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Between the acquisition of Evoked Potential (EP) data and their interpretation
lies a major problem: What to measure? An approach to this kind of problem is
outlined here in terms of Principal Components Analysis (PCA). An important
second theme is that experimental manipulation is important to functional inter-
pretation. It would be desirable to have a system of EP measurement with the
following characteristics: (1) represent the data in a concise, parsimonous way;
(2) determine EP components from the data without assuming in advance any
particular waveforms for the components; (3) extract components which are inde-
pendent of each other; (4) measure the amounts (contributions) of various compo-
nents in observed EPs; (5) use measures that have greater reliability than mea-
sures at any single time point or peak; and (6) identify and measure conponents
that overlap in time. PCA has these desirable characteristics. Simulations are
illustrated. PCA’s beauty also has some warts that are discussed. In addition to
discussing the usual two-mode model of PCA, an extension of PCA to a three-
mode model is described that provides separate parameters for (1) waveforms
over time, (2) coefficients for spatial distribution, and (3) scores telling the amount
of each component in each EP. PCA is compared with more traditional ap-
proaches. Some biophysical considerations are briefly discussed. Choices to be
made in applying PCA are considered. Other issues include misallocation of vari-
ance, overlapping components, validation, and latency changes. © 1995 Academic

Press, Inc.

Between the acquisition of Evoked Potential (EP) data and their inter-
pretation lies a major problem: What to measure? The data acquired
often exhibit a richness that provides the opportunity for many different
measures. The appearance of peaks and valleys tempts one to measure
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their amplitudes and latencies. This may carry with it the implicit assump-
tion that each such peak and valley represents a separate underlying
process. Is such an assumption warranted and how can the reasonable-
ness of this assumption be assessed? A possible approach to this kind
of problem is outlined here in terms of Principal Components Analysis
(PCA).

A second theme is intimately interwoven: experimental manipulation
is important to functional interpretation. Function carries many meanings
and operationally can be assessed by measuring changes related to exper-
imental variables of interest. Thus, the function associated with some EP
measure is dependent on the particular experimental variables whose
variation produces changes in that EP measure. This points up the impor-
tance of skillful experimental design in order to sharpen the functional
interpretation.

The EP data acquired are multivariate and are usually assumed to be
only partly signal, the remainder being noise. Thus, one problem is to
separate signal from noise. What if the EP data contain several signals,
as would be expected of data obtained from sources as complex as the
brain. This possibility leads to the problem of separating the various
signals or, said another way, separating the various components of the
signal. It would be desirable to identify and measure these components
in each EP observation. One approach to this problem is to apply multi-
variate procedures to the set of observations. Here we discuss a particu-
lar multivariate procedure, PCA. Some uses of PCA, and its properties,
are discussed in other places, e.g., Chapman, McCrary, Bragdon, and
Chapman (1979), Donchin and Heffley (1978), Freeman (1987), Glaser
and Ruchkin (1976), and Mocks (1988).

It would be desirable (Chapman, 1974; Chapman et al., 1979) to have
a system of EP measurement with the following characteristics: (1) repre-
sent the data in a concise, parsimonious way; (2) determine EP compo-
nents from the data without assuming in advance any particular wave-
forms for the components; (3) extract components which are independent
of each other; (4) measure the amounts (contributions) of various compo-
nents in observed EPs; (5) use measures that have greater reliability than
measures at any single time point or peak; and (6) identify and measure
components that overlap in time. PCA has these desirable characteristics.
PCA’s beauty also has some warts that we will discuss below.

GENERAL TWO-MODE MODEL:
PRINCIPAL. COMPONENTS ANALYSIS (PCA)

A general two-mode model may be formulated for EP data, x(¢, /, m,
i) collected as measures at T time points from L electrodes for M condi-
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tions from / subjects, as follows:

K
x(t,l,m i) = Zk [a,(l, m, i) c()] + Grandmean(t) + error
=1

—e—

Data Mode 1 Mode 2 (Model 1)

where K is number of components, a,(l, m, i) are scores telling the weight
of the kth component at the /th electrode, mth condition, and ith subject,
and ¢,(¢) are component functions of time.

It is assumed that there are a few, K, underlying components each of
which has a constant waveform, c,(1), that is different from the wave-
forms of the other components. These component waveforms retain their
shapes but vary in amplitude, a,{/, m, i) from EP to EP (cases or observa-
tions). For each EP, then, each component is represented by multiplying
its waveform at each time point, ¢,(¢), by the amplitude value, a,({/, m,
/). The amplitude-adjusted component waveforms are summed over the
K components and added to the Grandmean waveform to reproduce the
original EP (minus the error).

Principal components is sometimes referred to as a Karhunen-Loeve
transformation or filter in the engineering literature. The latter method
is for continuous functions rather than discrete sample values but the
distinction is not critical in applications. Principal Components Analysis,
Principal Factor Analysis, Eigen analysis, and Singular Value Decompo-
sition produce essentially the same results.

If the component waveforms (basis functions) were known, then only
their amplitudes would need to be estimated from the data. One approach
would be to assume a particular set of component waveforms. Sine
waves, for example, are assumed as component waveforms in Fourier
analyses. However, many workers would not accept sine waves as being
very physiological and usually the number of such components (K)
needed to account for the same percentage of the data is much greater
than Principal Components (PCs) need. An alternative to assuming partic-
ular component waveforms (basis functions) is to derive the underlying
component waveforms from the data. This is quite a trick because both
the waveforms, ¢,(f), and their amplitudes, a,(/, m, i) are to be estimated
from the data set. Given so few constraints, the question of a unique
solution arises. Often a rotation criterion (e.g., Varimax criterion) is ap-
plied to the PCA to achieve a unique solution that has simple structure.
Other useful aspects of rotated PCA outputs are amount of data variance
accounted for by each component and correlations between components.

