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Abstract

In trilinear decomposition, one first tries to estimate the number of underlying factors in the system studied, and then
employs trilinear decomposition methods such as PARAFAC to obtain the desired characteristic profiles of the underlying
factors and their relative contributions. Since the results of PARAFAC are heavily dependent on the estimation of the un-
derlying factors, either overestimation or underestimation of the underlying factors will lead the results of PARAFAC to
be erroneous. Most of the existing factor-determining methods are established on the basis of factor analysis. These pro-
cedures are originally designed for two-way data sets. Only after the three-way data array was unfolded into two-way data
set, could then these factor-determining methods be used. It is obvious that the trilinear character of the data array is not
utilized in the factor-determining procedure. With a view to cope with non-ideal experimental conditions, such as heavy
collinearity and varying backgrounds, the present authors advocated incorporating the advantages of trilinear data array into
the factor-determining procedure. Hence, a novel factor-determining method has been proposed specifically for trilinear
decomposition. Experiments have demonstrated that the proposed method has the features of easy implementation and ex-
cellent performance even when heavy collinearity and varying backgrounds are present. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Driven by the demands for more information to be
extracted from data, the last two decades have seen
a rapid development of chemometrics. It is a direct
result of the wide application of sophisticated instru-
ments such as excitation–emission matrix fluorescence
spectrometer, HPLC–DAD and GC–MS, etc. Trilin-
ear decomposition is one of the most active areas in
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chemometrics research, due to the so-called second-
order advantage [1], i.e. the uniqueness of the
decomposition results, regardless of some scaling in-
determinacy. Among all the chemometric methods de-
veloped for trilinear decomposition [2–11], PARAFAC
[2,3] and direct trilinear decomposition [4] are the two
representatives for iterative and non-iterative types,
respectively. PARAFAC is preferable in practice for
its favorable statistic merits (such as optimal unbiased
estimations of the final results in least square sense)
comparing to non-iterative methods.

As pointed by many authors, however, PARAFAC
requires an accurate estimation of the number of
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underlying factors in the system studied. Either
overestimation or underestimation of the number of
underlying factors will lead to erroneous results.
Therefore, factor determination is of utmost impor-
tance in trilinear decomposition.

At present, trilinear data arrays are often unfolded
into two-way data sets, and then factor-determining
methods [12–18] for handling two-way data are used
to estimate the number of underlying factors. Most of
these methods are based on factor analysis, in partic-
ular SVD, which tries to separate the systematic part
of the data, contributed by chemical species, from the
residuals, caused by random noise. Homoscedastic
noises of normal distribution are always assumed for
the successful application of these methods. Gener-
ally speaking, they can not discriminate between the
chemical information and background. So in practice,
the presence of background may cause the estimations
of the factor-analysis-based methods to be misleading.
Furthermore, for the different empirical or statistical
hypotheses employed, different methods may offer
different estimations of the number of factors for the
same data set, which will embarrass the analysts in
drawing conclusion and carrying on the subsequent
analysis.

In trilinear decomposition, three-way data arrays are
not merely a collection of two-way data sets, but that
there is actually an internal relationship between each
of the matrixes. The systematic part of the three-way
data array has trilinear character, which is not valid
for varying backgrounds. It might not be reasonable
just to unfold a trilinear data array into a two-way data
set, and then estimate the number of underlying fac-
tors by factor-determining methods for two-way data
as often done in literatures. The advantage of trilinear
character provided by the trilinear data array is not
appropriately utilized in the above factor-determining
procedure. For a reliable estimation of the factors in
the system studied, one should take full advantages of
the information supplied by the system. The trilinear
character of trilinear data arrays will be undoubtedly
helpful in the process of factor determination espe-
cially when varying backgrounds are present (always
the case in practice). To our knowledge, there are few
true three-way factor-determining methods, which
exploit the trilinear feature of trilinear data arrays.
Harshman and Lundy [19] advocated for adopting
split-half analysis to determine the most appropriate

