For, the Guttman constraint comes
down to the requirement that the quasi-order relation between the rows of the
bundle matrix is total, whereas the partition constraint comes down to the re-
quirement that the same quasi-order includes a number of equivalences (i.e., for
specific pairs (ki,kz) it should hold that cg,. = cx,.). Such constraints are not
affected by the closure operation as the latter can only add and not delete links
of the quasi-order among the rows of the bundle matrix. An example of a level
2 adaptation is described for the second illustrative application.

Value constraints on the core array. All these constraints may be fitted
by a simple adaptation of the core array updating step of the alternating least
squares routine - i.e., a level 3 change. More specifically, the Boolean regres-
sion weights that correspond to the constrained core entries must be fixed to
their prespecified values. Note that the latter implies that, if all core entries are
fixed, the core array updating step of the alternating least squares routine can
be skipped.

Structure constraints on the core array. As was the case for the value
constraints on the core array, adapting the Tucker3-HICLAS algorithm for fit-
ting structure constraitits on the coré array, requires a level 3 modification. In-
deed, for this purpose a tailor-inade core updating procedure has to be devel-
oped. An examiple of such a procediite will be provided when discussing the
third illustrative application.

4. Ilustrative Applications
In this section, we illustrate constrained Tucker3-HICLAS analysis with

three applications, two from personality psychology research and one on de-
cision making in psychiatric diagnosis. For each application, we will suc-
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u}

cessively discuss (1) the substantive questions and hypotheses that guided the

Tucker3-HICLAS analysis, (2) the formalization of the guiding hypotheses into
a constrained Tucker3-HICLAS model, (3) the adapted version of the Tucker3-
HICLAS algorithm that was developed for fitting the constrained Tucker3-
HICLAS model, and (4) the obtained results.

4.1 Application 1: Individual Differences in Self-reported Hostile Behavior
in Frustrating Situations

4.1.1 Substantive Questions and Hypotheses

According to Bem (1983) a fundamental smentlﬁc task for personality
psychology is to construct linked triple typologies of situations, behaviors, and
persons. If binary situation by behavior by person data are available, Vanstee-
landt and Van Mechelen (1998) showed that the latter may be achieved by ap-
plying three-way three-mode hierarchical classes models to the data set, as these
models yield a hierarchical classification of each mode and a linking structure,
which interrelates the three hierarchies. However, an important question con-
cerns the replicability of the obtained linked triple typology: To which extent
will the linked triple typology show up in the analysis of a data set that is ob-
tained by gathering the same situation - behavior profiles in a second sample
of persons? This application shows how the replicability of Tucker3-HICLAS
results may be checked in practice.

In particular, we will consider data that were gathered by Vansteelandt
and Van Mechelen (1998) in two samples of 54 and 316 persons that rated 23
frustrating situations with respect to the display of 15 hostile behaviors, yielding
223 x 15 x 54and a 23 x 15 x 316 binary data array respectively. Ceulemans
et al. (2003) reported a (2,3,2) Tucker3-HICLAS solution for the 54 persons
data set, which is graphically represented in Figure 1. More specifically, the
hierarchical classification of the situations, as defined by the quasi-order on this
mode, shows up in the upper half of Figure 1. This situation hierarchy takes the
form of a total order, which may be conceived as a quantitative dimension (Gati
and Tversky, 1982); note that the situations have been indicated by the key
words presented in Table 4. Similarly, the behavior hierarchy is represented
upside down in the lower half of Figure 1. One may conclude that, except
for *Grimace’, the behaviors also constitute a quantitative dimension, which,
in part, reflects different levels of physiological arousal. In the middle part of
Figure 1, lines and hexagons (the latter containing the person bundle labels)
represent the association relation among the situations, behaviors and persons.
More specifically, a situation 4, a behavior j and a person k are associated iff a
downward path exists from situation i to behavior j across a hexagon that
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Instructor
Lies
Appointment
Bus
Contradict

Train Typewriter

Book
Tire
Noise
Mail

Error

No answer Restaurant
Coffee  Grocery store

Mud Mystery
Operator Theater
Park bench
PBy PB,

] Perspire
Grimace P

Hands tremble

Want to strike
Grind teeth

PB,

Become enraged
Become tense
Heart beats faster
Want to shout

Turn away
Lose patience

Feel irritated
Curse

Figure 1. Overall graphical representation of the unconstrained Tucker3-HICLAS model for the

