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Eva Ceulemans� and Iven Van Mechelen

Department of Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, B-3000 Leuven, Belgium

Received 18 July 2001; revised 8 January 2003

Abstract

This paper presents two uniqueness theorems for the family of hierarchical classes models, a collection of order preserving

Boolean decomposition models for binary N-way N-mode data. The theorems are compared with uniqueness results for the closely

related family of N-way N-mode principal component models. It is concluded that the two-way two-mode PCA and N-way N-mode

TuckerN models suffer more from a lack of identifiability than their hierarchical classes analogues, whereas the uniqueness

conditions for N-way N-mode PARAFAC/CANDECOMP models are less restrictive than the ones derived for their N-way N-

mode hierarchical classes counterparts.

r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Uniqueness; Hierarchical classes; PCA; TUCKER3; PARAFAC/CANDECOMP

1. Introduction

Hierarchical classes models are structural models for
N-way N-mode binary data. The latter type of data
often occurs in psychology. Examples of two-way two-
mode binary data include person by item succes/failure
data and psychiatric patient by symptom presence/
absence data. Regarding three-way three-mode binary
data, one may think of person by situation by behavior
display/not display data and consumer by product by
timepoint select/not select data.
Hierarchical classes analysis approximates the I1 �

I2 �?� IN binary data array D with a I1 � I2 �?�
IN reconstructed data or model array M that can be
represented by a hierarchical classes model. Such a
hierarchical classes model reduces each of the N modes
of M to a few binary components and interrelates the N

sets of components by means of a linking structure.
Furthermore, such a model represents two types of
relations implied by M: (1) the N-ary relation defined by
the 1-entries of M; and (2) the quasi order p that is
induced by M on each of the N modes. As to the latter,
note that in the N-ary relation implied by M; each
element i of the nth mode is related with a subset Si of

the Cartesian product of the other modes; we then define
i1pi2 iff Si1DSi2 : In a hierarchical classes model, the N-
ary relation is represented by a decomposition rule,
which states how M can be obtained from the N sets of
components and the linking structure. The quasi-orders
are represented by subset–superset relations among the
component patterns of the respective elements (i.e., the
sets of components to which the elements belong).
The representations of the N-ary relation and of the

quasi-orders are of substantive importance. Regarding
the first, a hierarchical classes analysis of a N-way N-
mode binary data array D may uncover the structural
mechanism underlying D: For example, a hierarchical
classes analysis may reveal the latent choice requisites
that underly consumer by product select/not select data,
with a consumer selecting those products that satisfy all
of his requisites (Van Mechelen & Van Damme, 1994).
Similarly, such an analysis may reveal the latent pieces
of clinical evidence and the latent syndromes behind
psychiatric patient by symptom presence/absence data
(Van Mechelen & De Boeck, 1989). The representation
of the quasi-orders may be useful in that it implies a
simultaneous classification of the elements of each of the
modes involved in the data; this may, for instance, meet
the substantive need of personality psychologists search-
ing for simultaneous classifications or triple typologies
of persons, situations and behaviors in binary person by
situation by behavior display/not display data
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(Vansteelandt & Van Mechelen, 1998). Furthermore, the
representation of the quasi-orders may also be used for
retrieving if–then type relations among elements. Such
relations are of key relevance in, for example, the study
of person perception (e.g., Gara & Rosenberg, 1990);
also, they constitute the core of the theory of knowledge
spaces (Falmagne, Koppen, Vilano, Doignon, & Johan-
nesen, 1990).
A possible problem in using hierarchical classes

models is that hierarchical classes decompositions
sometimes are not unique. The latter implies that several
sets of components and a linking structure may account
for the same N-ary relation, which may complicate a
sound interpretation of the mechanism underlying the
data. To handle this problem, one may derive unique-
ness conditions for hierarchical classes decompositions.
The latter has already been achieved for the two-way
two-mode hierarchical classes model (Van Mechelen, De
Boeck, & Rosenberg, 1995).
In the present paper we will prove two uniqueness

theorems for two distinct types of three-way three-mode
hierarchical classes models as well as their N-way N-
mode extensions, that subsume the uniqueness results
for the two-way two-mode model as a special case.
Furthermore, we will compare the proposed uniqueness
theorems for the hierarchical classes family with
uniqueness results for the closely related family of
principal component models (Tucker, 1966; Harshman,
1970; Carroll & Chang, 1970).
The remainder of this paper is organized as follows:

Section 2 briefly recapitulates the two-way two-mode
and three-way three-mode hierarchical classes models
and shows how they can be extended to the N-way N-
mode case. In Section 3, two general uniqueness
theorems for N-way N-mode hierarchical classes models
are derived. Section 4 compares the uniqueness theo-
rems for the hierarchical classes models with uniqueness
results for principal component models.