number of underlying factors for trilinear data arrays.
It is essentially a type of jack-knife analysis, where
different subsets of the data array are analyzed inde-
pendently, and the same results are expected for all
the subsets when the appropriate factors being used.
Split-half analysis involves relatively intricate split-
ting skills. A poor splitting scheme will impede sound
results. Recently, Louwerse et al. [20] had generalized
the two-way cross-validation method to three-way
array. Like its predecessors [21,22], the generalized
version of cross-validation for three-way array also
suffers from heavy computation burden. According to
the introduction of Louwerse et al. [20], Timmerman
and Kiers had proposed an alternative method, which
is based on “a systematic comparison of the fit value
for modes with different number of components and
search for a strong decrease in added fit value by addi-
tional components”. Often, however, it is more or less
arbitrary to define the degree of “strong decrease”.
Bro had suggested a core-consistency-diagnostic ap-
proach for determining the appropriate number of
components for PARAFAC model [23]. Though the
core-consistency-diagnostic method is powerful, it
seems that certain threshold value is also required for
its auto-implementation. Hence, practical application
needs methods with features of simple implementa-
tion, tolerable computation time and clear-cut crite-
rion point when the most appropriate factors have
been extracted.

With the above beliefs, the present authors de-
sign a relatively simple factor-determining procedure
specifically for trilinear decomposition (or PARAFAC
model). The performance of the proposed approach is
demonstrated by both simulated and real data arrays.

2. Nomenclature

Throughout this paper, scalars are represented by
lower-case italics, vectors by bold lower-case char-
acters, bold capitals designate two-way matrices and
underlined bold capitals symbolize three-way arrays.
The letters I, J, K are kept for denoting the dimensions
of different modes in three-way arrays; F, for the num-
ber of actual underlying factors, and N, for the number
of factors used in PARAFAC. X represents three-way
data array. A, B, C with dimensions of I × F , J × F ,
K × F , respectively, are the three underlying load-
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ing matrixes of X. XI×JK = [X..1, X..2, . . . , X..K ] and
XIK×J = [X′

..1, X′
..2, . . . , X′

..K ]′ are the two unfolded
matrixes of X. X..k represents the kth frontal slices of
the three-way array X. The scalar c signifies the num-
ber of components retained in the trimmed data set of
XI×JK or XIK×J .

3. Model

In trilinear data array analysis, for each sample, the
response recorded by certain instrument is a matrix
with its rows and columns representing some char-
acteristic response modes, such as ultraviolet-visible
spectra and chromatograms in HPLC–DAD and ex-
citation and emission spectra in fluorescence spec-
trometer. For no less than two samples, the data sets
recorded can be assembled into a three-way data array
X. Its third mode describes the variations of the con-
centration ratio of compounds in samples. Under the
assumption of linear response, which is always consid-
ered to be held in quantitative analysis, the three-way
array X can be decomposed into the following
trilinear model:

X..k = AI×N diag(ck)B′
J×N + E..k

k = 1, 2, . . . , K (1)

where X..k and E..k are the kth frontal slices of
three-way array X and three-way residual array
E, respectively; diag(ck) is a diagonal matrix with
elements equal to the kth row of loading ma-
trix C. The above representation is the famous
PARAFAC model. The three underlying loading ma-
trixes A, B and C can be obtained by an alternating
least square algorithm, which is often referred as
PARAFAC.

From Eq. (1), it is obvious that before the decompo-
sition, the number of factors used in decomposition, N,
should be determined first. Different N values would
definitely lead to different version of A, B and C. Only
when N coincides with F, the number of the actual un-
derlying factors, would A, B and C turn to be the ac-
tual underlying loading matrixes with physical mean-
ings. Otherwise, their columns would just be the lin-
ear combinations of the columns of the corresponding
actual underlying loading matrix, which would cause
the subsequent analysis to be void. It is, therefore, of

utmost importance to develop reliable methods to es-
timate the factors of data arrays.