54 persons sample.
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Table 4: Key words for the 21 frustrating situations in the graphical representations of the
Tucker3-HICLAS models for the hostility data

Key word Full situation description

instructor Your instructor unfairly accuses you of cheating on an examination

book Someone has lost an important book of yours

lies You have just found out that someone has told lies about you

tire You are driving to a party and suddenly your car has a flat tire

appointment You arrange to meet someone and he (she) doesn’t show up

noise You are trying to study and there is incessant noise

bus You are waiting at the bus stop and the bus fails to stop for you

mail Someone has opened your personal maﬂ

contradict  Someone persistently contradicts you when you know you are right

error Someone makes an error and blames it on you

train You miss your train because the clerk has given you faulty
information

typewriter  You are typing a term paper and your typewriter breaks

no answer You are talking to someone and he (she) does not answer you

restaurant You are in a restaurant and have been waiting a long time to be
served

coffee You are carrying a cup of coffee to the table and someone bumps

grocery store
nmud

mystery
operator

theater

park bench

into you

The grocery store closes just as you are about to enter

Someone has splashed mud over your new clothing

You are reading a mystery and find that the last page of the book is
missing

You use your last 10 ¢ to call a friend and the operator disconnects
you

Someone pushes ahead of you in a theater ticket line

You accidently bang your shins against a park bench
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includes a person bundle person k belongs to. For example, it is clear that
the situation with the label "No answer’ elicits the behavior 'Grimace’ from
the persons belonging to the first person bundle (P By), since No answer’ and
"Grimace’ are connected in Figure 1 by a downward path that includes P Bj.

In order to check the extent to which the latter results may be replicated
in a Tucker3-HICLAS analysis of the 316 persons data set, we will first impose
the full situation-behavior structure that resulted from the 54 persons data set;
this boils down to fixing (1) the whole situation bundle matrix, (2) the whole
behavior bundle matrix, and (3) the whole core array for the 316 persons data
set to the arrays found for the 54 persons data set. Next, we will successively
remove one or more of the latter three constraints, in order to investigate the
replicability of the different aspects of the linked triple typology. In particular,
we will first withdraw the constraint on the core array, as it is plausible that
the person typology (which is defined by the core array in terms of situation -
behavior profiles) may change from sample to sample. Since fixing only the
core array and either the situation bundle matrix or the behavior bundle matrix
makes no sense (as the meaning of the core array as definition of the person
typology depends on both the situation and the behavior bundle matrix), the
other two constrained models to be considered imply either a fixed situation or
a fixed behavior bundle matrix. Comparing the fit values of the four obtained
constrained models to the fit value of the unconstrained model, it will become
clear which aspects of the model for the 54 persons data set also hold for the
316 persons data set.

4.1.2 Formalization of the Hypothéses

Given the binary frustrating situation by hostile behavior by person data
array that was obtained from the 316 persons sample, the replicability of the
Tucker3-HICLAS results for the 54 persons sample may be checked by succes-
sively imposing the four combinations of constraints that were discussed above:
(1) fixing the situation bundle matrix, the behavior bundle matrix and the core
array of the Tucker3-HICLAS model for the 316 persons sample to the corre-
sponding arrays of the Tucker3-HICLAS model for the 54 persons sample, (2)
fixing the situation bundle matrix and the behavior bundle matrix, (3) fixing the
situation bundle matrix only, and (4) fixing the behavior bundle matrix only.
All these constraints are value constraints on the whole bundle matrix/core ar-
ray that depend on external information.