PCAs correspond to an easily formulated least squares method and
statistical methods are available for comparison of PCA across groups
and between conditions within subjects (e.g., Guthrie, 1990).



EP MEASUREMENT 291
COMPARISONS OF PCA WITH MORE TRADITIONAL APPROACHES

How appropriate is this Principal Components Analysis model? Nearly
all would agree that EPs are made of components, and that these compo-
nents may occur at different times with respect to a stimulus, overlap to
varying extents and have a variety of waveforms and durations. Further-
more, it is generally accepted that the component amplitudes depend on
experimental conditions and electrode placement. However, the particu-
lar components and their characteristics are more controversial, partly
due to the kinds of measures used. Various distinctive features within
the EP waveform, especially positive and negative peaks, are called com-
ponents when they occur within some latency range, exhibit some regular
pattern of amplitudes over the scalp, and relate to particular experimental
factors. Much has been learned from this approach. To illustrate a prob-
lem with this approach, consider measuring the peaks or other features
of the EPs in Fig. 1 (top). The early peak is easy to see, but what about
the later one(s)? These EPs were simulated data made from random com-
binations of the three prototypes shown in Fig. 1 (middle). Confidently
deciding whether there are two or three underlying components by only
examining the EP data set (Fig. 1, top) is questionable and measuring
each of them seems even more of a problem. Some limitations of this
traditional approach are (1) the problem of identifying and agreeing upon
the peaks and features to measure, (2) relatively few of the time points
in the EP contribute to the measures, limiting measurement stability,
(3) when increasing numbers of measures within EPs are made, there is
increasing likelihood that the measures will be found to be intercorrelated
and cannot be assumed to be independent, and (4) the possibility of com-
ponent overlap suggests that peak or feature measures are not pure mea-
sures of a single underlying component.

PCA identifies components by a systematic approach that analyzes the
variations in all the EPs in the analysis set. This analysis starts by com-
puting the correlations (or covariances) of each of the time points with
each of the other time points (across all EPs in the data set). The structure
is computed from these correlations, with the key idea that variables
(time points) that are correlated belong to the same underlying compo-
nent, Often when applied to EP data the time points whose values are
correlated tend to be within limited poststimulus time zones leading the
PCA to result in components whose loadings are high in different time
zones. However, there is nothing inherent in the PCA procedure that
encourages this local temporal result; it is the consistencies in the EP
data that are local temporally. A different outcome that occurs for some
components (e.g. CNV, late slow-wave, etc.) is a much broader time zone
of relatedness and the PCA results show correspondingly long-lasting
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components. It is conceivable that a single component could exhibit an
early and a late part with nothing between; any waveform is possible.
The useful idea pursued by PCA is that, from one EP to another, parts
that wax and wane together are taken as evidence that they belong to the
same component. A part of the EP may be partly correlated with two
other parts of the EP that are not correlated with each other; this can
result in principal components that overlap each other in time. What
about a part of the brain activity that one thinks should be considered a
separate component but is always present with the same amplitude in
every EP in the data set being analyzed? PCA cannot find a ‘‘component”’
that does not vary from EP to EP; it’s waveform contributes to the
grandmean. Extending this idea, only the amount of a brain component
that varies will be measured as a PCA component, the constant part of
that brain component will contribute to the grandmean of all EPs. Thus,
PCA looks where the action is to find components, rather than looking
for peaks.

This measurement idea nicely fits the scientific approach of experimen-
tally manipulating conditions and measuring what effects occur. If experi-
mental conditions were simply held constant for a set of EPs from one
electrode from one subject, only trial-to-trial variations can be analyzed
for components. Perhaps some of the same components that would have
been activated by different experimental conditions will be *‘spontane-
ously™ activated and found by PCA, but interpreting their functional
significance is difficult without any evidence of what events contributed
to a component’s activation in a given trial (measured by component
score). Therefore, attempting to influence the activity of the EP compo-
nents by varying experimental conditions provides a chance to attach
functional interpretations to the components. Some kinds of variables
that influence the activity of the components are experimental conditions,
electrode positions, subjects, and natural (unknown) variation. All, or
some, of these variables, may be used to improve reliability and determi-
nacy of the measurements. One can choose which variables to be studied
by a PCA by what is allowed to vary within the set of EPs submitted for
the analysis.

The discussion above indicates that in contrast to peak measurement:
(1) PCA identifies what to measure by a systematic approach, (2) all
the time points in the EP contribute to the PCA measures, enhancing
measurement stability, (3) the number of components and their indepen-
dence are an integral part of the PCA approach, and (4) overlapping
components are separated allowing purer measures of each underlying
component (although not to everyone's satisfaction, see below). An ex-
ample below will show poor recovery of prototype variation by peak
measures, when the recovery by PCA was quite good.
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SOME BIOPHYSICAL CONSIDERATIONS AND PCA

Some biophysical considerations are briefly discussed next (see also
Mocks, 1988b). The potential at a scalp location at a certain instant of
time is due to a number of current sources and sinks located somewhere
in the brain (e.g., Nunez, 1981). The complicated relationships between
the internal generators and the surface measurements that depend on
geometric and electric properties of the skull and tissue layers are not
relevant for the present purpose. Changes in generator current are pro-
portionately related to changes in surface voltage with the proportionality
coefficients remaining constant at each electrode provided that these geo-
metric and electric properties remain fixed. The same generator viewed
from a different electrode may be represented by a different proportional-
ity coefficient while its waveform retains the same shape; this fits the
PCA model well in that a,(I, m, i) of Model 1 depends on electrode, /,
whereas c¢,(f) does not. Furthermore, the effects of different generators
seen at an electrode may be said to simply sum at the electrode. This,
too, fits the PCA model in summing different components.