2. Theory of the hierarchical classes models

2.1. De Boeck and Rosenberg’s (1988) two-way two-

mode HICLAS model

De Boeck and Rosenberg’s (1988) two-way two-mode
hierarchical classes model (HICLAS) approximates an
I � J objects by attributes binary data array D by an
I � J binary model array M that can be decomposed
into an I � R binary matrix A and a J � R binary
matrix B; where R denotes the rank of the model. The
columns of A and B define R binary variables,
called object and attribute components; therefore, A

and B are called object and attribute component
matrices, respectively.

The HICLAS model represents two types of structur-
al relations implied by M: the binary relation and quasi-
orders on each of the modes implied by the data.

Binary relation: The HICLAS model represents
the binary relation by the following decomposition
rule:

M ¼ A#B0; ð1Þ

where # denotes the Boolean matrix product (Kim,
1982) and 0 denotes transpose. This decomposition rule
means that for an arbitrary entry mij of M;

mij ¼ "
R

r¼1
airbjr; ð2Þ

where " denotes the Boolean sum. Thus, an object i is
associated with an attribute j in M iff a component
exists to which both i and j belong. The decomposition
rule further implies that the linking structure among the
object and attribute components takes the form of a
one-to-one correspondence between the respective com-
ponents.

Quasi-orders: A quasi-order p is defined on each
mode of M: Letting Sx denote the set of elements from
the other mode that x is related with in M; it holds that
object i1pobject i2 in M iff Si1DSi2 : Similarly,
attribute j1pattribute j2 in M iff Sj1DSj2 : These quasi-
orders are represented in A and B in terms of subset–
superset relations among the component patterns:
object i1pobject i2 iff ai1:Dai2: and attribute j1p
attribute j2 iff bj1:Dbj2::
Note that the representation of the quasi-orders on

the object and attribute modes implies a simultaneous
classification of both modes, in that objects and
attributes with identical component patterns constitute
object classes and attribute classes, respectively.
Furthermore, from the representation of the quasi-
orders one may derive if–then type relations among
elements. More specifically, object i1pobject i2 implies
that if an attribute j is related with i1 in M; then j is also
related with i2 in M: Similarly, attribute j1pattribute j2
implies that if an object i is related with j1 in M; then i is
also related with j2 in M:

2.2. The three-way three-mode INDCLAS and Tucker3-

HICLAS models

Two three-way three-mode hierarchical classes mod-
els have been proposed: the INDCLAS model (Leenen,
Van Mechelen, De Boeck, & Rosenberg, 1999) and the
more general Tucker3-HICLAS model (Ceulemans, Van
Mechelen, & Leenen, in press).

2.2.1. The INDCLAS model

Being a three-way three-mode extension of HICLAS,
INDCLAS implies a decomposition of a binary I � J �
K objects by attributes by sources model array M into
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an I � R object component matrix A; a J � R attribute
component matrix B and a K � R source component
matrix C; with R denoting the rank of the model.
INDCLAS represents the ternary relation and the

quasi-orders as follows:
Ternary relation: The INDCLAS model represents

the ternary relation among the objects, attributes
and sources in M by the following decomposition
rule:

mijk ¼ "
R

r¼1
airbjrckr: ð3Þ

This means that an object i; an attribute j and a source k

are associated in M iff a component exists to which i; j

and k belong. Obviously, the linking structure among
the object, attribute and source components takes the
form of a one-to-one correspondence among the
respective components.

Quasi-orders: A quasi-order p is defined on the
objects, attributes and sources. More specifically,
element xpelement y iff SxDSy; with Sx denoting the
set of pairs of elements of the other two modes x is
related with in M: The quasi-orders on the objects,
attributes and sources are represented in terms of
subset–superset relations among the component pat-
terns in A; B and C; respectively.
The representation of the quasi-orders on the object,

attribute and source mode implies (1) a simultaneous
classification of the three modes, and (2) if–then type
relations among elements. As to the latter,
object i1pobject i2 implies that if an attribute–source
pair ðj; kÞ is related with i1 in M; then ðj; kÞ is also
related with i2 in M:

2.2.2. The Tucker3-HICLAS model

The INDCLAS model is quite restrictive in that it
constrains (1) the number of components to be equal
for each mode, and (2) the linking structure among
the object, attribute and source components to consti-
tute a one-to-one correspondence among the res-
pective components. As the latter INDCLAS restric-
tions often make less sense from a substantive point of
view (see Ceulemans et al., in press), the Tucker3-
HICLAS model was proposed which allows (1) the
number of components to differ across the three
modes, and (2) all linking structures among the three
sets of components that can be represented by an
object components � attribute components � source
components binary array. Formally, Tucker3-HICLAS
decomposes M into an I � P object component matrix
A; a J � Q attribute component matrix B; a K � R

source component matrix C and a P � Q � R binary
core array G; with ðP;Q;RÞ denoting the rank of the
model and G representing the linking structure among
the three sets of components.

Ternary relation: The Tucker3-HICLAS decomposi-
tion rule is given by

mijk ¼ "
P

p¼1
"
Q

q¼1
"
R

r¼1
aipbjqckrgpqr; ð4Þ

implying that an object i; an attribute j and a source k

are associated in M iff an object, attribute and source
component exist, to which i; j and k; respectively, belong
and that are interrelated in G: Note that Tucker3-
HICLAS reduces to INDCLAS iff P; Q and R are equal
and G is a ‘unit superdiagonal’ array (i.e., P ¼ Q ¼ R;
gpqr ¼ 1 iff p ¼ q ¼ r and gpqr ¼ 0 otherwise; Kiers,
2000), and that every INDCLAS model can be rewritten
as a Tucker3-HICLAS model by adding a R � R � R

‘unit superdiagonal’ core array G:
Quasi-orders: The quasi-orders p on the objects,

attributes and sources are defined and represented as in
the INDCLAS model.

2.3. N-way N-mode extensions of the INDCLAS and

Tucker3-HICLAS models

N-way N-mode extensions of INDCLAS and Tuck-
er3-HICLAS can be easily conceived. A N-way N-mode
HICLAS model decomposes a binary I1 � I2 �?� IN

model array M into In � R component matrices An ðn ¼
1;y;NÞ; where R denotes the rank of the model, and
represents the N-ary relation in M by the following
decomposition rule

mi1i2?iN ¼ "
R

r¼1

YN
n¼1

an
inr

 !
: ð5Þ

A N-way N-mode TuckerN-HICLAS model implies
In � Pn component matrices An ðn ¼ 1;y;NÞ and a
P1 � P2 �?� PN core array G; with (P1;P2;y,PN )
denoting the rank of the model, and takes the following
decomposition rule:

mi1i2?iN ¼ "
P1

p1¼1
"
P2

p2¼1
? "

PN

pN¼1

YN
n¼1

an
inpn

 !
gp1p2?pn

: ð6Þ

Both models define a quasi-order p on the N modes
in terms of the set of (N-1)-tuples of elements of the
other N-1 modes an element of some mode is related
with in M: The quasi-order on a mode is represented in
the corresponding component matrix in terms of subset–
superset relations among the component patterns.

3. Two uniqueness theorems for N-way N-mode

hierarchical classes models

In this section we will derive sufficient conditions
for the uniqueness of N-way N-mode hierarchical
classes models, starting from uniqueness theorems for
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the two-way two-mode and three-way three-mode
hierarchical classes models.

3.1. Uniqueness of the two-way two-mode HICLAS

model

Van Mechelen et al. (1995) have stated the following
uniqueness theorem for the two-way two-mode HI-
CLAS model:

Theorem 1. If all component specific classes (i.e., classes

of elements that belong to one component only) of a rank

R HICLAS decomposition of an I � J binary array M

are non-empty, this decomposition is unique upon a

permutation of the components.

Proof. Assume, without loss of generality, that the first
R rows of A and B are elements of the component
specific classes. In particular, for 1pipR; we assume
air ¼ 1 iff r ¼ i; similarly, for 1phpR; bjr ¼ 1 iff r ¼ j:
In that case, given the HICLAS decomposition rule (1),
the R � R submatrix M� based on the first R rows of A

and B is an identity matrix. Formally,

M� ¼ A�#B�0 ¼ I; ð7Þ
where A� and B� consist of the first R rows of A and B:
Note that (7) implies that A� and B� are each other’s
inverse. Now, Luce (1952) and Rutherford (1963) have
shown that the only Boolean matrices that have an
inverse are permutation matrices. It therefore follows
that the decomposition of M� into A� and B� is unique
upon a permutation of the components which, due to
the representation of the binary relation in M; then also
holds for the decomposition of M into A and B: &

3.2. Uniqueness of the three-way three-mode INDCLAS

and Tucker3-HICLAS models

3.2.1. Uniqueness of the INDCLAS model

As an extension of Theorem 1, Leenen et al. (1999)
suggested, without a proof, the following sufficient
condition for the uniqueness of an INDCLAS decom-
position:

Theorem 2. If the component matrices A; B and C of a

rank R INDCLAS decomposition of an I � J � K binary

array M include all component specific patterns, this

decomposition is unique (upon a permutation of the

components).