4. Problems in factor determination of
trilinear data array

Analogous to two-way data analysis, the factors of
a trilinear data array are usually determined through
unfolding the data array into a two-way data set
and then applying two-way factor-determining meth-
ods on it. As stated in introduction section, many
two-way factor-determining methods can only sep-
arate the systematic variance from the residuals due
to homoscedastic random noise. They can hardly
discriminate between the contributions of chemical
species and that of varying backgrounds. Moreover,
heavy collinearity is another aspect hindering their
successes. In trilinear data arrays, the response of
chemical species generally follows trilinear model,
while that of varying backgrounds does not. This
prior information should be useful in determining
the number of underlying factors when varying back-
grounds occur. Decomposing the trilinear data array
by PARAFAC and then examining the fitness value
might be the most straightforward approach to take
advantage of this prior information. For a trilinear
data array, it is observed that the introduction of
superfluous factors in PARAFAC can only slightly
improve the fitness value. Though the phenomenon
does provide some hints for the determination of the
appropriate factors, certain threshold for the fitness
value is needed. It will raise problems, since different
threshold will be required for different data arrays and
there is no general guidance for the threshold setting.

5. A new approach for factors determination —
ADD-ONE-UP truncating and fitting method

As pointed out in the previous section, the tri-
linear feature of trilinear data array would be lost,
if the decision is only drawn from the analysis of
the unfolded two-way data sets XI×JK and XIK×J .
On the other hand, though applying PARAFAC to
the original three-way data array X have taken the
trilinear character into consideration, the consis-
tent increase in the fitness value with the increase
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of the factors used raises the problem of threshold
value setting. Such embarrassing situation drives
us to investigate the feasibility of combining the
information provided by the analysis of the unfolded
two-way data sets and that of original trilinear data
array X.

The analysis of the unfolded two-way data set
XI×JK or XIK×J can supply the information of the
data configuration (variation distribution). Through
decomposing the unfolded two-way data set XI×JK

or XIK×J by SVD into orthogonal components, one
can attempt to truncate the data set on purpose of
retaining the systematic variance and discarding ran-
dom noise. It is difficult to determine how many
components should be retained, with the employ-
ment of SVD alone. Fortunately the two-way data set
XI×JK or XIK×J is unfolded from the trilinear data
array X, the systematic part of variation follows a
trilinear model. So one can first truncate the unfolded
data set XI×JK or XIK×J into a new two-way data
Xc with the first c components retained (XI×JK =
USV′, Xc = UcScV′

c), then refold the new two-way
data Xc into a new three-way data array Xc and de-
compose it by PARAFAC algorithm, finally examine
the residual sum of squares SSRc. When c, the num-
ber of the retained components, coincides with the
number of the actual underlying factors, Xc (c = F )
exactly follows a trilinear model and can be fitted
perfectly by PARAFAC model. The residual sum of
squares (SSRc) is expected to reach its minimum. If
some actual underlying factors are excluded igno-
rantly in the truncating step, part of the systematic
variations will be discarded along with random noise.
The discarded part of systematic variations is actually
related to all the underlying factors. Hence, the trilin-
ear feature does not hold any more for the data array
Xc (c < F ) assembled by the trimmed two-way data
set Xc. The SSRc for the new data array Xc (c < F )
would be much larger than that when all the underly-
ing factors being exactly extracted. The inclusion of
superfluous factors in truncating procedure (c > F )
would also cause the increase of the residual sum of
squares of PARAFAC, due to the fact that random
noise does not obey the trilinear model and can not
be accounted for by PARAFAC model. Moreover,
for the same reason, when the retained components
exceed the actual underlying factors, SSRc would be
larger than the variance introduced by the inclusion

of additional factors representing noise in the trun-
cated data set. The aforementioned reasoning is ac-
tually based on the fact that random noise does not
follow the trilinear model and can not be accounted for
by PARAFAC.

The above speculations motivate us to design the
following ADD-ONE-UP truncating and fitting ap-
proach for factor determination in trilinear decom-
position (from now on, it will be simply refereed
as ADD-ONE-UP method). The proposed method is
mainly composed of the following steps:

1. For a trilinear data array X, unfold it into a two-way
data set XI×JK .

2. Decompose XI×JK by SVD, XI×JK = USV′.
3. Define Xc = UcScV′

c, where Uc and Vc consist of
the first c columns of U and V, respectively, Sc is
a diagonal matrix with diagonal elements equal to
the first c diagonal elements of S.

4. Fold Xc into a three-way data array Xc and decom-
pose it by PARAFAC with N = c. The residual
sum of squares is represented by SSRc.