PCA: LETTING THE DATA TALK

Let us consider an experiment in which EP observations have been
obtained in response to a stimulus. Evoked Potentials (EPs) obtained in
this kind of experiment are multivariate observations. Each EP might
contain measures at 200 time points. In any collection of such EPs, the
parameters would involve not only the 200 means and 200 variances of
the amplitudes, but also the 19,900 covariances among the measures at
different time points. Techniques may be used that incorporate these
important parameters into the analyses. These tallies become even larger
for EPs based on more than 200 time points.

Varimaxed PCA may be used to identify a component structure for the
EPs and to obtain measures of the components. In many sets of data a
relatively small number of component measures, perhaps ten, do a rea-
sonably good job of representing the large number of measures, perhaps
several hundred, obtained during data acquisition. In fact, PCA is the
most effective linear method of data reduction, accounting for the most
variance with the fewest number of components.

Although PCA, like any other technique, is not without problems, we
find it quite useful in EP research, where the assumption of linear summa-
tion of components is consonant with volume conduction considerations
(Helmholtz’s principle of superposition). Surface voltages that are pro-
duced by different current sources summate linearly. We are trying to
find nature’s seams so that the underlying pieces can be used to describe
and understand brain functions in this complex machine.
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CHOICES TO BE MADE IN APPLYING PCA

There are technical choices to be made in applying any technique, and
often biases in their selection. In the case of PCA, these include, among
others, the time epoch, the association matrix, the criterion for the num-
ber of components to be rotated, and the rotation criterion.

The time epoch is limited by practical constraints. The most serious of
such constraints are the number of time points (variables) in relation to
the number of EPs (observations or cases). The number of variables
should be less than the number of observations; the smaller of these
two numbers is the mathematical upper limit to the number of principal
components. Furthermore, the number of variables may be limited by
the particular computer program. Although most modern programs can
compute a PCA with fewer variables than observations, the solution is
more stable when more observations contribute to the PCA. This epoch,
and the time samples within it, may be adjusted depending upon the
degree of interest in, or expected relevance of, early and later compo-
nents. It is not necessary that each EP be obtained under different experi-
mental conditions nor that all EPs be obtained from the same experimen-
tal condition. In the latter case, however, the components could not be
interpreted in terms of experimental variations, because no experimental
variations would have been used.

An association matrix must be selected. Typically, we transform the
data matrix into the standardized variance-covariance (correlation) ma-
trix. Principal components of the correlation matrix are invariant under
separate scaling of the original variables and those of the covariance
matrix are not (Gnanadesikan, 1977). When all variables are measured in
the same units, some researchers prefer the covariance matrix (e.g., Don-
chin & Heffley, 1978). However, the method is extremely dependent
upon the total variance of the original variables. Harman’s latest revision
(1976) states again, ‘it is customary to express the variables in standard
form, i.e., select the unit of measurement for each variable so that its
sample variance is one. Then the analysis is made on the correlation
matrix, with the total variance equal to n (the number of variances). For
such a matrix (symmetric, positive definite) all n principal components
are real and positive’” (p. 134). This ‘‘customariness’’ is often simply
taken for granted by many specialists (e.g., Cooley & Lohnes, 1971;
Mulaik, 1972). Rummel (1970) points out that almost all factor analyses
(not merely the specific PCA) have started with a correlation matrix,
but cites Sir Cyril Burt (1941) in particular as having pointed out some
advantages of the covariance matrix. We have frequently compared PCA
results from covariance and correlation matrices and can find no reason
for vehement preferences. When, as is often the case, analytic results are
desired to be expressed in the original microvolt metric, the restoration of
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the metric to the components based on the correlation matrix is straight-
forward (first described in Chapman et al., 1979).

The waveforms of the components can be displayed in the original
metric by the following procedure when the correlation matrix is used
as the association matrix (and when the output loadings relate to the
standardized variables, even though the covariance matrix is factored, as
some programs do). The loading for each point is multiplied by the stan-
dard deviation for that time point, where the standard deviations are
based on the set of EPs submitted to the PCA. In matrix notation, the
matrix of loadings is muitiplied by a diagonal matrix of the standard
deviations.

Number of components to be rotated. The number of components is
K in Model 1. Theoretically, K could be as large as the number of time
points, T, (often in the hundreds). For EP data K is typicaily much less,
perhaps in the neighborhood of 10, but it ought to depend on experimental
conditions, electrodes, etc. In practice there are several possible ap-
proaches to reaching this important decision. Rummel (1970) presents an
unusually comprehensive review. Since PCA extracts the components in
the order of the amount of variance they contribute (indicated by their
eigenvalues), from most to least, the components not used account for
relatively little of the data. This takes some of the sting out of deciding
exactly where to make the cut, although it is possible that a component
is important in relation to experimental conditions while being small in
size. Those components not retained may be considered to be in the
error term of Model 1. We generally use the widely employed criterion
originally proposed by Kaiser (1960). This is often referred to as the
eigenvalue = one rule: retain and rotate only those components which
have associated eigenvalues equal to or greater than one (or equal to
or greater than the average variance of the original variables when the
covariance matrix is factored). This recommendation has been supported
by convergence of algebraic derivations, psychometric reliability, and
interpretability. It also has the intuitive appeal and plausibility of exclud-
ing components not accounting for at least the total variance of a single
variable. We use this rule in initial computations and then apply the scree
test (Cattell, 1966) to confirm or question whether the appropriate number
has been selected. Where the rules disagree both are used, and the de-
sired rotated result selected on the basis of judgments of compacted com-
ponents {(e.g., too few variables in the hyperplane) and fissuring of com-
ponents (e.g., too few substantial loadings). Velicer (1976) has shown
that the average of squared partial correlations decreases as components
are extracted until a ‘‘unique’’ or “‘specific’’ component (high loadings
on only one original variable, i.e., time point) is partialed out, then, the
average begins to increase. Under Velicer’s Minimum Average Partial
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{MAP) method, no more components are retained after the average has
reached its minimum. This rule bears an obvious relationship to the intu-
itive concept of parsimony involved in the eigenvalue = one rule. Simula-
tion studies (Zwick & Velicer, 1982, 1986) have examined alternative
stopping rules.