4.1.3 Algorithm

As discussed in Subsection 3.2, adapting the Tucker3-HICLAS algorithm
for fitting value constraints on the whole core array boils down to a level 3
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change - i.e., fixing all Boolean regression weights to their prespecified value,
which implies that the core array updating step of the alternating least squares
routine is skipped -, whereas the value constraints on the whole situation and
behavior bundle matrices imply a level 1 change - i.e., the development of an
algorithm that simultaneously fits the value constraints and the quasi-order re-
lations -. In particular, we developed the following algorithm: If unconstrained,
the bundle matrices and core array are estimated by means of an alternating
least squares procedure (i.e., the updating steps of fixed arrays are skipped). In
each step of this alternating least squares routine, the closure operation routine
was performed on the current estimates for the unconstrained bundle matrices
as well as on the fixed bundle matrices. If the latter operation did not alter the
fixed matrices (implying that the current Tucker3-HICLAS model is valid, that
is, correctly represents all quasi-orders in the corresponding model array M),
we went on to the next step. Otherwise, a small proportion of the entries of the
array that was being updated was randomly changed of value, until an estimate
was obtained such that applying the closure operation did not change the fixed
matrices; the latter procedure was repeated a high number of times (e.g., 100
times), after which the update that minimized the loss function was retained. To
evaluate the performance of this new algorithm, a small simulation study was
set up, the results of which are reported in the Appendix.

4.1.4 Results

Given the 316 persons data set, the (2,3,2) Tucker3-HICLAS model with
a fixed situation bundle matrix, behavior bundle matrix and core array has a
proportion of discrepancies between D and M of .248. The model with value
constraints on the situation and behavior bundle matrices yielded a proportion
of discrepancies of .241. Finally, the models with either a fixed situation bun-
dle matrix or a fixed behavior bundle matrix had a proportion of discrepancies
of .234 and .241, respectively. Comparing the latter proportions with the pro-
portion of discrepancies of .234 of the unconstrained (2,3,2) Tucker3-HICLAS
model, we decided to retain the model with a fixed situation bundle matrix,
as this is the only constrained model that fits the data equally well as the un-
constrained model; the selected model is graphically represented in Figure 2.
We must conclude that only the situation typology of the 54 persons data set is
replicated in the analysis of the 316 persons dataset.

Investigating more closely what happened to the other aspects of the
linked triple typology, one may derive from Figure 2 that the behavior typology
now seems to indicate the existence of two separate hostile behavior channels:
a facial channel ("Grimace’ and *Turn away’) and a verbal channel ("Want to
shout’ and ’Curse’). Furtheimore, we may differentiate between two types of
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Figure 2. Overall graphical representation of the constrained Tucker3-HICLAS model for the

316 persons sample.
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persons: The first type (PB;) reacts to all frustrating situations with facial hos-
tile behavior; the second type (PBy) draws a distinction between mildly and
strongly frustrating situations: in mildly frustrating situations the persons of
this type only display "mild’ verbal hostile behavior (’Curse’); in strongly frus-
trating situations they, on top of that, also want to shout and become enraged.

4.2 Application 2: Types of Anger-related Behavior as a Function of Status
and Liking

4.2.1 Substantive Questions and Hypotheses

Anger behavior has traditionally been conceptualized in terms of general
traits referring to anger-out (overt expression of anger) and anger-in (suppress-
ing the expression of anger) (Funkenstein, King, and Drolette, 1954; Spiel-
berger et al., 1985). However, recently, several voices have risen that have
questioned such a trait dichotomy to describe anger behavior. First, it has been
argued that the dichotomy may be too narrow: Other behaviors (among which
more prosocial, constructive behavior) should be considered as well in order
to capture the variety of behaviors that may possibly follow the experience of
anger (Linden et al., 2003). Second, research suggests that anger behavior may
be strongly context-dependent (Bongard and al’Absi, 2003). In an attempt to
meet these considerations, Kuppens, Van Mechelen, and Meulders (2003) have
constructed a contextual anger behavior questionnaire in which the display of a
wide variety of anger behaviors is assessed as a function of situation character-
istics that are hypothesized to produce distinctive anger reactions. Regarding
anger behavior, the questionnaire included seven behavior types: anger-out,
anger-in, assertive behavior, reconciliation, avoidance, indirect anger behavior,
and social sharing, each of them being assessed by means of two items. Re-
garding situation characteristics, the questionnaire assesses the display of anger
behavior in six recalled situations, in which the targets of anger were either of a
higher, equal or lower status, and either liked or disliked; both status and liking
have been documented to influence anger behavior (Allan and Gilbert, 2002;
Babad and Wallbott, 1986).