5. Repeat steps 3 and 4, for c = 1, 2, 3, . . . , un-
til SSRc1 reaches its minimum or satisfies the fol-
lowing inequations: SSRc1 < s2

c1
and SSRc1+1 >

s2
c1+1 and SSRc1+2 > s2

c1+2 (si is the ith diagonal

element of matrix S, s2
c1

is the variance introduced
by the inclusion of c1th component in the truncat-
ing step).

6. Unfold X in another mode to get XIK×J , and then
perform the same operations from step 2 to 5 to get
c2, which satisfies similar relationships as for c1.

7. The number of factors needed in decomposing the
trilinear data array X should be the smaller one
between c1 and c2, i.e. F = min(c1, c2).

In the above procedure, two criteria are used to
draw the final conclusion. It is worth to point out
that for data arrays with only medium random noise,
the two criteria would be satisfied simultaneously.
In practice, it was observed that the first criterion
has a strong ability to cope with high random noise,
but relatively weak ability to tolerate varying back-
grounds. The presence of high varying backgrounds
might cause SSRc to decrease consistently. On the
contrary, though the second criterion is inferior to the
first criterion in the presence of high random noise,
it performs much better when varying backgrounds
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exist. Therefore, if SSRc has its minimum, which
means varying backgrounds have little influence on the
data structure, the first criterion is adopted to draw the
final conclusion. If SSRc shows a consistent decrease
due to the influence of high varying backgrounds, one
should draw the final conclusion based on the second
criterion. In the second criterion, three inequations
should be satisfied for the correct number of underly-
ing factors. The reason to set these requirements lies
in the fact that: for a great variety of data structures,
there may exist cases that for certain c < F , SSRc may
also larger than s2

c . However, it is practically unlikely
that SSRc > s2

c and SSRc+1 > s2
c+1 hold for two

successive c and c + 1 which are <F. So if for certain
c, SSRc < s2

c , SSRc+1 > s2
c+1 and SSRc+2 > s2

c+2
hold, it can be concluded with great confidence that
the system studied should have c underlying factors.

For a three-way data array X assembled by X..k =
AI×F diag(ck)B′

J×F (k = 1, 2, . . . , K) (suppose the
columns of AI×F and BJ×F are excitation and emis-
sion spectra of corresponding chemical components,
respectively; ck is a vector containing the concentra-
tions of all the chemical components in kth sample),
if it follows the PARAFAC model, the number of
underlying factors would equal to the ranks of A and
B, i.e. rank(A) = rank(B) = F . The rank of C (C =
[c′

1, c′
1, . . . , c′

K ]) satisfies the following inequation:
2 ≤ k rank(C) ≤ F . Therefore, in add-one-up pro-
cedure, only the two unfolded two-way data matrixes
XI×JK and XIK×J are considered, while XK×IJ is
omitted.

6. Experimental

In this paper, simulated data arrays and three
real chemical data arrays including two emis-
sion/excitation fluorescent data arrays and one HPLC–
DAD data array have been used to demonstrate the
performance of the proposed method. Comparisons
between the new approach and three methods: factor
indicator function (IND) [12], eigenvalue ratio (ER)
[14] and VPVRS [15] had been made. All the se-
lected methods are automatic ones; i.e. they require
no human involvement. Methods requiring thresh-
old value or confidence degree setting such as F-test
[13,18] are excluded in this paper. For the conve-
nience of readers, a brief description about how to

use IND, ER and VPVRS to determine the number
of components in a two-way data set is supplied
in APPENDIX.

6.1. Randomly simulated data arrays

A total of 20 data arrays with size of 18 × 18 × 9
were simulated. For each data array, underlying load-
ing matrixes A, B, C of order 18×4, 18×4 and 9×4, re-
spectively, were randomly constructed. Their elements
were drawn from uniform (0, 1) distribution. Load-
ing matrixes A and B were normalized column-wise
to unit length. Homoscedastic and proportional het-
eroscedastic random noises were considered. For data
set X...k of sample k, homoscedastic and heteroscedas-
tic noises added were simulated according to the fol-
lowing schemes, respectively:

homo noise = ahomo × RANDN × max(X..k),

heter noise = aheter × RANDN ◦ X..k

where ahomo and aheter are two parameters controlling
the homoscedastic and heteroscedastic noise level,
respectively. RANDN is a matrix with appropriate
size and random entries chosen from a normal distri-
bution with zero mean and unit variance; max(X..k)
is the maximal entry of matrix X..k . The symbol ‘◦’
represents Hadamard product (if Z = X ◦ Y, then
zij = xijyij).