Rotation criterion. The purpose of the rotation is usually to obtain
simpler interpretations of the components. The problem is that there is
a basic indeterminacy in factor analysis—an infinitude of factorizations
of a correlation matrix may account for the observed data equally well.
Which of these makes the best sense from whatever else we know about
the research topic? Often a Varimax criterion is applied to the PCA to
achieve a unique solution that has simple structure and retains orthogo-
nality of component scores. The simplicity of a component is defined as
the variance of its squared loadings (the loadings in Model 1 are functions
of time, ¢,(f)) and the Varimax criterion maximizes this loading variance
for all the components retained. Varimax finds components whose load-
ings tend to be large or small, not intermediate. For the EP application
this is saying that the components tend to be either large or small at any
time point and this tends to minimize overlap of different components,
This idea leans toward the idea of measuring EPs by amplitudes or areas,
which carries the implicit assumption that only a single underlying com-
ponent is being measured. Measuring the average amplitude within some
time zone of the EP is similar to a component that has loadings of 1.0 at
time points within that time zone and loadings of 0.0 at all other time
points. The Varimaxed PCA components are not typically as extreme, in
that more than one component may contribute to any time point. Because
EP data are a time series where adjacent time points tend to be more
correlated, the PCA tends to group them together in identifying compo-
nents. Since a major EP task is separating this time series into meaningful
components it seems reasonable, especially at early stages of understand-
ing, to segment this time record into as separate time pieces as possible
while considering all the data. The Varimax rotation, it seems to us, Is
likely to do this. Following this logic leads us to suggest that Varimax
tends to give narrow waveforms to the components; perhaps we could
think of Varimax (and even more so oblique rotations) as providing a kind
of lower limit estimate to the width of the true component waveforms that
may have more overlap and be more spread out over time. However, the
Varimax PCA is not looking for one-peak components (as might be mis-
read in Mocks and Verleger, 1986); if the data had underlying components
of multiple peaks that waxed and waned together, then the Varimax PCA
would find this multiple-peak component (an example is the unmistakably
sinusoidal component related to power line frequency found by Arbuckle,
1970). Model 1 applies equally well before or after rotation as a general



EP MEASUREMENT 297

model; only the values of the parameters may change. With a new set of
rotated component functions of time, ¢,(#), there will be a corresponding
new set of component scores, a,(/, m, i) and a corresponding new set of
variances accounted for by each component, although the total variance
for the K components remains constant. After orthogonal rotations, such
as Varimax, the component scores, a,(l, m, i), for the various components
remain uncorrelated, while the component functions of time may be cor-
related. A further relaxation of criteria may be obtained in oblique rota-
tions that allow the component scores to be correlated. Oblique rotations
may result in “‘simpler’” loadings than those for an orthogonal rotation.
With oblique rotation there is a greater tendency for each variable (time
point) to be associated with a single component. The method of oblique
rotation generally recommended is the direct quartimin (Jennrich &
Sampson, 1966). An example is briefly discussed below. An important
objective of the rotational problem is to achieve factorial invariance. The
Varimax criterion tends to lead to factorial invariance (Harman, 1976,
p. 298). Whatever the rotation decisions, the results are simply linear
transformations of the data. PCA does not create effects which are not
in the data.

Another kind of rotation criterion could be based on other assumed
characteristics, for example scalp distributions that are related to particu-
lar neural generators (e.g., Maier, Dagnelie, Spekreijse, & Van Dijk,
1987; Vokey, 1989).

WARTS: PRINCIPAL COMPONENTS ANALYSIS OF EPS
IS NOT WITHOUT PROBLEMS OR CRITICS

The plausibility of the mathematical assumptions behind PCA of EPs
was questioned by Hunt (1985), who analyzed some simulations. He con-
cluded that his results “‘indicate that PCA is a surprisingly robust tech-
nique for estimating component waveform shapes and the relative size
of component forms, across records, even when some of the assumptions
are not met.”’

An influential example of a critical analysis of PCA use with EPs is the
simulation study by Wood and McCarthy (1984). Their objective was to
investigate the ability of PCA, Varimax rotation, and univariate ANOVA
(a) to reconstruct component wave shapes, (b) to allocate variance cor-
rectly across components, and (c) to identify the component to which a
simulated treatment effect was applied. Simulated EPs were constructed
using three 64-point prototype components (Fig. 1, middle panel) ‘‘not
intended to simulate any particular set of EP results, but were designed to
capture in a general way some of the main features of the EP components
discussed in recent experiments.’” Each simulation set of EPs consisted
of randomly weighted combinations of these prototypes, corresponding
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toa2 x 2 x 10 factorial repeated-measures design with 20 subjects.
We illustrate these simulations with our own replication of Wood and
McCarthy (1984) in Fig. 1. Random weights were selected for each com-
ponent from normal distributions with standard deviations of 50 and
means of 100, except for one component for which a main effect was
introduced by treatment levels with means of 100 and 200. In addition, a
small additive noise term was chosen independently for each of the 64
time points from a normal distribution with a mean of zero and a standard
deviation of 2.