Kuppens et al. (2003) administered the questionnaire to 114 participants
who were asked to indicate for each situation whether or not they had dis-
played each of the behavior items. To investigate the structure and the context-
dependence of anger behavior, unconstrained Tucker3-HICLAS models in rank
(1,1,1) through (5,5,5) were fitted to the resulting 6 situation x 14 behavior x
114 participant data array. Applying the rank selection heuristics described by
Ceulemans et al. (2003) resulted in the selection of the (2,3,3) model, which
has a proportion of discrepancies of .302. From the graphical representation
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Figure 3. Overall graphical representation of the unconstrained Tucker3-HICLAS model for the
anger expression data.

of the selected model, which is shown in Figure 3, one may read that for all
but one of the seven included behavior types (i.c., indirect anger behavior) the
corresponding two items were placed in the same behavior class (i.e., they have
identical bundle patterns). The question arises whether imposing same class-
membership to the two items referring to each of the seven behavior types
would yield a model that fits the data (almost) equally well, implying that also
the items referring to indirect anger behavior reflect a single behavior type.

4.2.2 Formalization of the Hypotheses
For each of the seven considered behavior types, one may check whether

the two corresponding items indeed reflect the behavior type in question by
imposing the constraint mentioned above: The two items are required to have
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an identical bundle pattern. Formally, this constraint implies that the behavior
bundle matrix may be further decomposed into a J x C binary partition matrix
P and a C x Q partition class bundle matrix B*:

C
Vi=1...0,g=1...Q:bjq = Ppjcbl, (11)
) c=1

where for P holds that C=7 and that, iff behaviors j and j' assess the same
behavior type, p;. = p;.. Clearly, the latter constraint is a structure constraint
on the whole behavior bundle matrix that depends on external information.

4.2.3 Algorithm

As applying the closure operation routine to an estimate of the behavior
bundle matrix B constrained according to (11), will always yield final estimates
that still satisfy the constraint in question (see Subsection 3.2), we developed
the following level 2 adaptation of the algorithm: When updating B in the al-
ternating least squares routine, we successively optimized the bundle patterns
of the seven partition classes defined by the partition matrix P, by means of
Boolean regression. More specifically, to estimate the bundle pattern of parti-
tion class ¢, b7, the values of the criterion variable were the data entries dij
Vi=1...k=1...K;Vj : Pjc = 1) and the values of the g-th predic-
tor variable were the sums G)le @?:1 QipCrrgpgr Vi =1... Ik =1...K).
Some simulation results for this new algorithm are given in the appendix.

4.2.4 Results

A constrained Tucker3-HICLAS model of rank (2,3,3), in which the two
items reflecting a particular behavior type were required to have an identical
bundle pattern, was fitted to D. The proportion of discrepancies of the result-
ing constrained model, which amounts to .306, is only .004 higher than that &f
the unconstrained model. Together with the finding that, except for the bun-
dle paitern of two participants only, the arrays A, C and G were not altered
by constraining B, the former result suggests that all item pairs can indeed be
considered to reflect a particular type of anger behavior. Figure 4 displays the
overall graphical representation of the constrained (2,3,3) model, and Figure
5 represents the participant hierarchy; note that, unlike for the behaviors, the
participants with a zero bundle pattern have not been included in the represen-
tations.

Regarding the structure of the behavior types that may follow anger expe-
riences, the hierarchical classification of the behavior items may be interpreted
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Figure 4. Overall graphical representation of the constrained Tucker3-HICLAS model for the
anger expression data.

as follows: Behavior class (BC') contains behaviors that imply approaching
the target of anger without aggressive intentions (assertive behavior and rec-
onciliation). Behavior class (BC?) consists of behaviors that imply avoiding
a confrontation with the target of anger (avoid, anger-in). The latter behavior
class further implies the third behavior class (BCj3): socially sharing the anger
experience with others. Finally, the anger-out and indirect anger behavior types
that constitute the fourth behavior class (BCy) imply approaching the target in
an antisocial way. Such a characterization in terms of approach and avoidance
is in line with suggestions made by other authors regarding the organization of
interpersonal behavior (Elliot and Trash, 2002). Interestingly, the results sug-
gest that if one suppresses-one’s anger and avoids the person one is angry at,
one will revett to social sharing, possibly to cope with the anger incident.
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Figure 5. Participant structure of the constrained Tucker3-HICLAS model for the anger expres-
sion data.