6.2. Simulated HPLC–DAD type data arrays

With a view to investigate the influence of vary-
ing backgrounds and collinearity on the performance
of these methods, an HPLC–DAD type data array
(24 × 41 × 9) of four components has been simu-
lated. The varying backgrounds used were created
by measuring the HPLC–DAD response matrixes of
nine samples of o-dichlorobenzene, p-chlorotoluene
and o-chlorotoluene in different concentration ratios,
subtracting the contributions of the three chemical
components and then retaining the residual matrixes
as backgrounds. Before adding to the simulated
HPLC–DAD data array, each background matrix
should be divided by its maximal element, and then
multiply a parameter abackground and the maximal el-
ement of the corresponding simulated HPLC–DAD
data set. As for collinearity, it was controlled by
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replacing the spectrum of the fourth component
with spectral profile produced by the equation: sp =
norm(sp4 + acollineary × sp3). Here, norm is a function
normalizing vectors to unit length; sp3 and sp4 sym-
bolize the spectra of components 3 and 4, respectively;
acollinearity is a parameter regulating the degree of
collinearity.

6.3. Excitation–emission fluorescent data array I

6.3.1. Reagents and stock solutions
All reagents used were of analytical grade.

Stock solutions of 1-naphthol (0.1006 mg ml−1) and
2-naphthol (1.001 mg ml−1) were prepared by accu-
rately weighting correspondingly appropriate amount
of reagents and dissolving them in distilled water.
In the preparation of naphthalene (0.1025 mg ml−1),
NaOH (0.1 m) was added to enhance the solubility of
naphthalene in distilled water. A total of 10 working
solutions with different concentration ratios of the
three components were made by taking appropriate
volumes of stock solutions, 2.5 ml of C2H5OH and
2.5 ml of NaOH (pH = 13) into a 25 ml volummetric
flask and then making them to 25 ml with distilled
water.

6.3.2. Apparatus
The excitation–emission response matrices of all

the samples plus four blank solutions were recorded
by a HITACHI 4500 fluorescence spectrophotometer
scanning at 240 nm min−1 with excitation wavelength
in the range of 220–300 nm and emission wavelength
ranging from 315 to 600 nm. The intervals for ex-
citation and emission wavelength were 2 and 5 nm,
respectively. The slit width in both excitation and
emission monochromators was 10 nm.

6.3.3. Data array
Rayleigh scattering in all response matrices was

roughly corrected just by subtracting the average re-
sponse matrix of the four blank solutions. Data arrays
were assembled by the Rayleigh scattering corrected
response matrices.

6.4. Excitation–emission fluorescent data array II

Fluorescent data array II has been used in
elsewhere [24]. It is a collection of fluorescent

excitation–emission response matrixes of 11 mixtures
of tyrosine, tryptophan and phenylalanine with dif-
ferent concentration ratios. All the response matrixes
were recorded by a HITACHI-850 fluorescence spec-
trophotometer with excitation and emission wave-
length ranging from 205 to 290 nm and from 270 to
385 nm at an interval of 5 nm, respectively.

6.5. HPLC–DAD data array

This data array with size of 24 × 51 × 9 is as-
sembled by data sets of nine mixtures of three com-
pounds, i.e. o-dichlorobenzene, p-chlorotoluene and
o-chlorotoluene, in different concentration ratios. The
corresponding nine data sets were recorded by HPLC
with diode array detector at same conditions. In or-
der to illustrate the ability of ADD-ONE-UP dealing
with heavy collinearity, only part of the data array,
composed of the 35 slices from the seventh to the 51
horizontal slices of the original data arrays, was used.
For detail information of this experiments readers
please refer to [25].

6.6. Programs

All the programs used in the paper were written
in-house in the Matlab 5.2 environment and run on
a 400 MHz Pentium (Intel) with 64 MB RAM under
Window 98 operating system.