Samples of our simulated EP data are shown in the top panel (Fig. 1)
(only 6, randomly selected from the 800 EPs in that data set are shown).
Covariance PCAs, Varimax rotation and univariate ANOV As were calcu-
lated for several hundred simulations to observe outcomes with (a) no
input effects on any component for any treatment and (b) with an input
treatment effect for each of the prototypes, one at a time. Wood and
McCarthy showed and concluded that the ‘“wave shapes of the simulated
components were reconstructed reasonably well, although not com-
pletely, by the rotated principal component (PC) loadings.”” This agrees
with our experience, a sample of which is in Fig. 1 (bottom). Two of
the prototype components overlapped and a quantitative comparison of
rotated PC scores with the random weights used to generate the simulated
EPs showed that PCAs *‘misallocated’ some of the variance across these
overlaps.This was found to have dramatic consequences on the ANO-
VAs’ assessment of treatment effects. With no simulated treatment effect
on any component, F ratios with p < .05 closely approximated the 5%
type 1 error rate. When treatment effects were introduced on either of
the overlapping components, type I error rates for ANOV As on the other
component were inflated to levels of 70 to 80%. Wood and McCarthy
cautioned against overgeneralization of the results, but the outcomes, as
presented, illustrated that the PCA-Varimax-ANOVA strategy can re-
sult in misinterpretation of treatment effects, especially if the analysis is
on a component-by-component univariate basis. The authors are careful
to point out that the misallocation of variance problem is not peculiar to
PCA: “*Other approaches to ERP analysis, measurement of peak ampli-
tudes and latencies for example, are no less subject to the problem of
component overlap than PCA; they simply make it easier to ignore by
not representing it explicitly. Misallocation of variances and misinterpre-
tation of experimental effects are just as possible using such techniques as
they are with PCA”’ (p. 258). This paper has been the subject of frequent
discussion and, unfortunately, some informal summaries have lost the
temperate and qualified aspects of the authors’ conclusions.

The experience with PCA in our laboratory led us to believe that addi-
tional simulations might aid understanding the basis for this ‘‘misalloca-
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SIMULATED DATA

FiG. 1. Principal Components Analysis (PCA) of simulated data. The pseudo-EPs are
samples of our simulated EP data (top) made from random combinations of the three proto-
types (middle) used by Wood and McCarthy (1984). The six EPs are arbitrarily displaced
vertically for viewing here. Varimaxed PCA from a simulated data set of 800 EPs (like
those in the top panel) extracted three components whose loadings, (1), are plotted (bot-
tom). These PCA component functions of time reconstruct the prototypes reasonably well,
although not completely. Prototypes 1 (solid line), 2 (broad-dash line), and 3 (dash line)
had peak amplitudes at early, middle, and late times, respectively.

tion”” of variance. The validity of the orthogonal Varimax rotation as-
sumes that the underlying component structure is orthogonal. If this
assumption is not at least approximated, then the Varimax procedure is
limited in recovering the original prototypes. We wished to check this
with the same three prototype waveforms used by Wood and McCarthy
(graciously provided by them).

Using these and other prototypes, our simulations and those of Mocks
and Verleger (1986) have provided some insights into the ‘‘misallocation’’
of variance problem.
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“MISALLOCATION” OF VARIANCE

Using the Wood and McCarthy prototypes and procedures in simula-
tions with the PCA-Varimax-ANOVA approach, we obtained essen-
tially the same outcomes. In order to assess whether the assumption
of orthogonality is appropriate for the underlying structure, an oblique
rotation—usually direct quartimin or ‘‘rotation to simple loadings’’ (Jenn-
rich and Sampson, 1966)—can be employed to check it. Using a PCA-
direct quartimin approach with simulations using the Wood-McCarthy
prototypes produced components which correlated about +.22. The
“misallocation’’ of variance may be in part due to underlying non-
orthogonality.

Under those circumstances where variance misallocation or ‘‘leakage’
has in fact occurred, the problem of increased type I error rates exists
only when the research interest is focused upon the results of univariate
analyses of individual components. Even in these cases, there are ways
to identify and attempt to cope with the problem.

In the absence of other knowledge about the structure underlying the
data, routine inspection of the results of both the orthogonal and
the oblique rotations can be helpful in providing information about
(1) the degree to which the assumption of orthogonality is approximated
by the underlying component structure and (2) which, if any, components
may likely have variance ‘‘shared’’ with other components.

If univariate ANOV As have been computed separately for each of the
components, then the overall pattern of the complete set of test results
can be examined for indications of variance misallocation or “‘leakage.”
If two or more components have the same pattern of ANOVA outcomes
and the wave shapes of the components overlap, then the occurrence of
variance misallocation, ‘‘sharing’” or ‘‘leakage’’ can be considered as one
of the possible explanations of the similarity. This explanation becomes
more probable if the ANOVA effect sizes are very large for one of these
components compared to the other(s). Such differences in magnitudes of
effects where the ANOV A significance patterns are the same may be used
to identify the component whose variance may be partly misallocated to
another component and to judge the implications for risking type 1 error
rates if univariate ANOVA results are interpreted without qualification
and additional control analyses.