Regarding the context-dependence of anger behavior, the analysis sug-
gests two situation features that may differentiate between various types of
anger behavior: ’the target is of lower status or liked’ (SB;) and ’the target
is of higher or equal status’ (SBs).

4.3 Application 3: Decision Making in Psychiatric Diagnosis
4.3.1 Substantive Questions and Hypotheses

An important research question in psychiatric diagnosis research per-
tains to individual differences among clinicians’ symptom judgements. It has
been suggested that the latter differences may be explained by considering the
cognitive structures and processes that underly the symptom judgements (e.g.,
Van Mechelen and De Boeck, 1989). For example, one may assume that symp-
tom judgements involve a cognitive structure in the head of the clinician, in par-
ticular, an implicit taxonomy of syndromes that are defined in terms of clusters
of symptoms; such an implicit taxonomy of syndromes may have been con-
structed on the basis of the study and work experiences of the clinician. One
may then hypothesize that assigning symptoms to patients implies the follow-
ing three-step cognitive process: In the first step, the clinician determines which
types of evidence may be derived from the case description of the patient. In
the second step, the clinician decides which of the derived types of evidence he
will take into.account. In the third step, the clinician classifies the patient, based
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i,
A

on the retained clinical evidence, into his implicit taxonomy of syndromes; the
taxonomy being defined in terms of clusters of symptoms, this classification
immediately yields the symptoms to assign to the patient. Given this assumed
process, individual differences among clinicians in symptom judgements may
be explained by individual differences in the clinicians’ implicit taxonomies
and/or in one or more of the steps of the process in question. In this application,
we will check the extent to which we can already satisfactorily approximate
the data by assuming individual differences in the second step of the cognitive
process only, by analyzing a 30 case description of psychiatric inpatient x 23
symptom x 15 clinician binary data array that was gathered by Van Mechelen
and De Boeck (1990); d;;x = 1 implies that clinician & indicated that symptom
J was presumably present for inpatient i.

4.3.2 Formalization of the Hypotheses

Given a binary case description of psychiatric inpatient by symptom by
clinician data array, the hypothesis discussed above may be formalized by a
(P, Q, R) Tucker3-HICLAS model with a constrained core array. More in par-
ticular, the inpatient bundle matrix A shows which clinical evidence may be
derived from each of the case descriptions (step 1 of the cognitive process), the
symptom bundle matrix B yields the clusters of symptoms that define the Q
syndromes of the implicit taxonomy, and the clinician bundle matrix C denotes
membership of the R overlapping clinician types. Steps 2 and 3 of the cognitive
process can be formalized by means of a core array G that is constrained to be
further decomposable into a P x R binary matrix G! and a P x  binary matrix
G? as follows:

Vp=1.P,g =1.Q,7 = 1.R: gy = g},.02,. (12)

In (12), G' represents the second step of the three-step cognitive process, that
is, the willingness of each of the R clinician types to take each of the P clinical
evidence types into account; G? represents the third step, that is, which of the Q
implicit syndromes is diagnosed on the basis of each of the P clinical evidence
types. From the above description, it is obvious that the imposed constraint
is a structure constraint on the whole core array that is not based on external
information.

4.3.3 Algorithm
As discussed in Subsection 3.2, a structure constraint on the core array

may be fitted by a level 3 adaptation of the Tucker3-HICLAS algorithm, with
the adaptation boiling down to the development of a tailor-made procedure for
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Table 5: Core array G of the unconstrained (4,4,2) Tucker3-HICLAS
model for the psychiatrists data

Clinician type 1 Clinician type 2
Syndromes Syndromes
Evidencetypes 1 2 3 4 Evidencetypes 1 2 3 4
1 110 0 1 00 0 o0
2 1 1 0 0 2 01 0 0
3 1 0 0 0O 3 0 0 1 0
4 1.0 0 1 4 0 0 0 1

updating the core array in the alternating least squares routine. For the con-
straint given by (12), the following tailor-made procedure was developed. In
the first substep, G2 was filled randomly, subject to the restriction that no row
or column of G? was a zero-vector or identical to another row or column; this
restriction was imposed in order to obtain a Tucker3-HICLAS model of full
rank. In the second substep, an optimal estimate of G! was calculated condi-
tionally upon G2 and the current estimates of A, B and C by means of Boolean
regression. These two substeps (i.e., random generation of G2 and estimation of
G!) are repeated a high number of times (e.g., 100 times); out of the resulting
(G',G?) pairs, the pair that minimized the loss function is retained and com-
bined to G by (12). Note that this is just one possible procedure; for example,
the roles of G! and G2 can easily be reversed, that is, random generation of G1
and estimation of G?. Some simulation results for this algorithm are shown in
the appendix.