7. Results and discussions

7.1. General remarks on the factor-determining
procedures for trilinear data arrays

For two-way data set, the row and column ranks are
always identical for mathematical reasons. As far as
the three-way data arrays are concerned, it does not
hold any more. The pseudo rank in a specific mode
shows how many linear independent chemical vari-
ations are present in the given model. For chemical
data array, the underlying factors often involve chem-
ical components and sometimes background or some
other interference(s). So only two modes of the data
array are concerned in factor-determining procedure.
The sampling mode is often omitted. In this paper, the
smaller one among the two pseudo ranks of the two
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Table 1
The general behavior of ADD-ONE-UP method for a randomly
simulated four-component data array with homoscedastic noise
level ahomo = 0.01

i s2
i SSRi

1 23.48 0.3703
2 0.4526 0.2598
3 0.2162 8.337 × 10−2

4 0.1081 2.392 × 10−3

5 1.391 × 10−3 3.630 × 10−3

6 1.293 × 10−3 4.796 × 10−3

unfolded matrixes: XI×JK and XIK×J is taken as the
number of underlying factors.

7.2. Testing the general behavior of
ADD-ONE-UP method

Table 1 lists the common performance of ADD-
ONE-UP for data arrays with random noise. As ex-
pected in the design stage, SSRc attains its minimum
when the number of retained factors equal to 4, which
is exactly the number of actual underlying factors.
Significant increases do emerge with the inclusion of
superfluous factors representing random noise. It is
also confirmed that the variances (s2

i ) brought in by
the addition of noise factors in truncating procedure
are smaller than the corresponding residuals sum of
square of PARAFAC with N equaling to the num-
ber of factors retained. The two criteria employed
in ADD-ONE-UP method have been simultaneously
satisfied. All these phenomena are in perfect agree-
ment with our former conjectures. It demonstrates the
feasibility of ADD-ONE-UP in factor-determining
tasks. Further investigation of the performance of
ADD-ONE-UP for a variety of situations will be
pursued in the following sections.

7.3. Randomly simulated data arrays

The typical performances of four factor-determining
methods for all the 20 randomly simulated data arrays
are showed in Tables 2 and 3. With the presence of
only homoscedastic noises, all the four methods can
separate the systematic variations from the random
ones, even when noise level ahomo is as high as 0.05.
Generally speaking, IND is slightly inferior to the

Table 2
The performances of four factor-determining methods for a ran-
domly simulated four-component data arraya with homoscedastic
noise level ahomo = 0.01 ranging from 0.01 to 0.07

ahomo ADD-ONE-UP IND ER VPVRS

0.01 4 4 4 4
0.03 4 4 4 4
0.05 4 4 4 4
0.07 4 2 4 4

a A total of 20 randomly simulated data arrays were tested with
quite similar performance. The results of one randomly selected
array are shown here.

other three methods, since it can perceive the exis-
tence of only two components for a four-component
system with a higher noise level ahomo = 0.07, while
ADD-ONE-UP, ER and VPVRS can still give the
right results (Table 2). The capabilities of the tested
methods to cope with heteroscedastic noise have a
similar sequence (Table 3). Once again, IND is bro-
ken down first, followed by ER and ADD-ONE-UP.
VPVRS has the strongest ability to deal with het-
eroscedasticity. The failure of IND originates in the
violation of the assumption it established on that
heteroscedastic noise does not follow a spherically
symmetric distribution. The relatively stronger abili-
ties of ER and especially VPVRS are due to the fact
that they employ certain ratio forms of eigenvalues
of the covariance data set rather than eigenvalues
themselves. As for ADD-ONE-UP, it puts no extra
assumption on the noise form, therefore, theoretically
mild heteroscedastic noise has little influence on its
performance as the experiments show. For aheter =
0.2, it seems that ADD-ONE-UP and ER failed to
give the right answers. Actually, the heteroscedastic

Table 3
The performances of four factor-determining methods for a ran-
domly simulated four-component data arraya with ahomo = 0.01
and aheter equaling to 0.1, 0.15 and 0.2

aheter ADD-ONE-UP IND ER VPVRS

0.1 4 4 4 4
0.15 4 3 3 4
0.2 3 2 3 4

a A total of 20 randomly simulated data arrays were tested with
quite similar performance. The results of one randomly selected
array are shown here.