The risk is primarily associated with uncritical acceptance of ANOVA
outcomes for the component(s) with the smaller effect sizes. The AN-
OVA outcomes for the component with the much larger effect sizes,
restricting the comparison to the same ANOVA effect, are valid. In our
replication of the Wood and McCarthy simulations, we discovered these
differences in effect sizes were always quite large; the F for the real
component was often 20 times larger than the F for the component dis-
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playing misallocation. Comparison of F values is reasonable here because
the degrees of freedom are always the same when the same ANOVA
design is used with different components. A special case where interpre-
tation is simple occurs when only one component has a significant, spe-
cific, ANOVA effect: such an outcome is clearly valid.

Where the research questions are more concerned with EP effects in
general than with single components, analytic approaches can be used
which circumvent the problem completely. Under these circumstances,
PCA is used primarily as an EP measurement system. For example, the
scores for all components might be used as the dependent variables in a
Multivariate Analysis of Variance (MANOVA). This procedure could
determine whether there are statistically reliable differences among linear
combinations of these scores as a function of experimental manipulations
without encountering threats to inference due to misallocations of
variance.

If, as in some of our research on semantic processing (Chapman, 1979;
Chapman, McCrary, Chapman, & Bragdon, 1978; Chapman, McCrary,
Chapman, & Martin, 1980), Discriminant Analysis is used, possible prob-
lems due to variance misallocation are also circumvented. The technique
is used to develop linear combinations of the PCs whose scores best
reveal differences among EPs separated into groups according to an ap-
propriate criterion (different experimental treatments, different types of
eliciting stimuli, etc.). These combinations of PC scores (discriminant
functions) then serve as the basis for classifying EPs into these groups.
The resulting classification accuracy (proportion of correct classifica-
tions) is easily evaluated on a preliminary basis for apparent magnitude
and reliability. Cross-validation of the discriminant functions is always
important to avoid capitalizing on chance. This is carried out by applying
the functions to EPs not used in the computation of them (either a ‘*hold-
out’” group or subset of the EPs or a newly collected set of EPs) and
statistically evaluating the resulting classification success rates obtained
with the ““new’’ EPs. Reaching decisions about differences among the
EPs based on such cross-validation is added protection against a more
generally encountered source of type I error.

OVERLAPPING COMPONENTS NEED NOT RESULT
IN MISALLOCATION OF VARIANCE

We performed additional simulations directed at disentangling the mat-
ter of component overlap from the matter of component correlations in
‘‘misallocation’’ of variance across components.

We prepared a set of three 64-point prototype components that approx-
imated orthogonal simple structure while retaining as much of the form
and appearance of the Wood-McCarthy prototypes as possible. Plots of
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Fic. 2. PCA recovering particular prototypes. Three new, orthogonalized prototypes
(top) were used to construct simulation sets of EPs. Varimax rotated PC loadings from a
representative example of 100 PCA simulations (bottom). The orthogonal PCA loadings
(bottom) correspond closely to the waveforms of the prototypes (top). In these simulations,
no leakage of variance among components was found. Prototypes 1’ (solid line), 2' {broad-
dashed line) and 3’ (dash line) had peak amplitudes at early, middle, and late times, respec-
tively.

these components are presented in Fig. 2 (top). The second and third
prototypes overlap about as extensively as their Wood-McCarthy coun-
terparts. These prototypes were used with the Wood and McCarthy pro-
cedures to construct simulation sets of EPs.

In the first set of 100 simulations no treatment effect was applied to
any of the three components. Fig. 2 (bottom) displays plots of the Vari-
max rotated PC loadings from a representative example of these 100
simulations. The rotated PCs can be seen to correspond closely to the
wave shapes of the prototypes.

An additional 100 simulations were evaluated to test for leakage among
components. In these, we used the procedures of Wood and McCarthy
to apply a single main freatment effect of their same large size on one of
our overlapping components. The effect was applied to Prototype 3’ be-
cause it most closely resembles their Prototype 3 that resulted in their
“‘worst case’’ leakage of variance into the overlapping second component
to produce the 81% level of type I error rates. No treatment effect was
applied to either the first or the second component. The PCA-Varimax—
ANOVA strategy was applied in these 100 simulations. All 100 ANOVAs
on PC scores for component 3 were significant at p < .05. Neither of the
other two components—including the completely overlapping component
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2-—showed any indication whatsoever of any ‘‘misallocation’’ of vari-
ance. Type I error rates for these components were in both cases less
than 5%. Thus, there was no leakage among components.

This may be contrasted with the leakage obtained by peak measures
on the same simulation set. For example, a peak measure of the response
maximum near time 40 (where the second prototype had its maximum)
received sufficient leakage from the third prototype (the one to which the
effect was actually applied) to produce significant F values (p < .05) in
all 100 ANOVAs. This poor performance of peak measures suggests that
they are not suitable for validating PCA results, as some would suggest
(see below).

With these underlying components, two of them overlapping consider-
ably, the PCA-Varimax—-ANOVA strategy resulted in excellent recovery
of the component wave forms, no misallocation of variance among com-
ponents and no inflated type I error levels.

Wood and McCarthy (1984) and Mocks and Verleger (1986) do not
propose that (a) these issues prohibit applying PCA followed by some
rotation, nor (b) that methods like measuring peaks or areas should be
used instead. The peak and area methods assume that components do
not overlap (Donchin and Heffley, 1978). If there is indeed no overlap,
then PCA, Varimax rotated or not, provides the correct solution (Mocks
& Verleger, 1986). However, if there is some overlap, the simpler peak
or area approaches inevitably render biased measures, i.e., some kind of
“‘misallocation.”” In contrast, PCA does allow for overlap and shows
whether it is present at all, but has difficulties in that it cannot resolve
overlap in a way that necessarily agrees with the true prototypes.