4.3.4 Results

First, it was checked whether unconstrained Tucker3-HICLAS analyses
yield a model that is in line with our hypothesis of a three-step cognitive pro-
cess with individual differences in the second step only. In particular, uncon-
strained Tucker3-HICLAS models in ranks (1,1,1) through (5,5,5) were fitted to
D. Applying the rank selection heuristics described by Ceulemans et al. (2003)
resulted in the selection of the (4,4,2) model, which has a proportion of dis-
crepancies of .187. From Table 5, it may be derived that the core array of the
selected model is not of the hypothesized form as described by (12).

Therefore, in order to check whether imposing the constraint (12) would
imply a large increase of the proportion of discrepancies and, hence, would
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Table 6: G* and G” of the constrained (4,4,2) Tucker3-HICLAS model for the psychiatrists data

G! G?
Clinician types Syndromes
Evidence types 1 2 Evidencetypes . 1 2 3 4
1 1 1 1 1 0 0 O
2 0 1 2 010 0
3 1 1 3 0 0 1 0
4 1 1 4 0 0 0 1

falsify our hypothesis, we fitted an appropriately constrained (4,4,2) Tucker3-
HICLAS model. The proportion of discrepancies of the resulting model equals
.189, implying a .002 increase only of that of the unconstrained model. The
latter finding suggests that the individual differences in clinicians’ symptom
judgements may indeed be explained by assuming our three-step cognitive pro-
cess with individual differences in the second step only, that is, in terms of dif-
ferences in willingness to take the different clinical evidence types into account.
Table 6 presents the matrices G! and G2, which can be combined by (12) to the
constrained core array G. Furthermore, Figure 6 shows the overall graphical
representation of the (4,4,2) model and Figure 7 represents the clinician hierar-
chy, with the inpatient and clinician classes indicating the number of elements
that belong to the class; note that the inpatients, symptoms and clinicians with
a zero bundle pattern have not been included in the representations and that the
hatched boxes represent empty base classes. In the following paragraphs, we
will give a substantive interpretation of this (4,4,2) solution.

Regarding the clinical evidence types that may be derived from the case
descriptions of the inpatients (Step 1 of the cognitive process), we conclude
from these case descriptions that the first type of evidence (ET}) pertains to
blocking of speech and interpersonal contact, whereas the second type of ev-
idence (E'T5) pertains to disorganization of emotion, cognition and motor be-
havior. Inpatients showing evidence of the third and fourth type (ET3 and ET})
both reported problems of severe negative affect, but differ in that patients of the
third type also reported suicidal tendencies and social isolation, whereas those
of the fourth type showed augmented arousal and verbally expressed their neg-
ative affect.We tentatively label these four evidence types ’Social and speech
blocking’, *Disorganized cognition, affect and motor behavior’, *Negative af-
fect combined with suicidality and social isolation’ and ’Negative affect com-
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Figure 6. Overall graphical representation of the constrained Tucker3-HICLAS model for the
psychiatrists data.
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bined with arousal and verbal expression’, respectively.

Turning our attention to Step 2 of the cognitive process, Figure 7 shows
that there are two types of clinicians involved: a first type (CTy) to which al-
most all clinicians belong and a second type (C'T%) to which only five of them
belong. As stated above, the difference between these two clinician types can be
understood in terms of willingness to take the different clinical evidence types
into account: More specifically, one may read from the matrix G! in Table 6
that the second clinician type takes all evidence types into account, whereas the
first clinician type does not consider 'Disorganized cognition, affect and motor
behavior’ (ET5).