For this theorem we propose the following proof:

Proof. We will prove the uniqueness of A; the unique-
ness of B and C can be shown similarly. It follows from
the INDCLAS decomposition rule (3) that, if M is

matricized into an I � JK matrix, the following HI-
CLAS-decomposition exists:

miðjkÞ ¼ "
R

r¼1
airb̃ðjkÞr;

where b̃ðjkÞr ¼ bjrckr is an entry of the JK � R (attributes
� sources) component matrix *B: Theorem 1 states that
this HICLAS decomposition is unique (upon a
permutation of the components), if the component
specific classes of A and *B are non-empty. For A;
the latter is obvious. For *B; the non-emptiness of
the component specific classes of B and C implies
that for any component b ðb ¼ 1;y;RÞ an attribute
j and a source k exist such that b̃ðjkÞr ¼ bjrckr ¼ 1 iff
r ¼ b; hence, *B contains all component specific
patterns. &

3.2.2. Uniqueness of the Tucker3-HICLAS model

For the three-way three-mode Tucker3-HICLAS
model, the following novel uniqueness theorem can be
stated:

Theorem 3. If a ðP;Q;RÞ Tucker3-HICLAS decomposi-

tion of an I � J � K binary array M exists, such that (1)
the component matrices A; B and C include all component

specific patterns, and (2) no object (resp. attribute, source)
plane of G is a subset of the Boolean sum of the other

object (resp. attribute, source) planes of G; this decom-

position is unique upon a permutation of the object,
attribute and source components.

Proof. Assume, without loss of generality, that the first
P; Q and R rows of A; B and C; respectively, are
elements of the component specific classes. In particular,
for 1pipP; we assume aip=1 iff p ¼ i; similarly, for
1pjpQ; bjq=1 iff q ¼ j and, for 1pkpR; ckr ¼ 1 iff
r ¼ k: We will first prove the uniqueness of A (the proof
is similar for B and C) and next the uniqueness of G:
The Tucker3-HICLAS decomposition rule (4) implies
that the following HICLAS decomposition of the
matricized I � JK array M exists:

miðjkÞ ¼ "
P

p¼1
aipb̃ðjkÞp;

where b̃ðjkÞp ¼ "Q
q¼1 "

R
r¼1 bjqckrgpqr is an entry of the

JK � P (attributes � sources) component matrix *B: This
HICLAS decomposition is unique (upon a permutation
of the object components) since the component specific
classes of A and *B are non-empty. To show the latter for
*B we first note that the assumption about B and C

implies that the submatrix *B� based on the first Q and R

rows of B and C equals the matricized QR � P core
array G; that is, for all 1pjpQ and 1pkpR; b̃ðjkÞp ¼
gpjk: The non-emptiness of the component specific
classes of *B�; and hence of *B; further follows from the
restriction on G that no object core plane is a subset of
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the Boolean sum of the other object core planes. For this
restriction implies that for any object component
p� ðp� ¼ 1;y;PÞ an attribute component q and a
source component r exist such that gpqr ¼ 1 iff p ¼ p�:
With respect to the core array G; the assumption about
A; B and C implies that for all 1pipP; 1pjpQ and
1pkpR mijk ¼ gijk: The latter means that no core entry
can be modified without modifying M and, therefore,
that G is unique. &

3.3. Uniqueness of N-way N-mode HICLAS and

TuckerN-HICLAS models

The uniqueness theorems for the three-way three-
mode INDCLAS and Tucker3-HICLAS models can
easily be generalized N-way N-mode, yielding two
uniqueness theorems for the N-way N-mode hierarch-
ical classes models. Since the proofs are also straightfor-
ward extensions of the proofs in Subsection 5.2 (making
use of the HICLAS decompositions of the matricized
I1 � I2?IN array M), they will be omitted.

Theorem 4. If all component specific classes of a rank R

HICLAS decomposition of an I1 � I2 �?� IN binary

array M are non-empty, this decomposition is unique upon

a permutation of the components.