The overall ability of PCA to parsimoniously disentangle components
has not yet been equaled by any other procedure. The Varimaxed Princi-
pal Components method has performed well in achieving maximally par-
simonious descriptions of a wide variety of actual data sets obtained from
differing scientific areas (Chapman, McCrary, & Tuttle, 1981; Thorndike
& Weiss, 1970) where other factor analytic methods sometimes fail.

The importance of the rotation after PCA was emphasized by Mocks
and Verleger (1986) who further extended analyses of the Wood and
McCarthy simulations. Mocks and Verleger provided evidence that the
“‘misallocation of variance’’ does not originate from the component ex-
traction step used by PCA. This was demonstrated by the fact that a
rotation could be defined which perfectly reconstructed the set of proto-
types. However, it is not possible to find this rotation in a real data
situation, they indicated, since it requires knowledge of the true proto-
types, which, is available in simulations only. To the extent that the true
prototypes satisfy the Varimax criterion they will be recontructed by
PCA Varimax procedures (see Fig. 2). Furthermore, if there is no overlap
between true components, then PCA, Varimax rotated or not, provides
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the correct solution (see prototype 1 in Fig. 1). They wrote, ‘‘The very
best to expect from a procedure like PCA is that it comprises the informa-
tion in a few components, without considerable loss or distortion, and,
when applying some rotation criterion, that it ends up with rotated ver-
sions of the underlying true brain potentials.”” The situation might be
improved by formulating more definite data models by using more infor-
mation or assumptions (e.g., see Three-Mode Models below). Mocks and
Verleger concluded that ‘‘PCA does not distort or lose information when
extracting components’’ and ‘‘In sum, it appears to us that despite its
difficulties PCA may be applied to advantage on ERP data.”

VALIDATION OF COMPONENTS

The acceptance of PCA as a measurement method for EPs can be
attributed, at least in part, to some Principal Components looking similar
to what researchers expected from simpler measurement approaches
such as viewing EPs, measuring peaks, subtracting one EP from another,
etc. For example, in an early application of PCA (Chapman, 1974; Chap-
man, McCrary, Bragdon, and Chapman, 1979) Component 1 looked (tem-
poral waveform obtained from loadings) and behaved (amplitude, ob-
tained from component scores, changes with experimental conditions)
like CNV (Grey Walter, Cooper, Aldridge, McCallum, & Winter, 1964)
and Component 2 looked and behaved like P300 (Chapman & Bragdon,
1964; Chapman, 1965). In a sense, the PCA results were validated against
other measures of EPs (Chapman, 1973). Such comparisons with other
measures seem useful, especially at early stages of using a new method.
Some workers suggest that PCA results should always be validated by
other EP measures. Before subscribing to such a mandate, further elabo-
ration of the implications of such comparisons may be helpful. When
agreement between PCA and other EP measures is found, then there is
no problem. However, when agreement is not found, which measure is
to be taken as the criterion for validating the other? Some investigators
want to ‘‘see’’ the component in the EP traces and imply that visual
inspection is more valid than PCA. First, it is not always appreciated
that PCA does not invent data, but is a view of the data. Summing the
components with the proper weights (all specified in the PCA results) can
reproduce any of the EPs (e.g., Chapman et al., 1979, Fig. 2). Thus, it is
theoretically possible to ‘‘see’’ any PC in the EPs after one knows where
to look. They need not appear necessarily as peaks in the EPs, but may
appear as shoulders or thickenings of peaks or as longer lasting raises or
falls, etc. This may be a fun exercise, but can not help validate the PC
because invalidation is not possible; not “‘seeing’” a PC may be the
problem of the viewer and the difficulty of the viewing task. Peak mea-
surements as validation criteria are flawed if overlap of components is



EP MEASUREMENT 305

permitted theoretically. Second, is a logical point: if passing an ‘‘other-
measure’’ test is required in order to accept a PC, then why not simply
use the ‘‘other-measure’? The other side of this coin suggests that the
value of PCA may lie not in those PC’s that are similar to other measures,
but rather in those PC’s that are not so similar and thus more difficult to
validate by the ‘‘other-measure’’ unless the ‘‘other-measure’’ is, in fact,
very similar to the PC. Although the method of validation by the ‘‘other-
measure’’ for some of the components was useful in early applications
of PCA to EPs because it lent credence to the method, requiring such
validation for ‘‘new’’ components, we suggest, is not as useful now.
Other forms of validation may be more useful, e.g., comparisons to
non-EP measures both behavioral and physiological, as well as assessing
the mapping of the component scores onto the experimental conditions
(discussed above).

IDENTIFICATION OF LATENCY CHANGES BY PCA

If there is variability in the time domain within EPs then there will be
variability in amplitudes at the various EP time points beause of the
shifting back and forth of EP features. Since PCA is based on amplitude
measures, the method accepts latency variability as amplitude variability.
Donchin and Heffley (1978) appropriately caution that ‘‘results should be
interpreted with great care whenever latency variability is substantial
across ERPs’’ (p. 567). If there are consistent variations of sufficient size
to permit resolution within the EP sampling rate, the PCA can produce
a component which represents the latency shift. Unfortunately, this pros-
pect has led some critics to assert that variability in latency is a major
reason why PCA yields misleading component structure. Careful exami-
nation of the data can bring insights about such effects. Donchin and
Heffley (1978) have illustrated how this representation occurs. For a spe-
cific example, systematically shifting a constant-amplitude component,
they computed the PCA and displayed the resulting biphasic component.
Such a component may be called a ‘‘latency-adjusment component.’” The
name identifies its ‘‘function’ in the PC structure, i.e., an adjustment
to a component’s latency that may be so identified, related to specific
experimental manipulations, and subjected to further analysis when ap-
propriate. If the identification and analysis of such latency-adjustment
components is viewed as undesirable or irrelevant to an overall analysis
of experimental outcomes, then an alternative procedure might be used to
exclude them. As suggested by Donchin and Heffley, an adaptive filtering
algorithm proposed by Woody (1967) (see also Steeger, Hermann, &
Spreng, 1983; Kramer & Donchin, 1987; Ruchkin, Sutton, & Stega, 1980,
Mocks, Kohler, Gasser, & Pham, 1988) might be applied to adjust compo-
nent latencies prior to PCA. Presumably the time shift indicated for a
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trial by this filtering algorithm would be applied to all channels on that
trial. Woody filtering generally tends to focus on a single component with
less concern for other components which may be shifted as a conse-
quence.