Finally, to assign the symptoms on the basis of the retained clinical ev-
idence (Step 3 of the cognitive process), an implicit taxonomy consisting of
four syndromes was used. The first and second syndromes (S and S), which
are diagnosed on the basis of ET) and ET, (see G2 in Table 6), both con-
tain psychotic symptoms. The first syndrome however also includes a specific
symptom of interpersonal dysfunctioning (Speech disorganization) whereas the
second syndrome also includes symptoms of intrapersonal dysfunctioning (e.g.,
Intellectual impairment); we therefore label them as psychotic/interpersonal
and psychotic/intrapersonal, respectively. The third and fourth syndromes ¢S3
and S4), which are based on ET3 and ETy, are both defined by the depression
and anxiety symptoms of a major affective disorder; however, only the third
syndrome also includes suicidality. Hence, we may call them affective/suicidal
and affective/non-suicidal, respectively.

5. Discussion

Constrained Tucker3-HICLAS modeling may be desirable for substan-
tive as well as more technical reasons. From a substantive point of view, con-
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strained Tucker3-HICLAS may be useful for investigating hypotheses on the
structure of a data set. In particular, one may wish to test an a priori hypothesis
obtained from substantive theory or from previous empirical research, implying
a purely confirmatory analysis of the data set under study. Also, a hypothesis
may arise from the analysis of the data set itself, which fits a strategy of mod-
eling a data set alternatingly in an exploratory and confirmatory way. Finally,
one may combine a priori and a posteriori hypotheses in one and the same
analysis. In all cases, it is recommended to compare the fit of the constrained
model with that of the unconstrained model of the same rank, in order to check
whether the hypotheses are supported by the data. Other reasons for consider-
ing constrained Tucker3-HICLAS modeling are more technical: For example,
due to the constraints on the values or the structure of the Tucker3-HICLAS
parameters, constrained Tucker3-HICLAS models may be more parsimonious;
therefore, constrained Tucker3-HICLAS modeling may yield results that are
more stable in replication research.

For ease of explanation, in this paper the constrained Tucker3-HICLAS
approach was primarily illustrated with hypothetical and real examples from the
substantive context of personality psychology; however, it is obvious that the
approach is also relevant for other substantive contexts. As a first example, note
that we illustrated in this paper the usefulness of constrained Tucker3-HICLAS
for research on psychiatric diagnosis. For another example, we consider a prob-
lem of developmental psychology; more specifically, the study of how cognitive
skills develop over time in different types of children. Within this context, one
may hypothesize that once a child acquires a specific cognitive skill, he will
never loose it. If binary child by cognitive task by time point data are avail-
able, this hypothesis could be incorporated in a Tucker3-HICLAS analysis of
the data set by restricting the time point bundle matrix to take the form of an
ordered Guttman scale, that is, by imposing that the bundle pattern of each time
point is a superset of all the previous time points (structure constraint on a whole
bundle matrix that implies external information, i.e., time order).

- As the number and variety of possible Tucker3-HICLAS constraints is
huge, we proposed to organize them into a taxonomy based on four features
of the constraints, which provides a generic framework for considering con-
strained Tucker3-HICLAS analysis and for investigating the interrelations of
the different constraints. Although it is indeed possible to apply any constrained
model to a given data array without knowing about this taxonomy, the bene-
fits of using it are twofold: Firstly, the taxonomy gives an overview that may
help researchers in finding or/and developing the constraint(s) that best match
their analysis aims. Secondly, classifying a specific constraint in the taxon-
omy yields indications about the type of algorithm needed for fitting this con-
straint. Moreover, the proposed taxonomy may also be inspiring for real-valued
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“Tucker3/3MPCA research as it can also be used to classify Tucker3/3MPCA
constraints. For example, the unimodality constraint described by Bro and
Sidiropoulos (1998) can be considered a structure constraint on a whole compo-
nent matrix that does not depend on external information, whereas Kiers et al.’s
(1997) suggestion of fixing core entries to zero is a parameter constraint on part
of the core array without making use of external information.