Theorem 5. If a ðP1;P2;y;PNÞ TuckerN-HICLAS

decomposition of an I1 � I2 �?� IN binary array M

exists, such that (1) each component matrix includes all

component specific patterns, and (2) no core plane of G is

a subset of the Boolean sum of the other core planes of the

same mode, this decomposition is unique upon a permuta-

tion of the N sets of components.

4. Comparison with uniqueness results for N-way N-

mode principal component models

In this paper we presented two uniqueness theorems
for the N-way N-mode hierarchical classes models, from
which sufficient conditions for the uniqueness of any
hierarchical classes decomposition can be derived. The
family of hierarchical classes models closely resembles
the family of principal component models (Tucker,
1966; Harshman, 1970; Carroll & Chang, 1970). In
particular, PCA, PARAFAC/CANDECOMP and
Tucker3 differ in three respects only from HICLAS,
INDCLAS and Tucker3-HICLAS, respectively: (1) the
component matrices and core array of a hierarchical
classes model are restricted to be binary, (2) hierarchical
classes models are based on Boolean algebra, whereas
principal component models involve standard algebra
(note that replacing the Boolean sum " in (2), (3) and
(4) by the regular sum

P
yields the PCA, PARAFAC/

CANDECOMP and Tucker3 decomposition rules), and

(3) hierarchical classes models represent the quasi-order
relations p in the model array. In view of this close
relationship, we will compare the uniqueness results for
the hierarchical classes and principal component mod-
els. Before, we note that, whereas non-uniqueness of a
principal component decomposition implies that an
infinite number of equally well-fitting decompositions
exists, due to the Boolean nature of the hierarchical
classes models, the number of alternative decomposi-
tions for a non-unique hierarchical classes decomposi-
tion is finite.
We will first focus on the uniqueness results for the

principal component counterparts of the N-way N-
mode HICLAS models. Since models with only one
component are almost always unique (Kruskal, 1977,
1989), we will only discuss identifiability of models with
several components (i.e., RX2). In case of two-mode
PCA, it is well known that any two-way two-mode PCA
model with more than one component can be rotated
without affecting the fit and hence is not unique. For
three-mode PARAFAC/CANDECOMP, Kruskal
(1977, 1989) has shown that a three-way three-mode
PARAFAC/CANDECOMP model with R components
is unique up to permutation and rescaling of the
components if

kA þ kB þ kCX2R þ 2; ð8Þ
where kA denotes the k-rank (Kruskal-rank) of the
component matrix A (with A having k-rank r if in every
set of r components from A the components are linearly
independent and if there is at least one set of ðr þ 1Þ
components that includes linearly dependent compo-
nents; the latter definition implies kApR). The unique-
ness condition stated in (8) is mild: unless one mode
consists of mere replicates, almost every three-mode
PARAFAC/CANDECOMP solution is unique (Harsh-
man & Lundy, 1984; Carroll & Pruzansky, 1984).
Extending Kruskal’s theorem to the N-mode case,
Sidiropoulos and Bro (2000) have proven a N-way N-
mode PARAFAC/CANDECOMP model with R com-
ponents to be unique upon permutation and rescaling,
provided thatXN

n¼1
kAn

X2R þ ðN � 1Þ: ð9Þ

It is clear from (9) that the already mild uniqueness
conditions for three-mode PARAFAC/CANDECOMP
become even less stringent when more modes are
involved: By adding a mode that does not consist of
mere replicates the left-hand side of (9) increases by at
least two and the right-hand side by one only.
Noting that the uniqueness conditions for N-way
N-mode HICLAS models as included in Theorem 4
remain equally restrictive for higher values of N;
we may conclude that, except for N ¼ 2; the
N-way N-mode HICLAS models suffer more from a
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lack of identifiability than their principal component
counterparts.
As regards the principal component analogues of

the N-way N-mode TuckerN-HICLAS models, the
main result is that every N-way N-mode TuckerN
solution can be rotated without affecting the fit. More
specifically, only some constrained TuckerN models
can be uniquely identified, where the constraints may,
for instance, pertain to fixing the value of certain
core entries or component scores (Kiers, Ten Berge, &
Rocci, 1997; Kiers & Smilde, 1998) or to non-negativity
or uni-modality of the component scores (Bro & De
Jong, 1997; Bro & Sidiropoulos, 1998). Although the
sufficient uniqueness conditions stated in Theorem 5
are rather restrictive, we may conclude that the N-way
N-mode TuckerN-HICLAS models suffer less from
identifiability problems than their principal component
analogues.
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