DON'T BE A WART HOG: SHARE THE TROUBLE

All techniques have problems. They are easier to see in simulation
studies where the “‘truth” is known. In most of these simulation studies
the distortions from this ‘‘truth’” were small (e.g., 6—10% of total variance
in Wood and McCarthy, 1984), even acceptable by the National Bureau
of Standards for some of their physical measures. It is well recognized
that even a small amount of biased error can regularly pass the decision
rule of inferential statistical tests. This can explain how principal compo-
nents whose waveforms are just a little off from the prototypes can make
non-linear decision jumps to many ‘‘wrong’’ rejections of null hypothe-
ses. Other measures also are subject to the same problem. In choosing
measures, it may be helpful to have comparisons under the same condi-
tions (e.g. see comparison of PCA and amplitude measures above in
which the PCA measures were considerably closer to the “‘truth’’).

Carroll (1992) said: ‘*Although it has sometimes been fashionable to
criticize factor analysis as being a technique with many problems—for
example, the problem of the number of factors to extract, the problem
of whether principal components or principal factors should be extracted
{Velicer & Jackson, 1990), and the problem of indeterminate rotations to
simple structure—1 am persuaded that these problems can be and have
been satisfactorily resolved to the point that at least for well-designed
sets of variables, reasonable and replicable solutions can confidently be
arrived at (Carroll, 1985).”

AN EXTENSION OF PCA: THREE-MODE MGODELS

Extensions of the PCA approach have been proposed, some of which
seem to hold special promise. One of these will be summarized here.
Mocks (1988a) suggested that attempting to treat three-mode data, x(t, |,
i), by some two-mode decomposition (e.g. Model 1 above) is bound to
emphasize some aspect more than another. He suggested that a compo-
nent be defined by two properties: a fixed time course and a topographic
pattern independent of time. Neither of these two properties needs to be
known in advance of the analysis that searches for them in a data set by
estimating their parameters. He suggested a trilinear decomposition of
EPs through a set of component functions, c,(¢), with associated electrode
coefficients, b,(I), both common to all subjects and also a set of scores,
a,(m, i), telling the weight of the kth component in the mth condition for



EP MEASUREMENT 307

the ith subject. Mock’s Topographic Components Model (TCM), slightly
enlarged to include experimental conditions, is

K
x(t,I,m, i) = Z lagim, ) b() c (0] + Grandmean(s) + error
=1 ————— ——

———

Data Mode 1 Mode 2 Mode 3 (Model 2)

where K is number of components, a,(m, i} are scores telling the weight
of the kth component in the ith subject and mth condition, b () are coef-
ficients of strength at the /th electrode, and ¢,(f) are component functions
of time.

Model 2 has three ingredients (scores, electrode coefficients, and load-
ings), whereas Model 1 has two (scores and loadings). Although Model
2 may look more complicated, it is simpler in that fewer parameters
(unknowns) are involved (due to combinations of 3 things, rather than 2
things). One advantage is that Model 2 has unique solutions for a fixed
number of components, K. This has the favorable consequence of not
needing to choose a rotation as with Model 1. More importantly, the
assumptions needed are rather weak (see also Kruskal, 1976, 1977):
(1) The K component functions differ in their pattern, and the same holds
for the K vectors of scores (i.e., the matrices (c,(#)) and (a,(m, i)) have
full rank K); (2) the topographical distributions pertaining to any two of
the components are not the same (i.e., any two of the L-vectors b, (/) are
not collinear). These assumptions are less restrictive than in PCA. Mocks
noted that there is nothing prescribed about orthogonality or the like.
This means that scores of two components can correlate with each other
and that these correlations are determined as well. As for the component
functions it means that there may occur almost any overlap in time,
without affecting the unique decomposition. A three-mode model like
Model 2 (Mocks, 1988a, 1988b; Pham & Mocks, 1992) has been consid-
ered before in other frameworks (Harshman, 1970; Harshman & Lundy,
1984; Carroll & Chang, 1970) under the names PARAFAC (parallel fac-
tors analysis) and CANDECOMP (canonical decomposition). However,
Model 2 differs from the better known model of three-mode factor analy-
sis (Tucker, 1966). The three-mode Model 2 can be extended towards a
four-mode analysis that separates parameters for experimental conditions
and subjects (Mocks, 1988a). It is also possible to generalize it by includ-
ing individual latency parameters of the component functions, along the
lines of Mocks (1986).

The favorable properties of the new model have their costs in terms of
problems on the algorithmic side. More experience with these problems
seems worthwhile and could lead to substantial methodological progress.
Aside from the mathematical virtues, of greatest importance is whether
the results make sense for the research problem being investigated. Here
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again, we suggest interpreting the components by relating their measures,
the component scores, a,(m, i), to experimental conditions. The other
parts of the model provide parameters that estimate the time courses of
the components, c,{f), and the scalp distributions of the components,
b,(D), both of which lead to physiological predictions.
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