Possible future work in this area includes a further expansion of the fam-
ily of constrained hierarchical classes models. The taxonomy proposed in this
paper comprises constraints that pertain to a Tucker3-HICLAS analysis of a
single data set. However, it may be worthwhile to consider other types of hier-
archical classes constraints as well, including constraints that may be imposed
when analyzing two data sets simultaneously. As an example of such a con-
straint, assume that a study from personality psychology research yields the
following two data sets: a binary person x person characteristic data matrix
and a binary situation X behavior x person data array, which have the person
mode in common. In such a case, it would be interesting to analyze each of
these data sets in such a way that the obtained person typology based on situa-
tion - behavior profiles can be immediately linked to the typology of the person
characteristics. The latter can be achieved by simultaneously fitting a two-mode
HICLAS model (De Boeck and Rosenberg, 1988) to the person x person char-
acteristic data matrix and a Tucker3-HICLAS model to the situation x behavior
x person data array, subject to the constraint that the person bundle matrices of
the two models have to be identical; note that the latter type of constrained hi-
erarchical classes analysis of two data sets is closely related to the multiway
covariates regression analysis as proposed by Smilde and Kiers (1999).

Appendix

In this appendix, we briefly present some simulation results for the three
constrained algorithms that were proposed in the Illustrative applications Sec-
tion for fitting partition, decomposable core and value constraints. In this sim-
ulation study, we distinguish between three different types of I x J x K binary
arrays: true arrays T, data arrays D and model arrays M. A true array T, which
is constructed by the simulation researcher, can be perfectly represented by a
constrained Tucker3-HICLAS model. A data array D is a true array T perturbed
with error. A model array M can be perfectly represented by a constrained
Tucker3-HICLAS model of a specific rank, as it is obtained by analyzing D
with the associated constrained algorithm in the respective rank.

In the simulation study, we used two true array types: in particular, a
partition constraint on B type and a decomposable core constraint type. Three
parameters were further systematically varied:
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(1) the Size, I x J x K,of T,Dand M, at 2 levels: 15x 15 x 15, 30 x 20 x 10.

(2) the True rank of the constrained Tucker3-HICLAS model for T for the
partition type 2 levels were used: (2,2,2), (4,3,2); for the decomposable
core type 2 levels were used: (2,2,2), (3,3,2).

(3) the Error level, €, which is the proportion of cells d;jx differing from ¢y,
at 5 levels: .00, .05, .10, .20, .30.

For the partition type, a fourth parameter - number of partition classes -
was varied at three levels: 1/4, 2/4 and 3/4 of the number of columns.

For each combination of size, true rank, error level and, if applicable,
number of partition classes, 20 true arrays T were generated randomly; the
generation procedure was similar to the procedure used in the unconstrained
Tucker3-HICLAS simulation study (Ceulemans et al., 2003). Next, a data ar-
ray D was constructed from each true array T by randomly altering the values
of a proportion ¢ of the entries of T. On each of the resulting data arrays, a
constrained Tucker3-HICLAS analysis of the true array type was performed in
a rank equal to the True rank. ‘

To evaluate the partition and decomposable core constraint algorithms,
we first studied how well the constrained algorithms succeed in minimizing the
loss function by calculating BOF — ¢, i.e., the difference between the propor-
tion of discrepancies between D and M on the one hand and the error level ¢
on the other hand. The mean value of the latter statistic equals .004 and .007
across the 1200 partition and 400 decomposable core observations, indicating
that the obtained solutions are about as close to the data as the truth is. To
assess the recovery of the association relation, we calculated as a badness of
recovery (BOR) measure the proportion of discrepancies between T and M,
and found mean values of .010 and .012 respectively, implying that the models
yielded by the algorithms differ on average about 1 % from the underlying truth.
These results are comparable to the corresponding values of the unconstrained
Tucker3-HICLAS simulation study.

To evaluate the value constraints algorithm, we analyzed all 1600 data
arrays subject to the constraint that the behavior bundle matrix yielded by the
algorithm equals the true behavior bundle matrix. In particular, we first used a
regular two routine Tucker3-HICLAS algorithm in which the updating step for
B was skipped to get an impression of how often the closure operation routine
would violate the constraint: The latter happened for 298 (18.6%) data arrays
only. The arrays in question were subsequently subjected to the constrained
Tucker3-HICLAS algorithm that simultaneously optimizes the association and
quasi-order relations. On average, the BOF — ¢ and BOR values of the latter
one routine algorithm were .0015 lower than those of the two routine algorithm.
As the two routine algorithm already yielded solutions with on average lower
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BOF — ¢ and BOR values than the partition constraint and decomposable core
constraint algorithms, we conclude that the one routine algorithm works well.
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