302 Z.-P. Chen et al. / Analytica Chimica Acta 444 (2001) 295–307

Fig. 1. The profiles of loading A (a) and loading B (b) for a
randomly simulated four-component data array with aheter = 0.2
(solid line: resolved by PARAFAC with N = 4, dotted line: real).

noise is so high that the systematic variations have
been heavily contaminated, which can be demon-
strated by the obvious differences between the real
loadings and those resolved by PARAFAC (N = 4)
for the third system in Table 3 (Fig. 1). In analytical
practice, noise level will not be so high. Otherwise,
even when the actual underlying factors have been

Table 4
The performances of four factor-determining methods for a simu-
lated four-component HPLC–DAD type data array with ahomo =
0.01 and acolinearity equaling to 0.9, 1.2 and 1.4

acolinearity ADD-ONE-UP IND ER VPVRS

0.9 4 4 3 4
1.2 4 4 3 3
1.4 4 4 3 3

accurately estimated, the severely distorted results
resolved would have little use. In this sense, the
ability of ADD-ONE-UP withstanding heteroscedas-
tic noise is enough for the purpose of trilinear data
analysis.

7.4. Simulated HPLC–DAD data arrays

All the above comparisons are based on the data ar-
rays with mild collinearity. For data arrays with heavy
collinearity, the sequence may be different. It can be
deduced theoretically that ER and VPVRS will ob-
viously inferior to ADD-ONE-UP and IND, for their
eigenvalue-ratio characters require the eigenvalues
representing systematic variations to be comparable.
Large differences among the systematic eigenvalues
caused by high collinearity will bring disaster to
them. The results listed in Table 4 verified such a
conjecture. Without any additional assumption on the
systematic eigenvalues, ADD-ONE-UP and IND can
handle situations of high collinearity under condition
of mild random noise.

Under comparatively ideal conditions, ADD-ONE-
UP already shows its advantages over the other three
methods. However, in practice, non-ideal situations
such as varying backgrounds and other deviations are
always encountered. A competent method should also
suit for such cases other than the above comparatively
ideal situations.

Table 5 shows the results of the four methods for
a simulated four-component HPLC–DAD data array
with varying backgrounds taken from real experi-
ments. For all the four levels of the backgrounds,
abackground varying from 0.01 to 0.07, IND failed to
provide estimations of the underlying factors. All its
18 values investigated show a consistent decrease, no
minimum occurs. The ER and VPVRS can work only
at low level of backgrounds. Slightly higher level of
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Table 5
The performances of four factor-determining methods for a simu-
lated four component HPLC–DAD type data array with abackground

varying from 0.01 to 0.07

abackground ADD-ONE-UP IND ER VPVRS

0.01 4 –a 4 4
0.03 4 – 3 3
0.05 4 – 3 3
0.07 5 – 3 3

a The 18 values of IND surveyed show a consistent decrease
and no minimum occurs, therefore, the number of underlying
factors can not be determined.

backgrounds, such as abackground = 0.03, make ER
and VPVRS give wrong results. It is interesting that
intuitively, high backgrounds would introduce ad-
ditional underlying factors. Nevertheless, instead of
finding five or more factors, ER and VPVRS even
neglect the existence of an original component and
only find three underlying factors. To some extent, it
may indicate that the differences among the values of
some ratio forms of eigenvalues as adopted in ER and
VPVRS, may not be appropriate indexes to discrim-
inate the systematic part of data arrays from varying
backgrounds.

As expected in design, ADD-ONE-UP has an
outstanding advantage to cope with non-ideal experi-
mental conditions. The increase of background level
abackground from 0.01 to 0.05 exerts no influence on the
correctness of its estimations. Further increase of the
background level (abackground = 0.07) will introduce
additional factors other than the original four compo-
nents. ADD-ONE-UP can detect one additional factor
creeping into the systematic part of the data array. So
it announces the presence of five underlying factors.
The correctness of it estimation is strongly supported
by the results of PARAFAC with N = 4 and 5. The
obvious distortions of the loading profiles resolved
by PRAFAC with N = 4 (Fig. 2) suggest there may
be other factors being neglected and four-component
model is not sufficient for the specific data array.
With an extra factor being included, the results
of PARAFAC (Fig. 3) show some improvements.
Though the consistency between the real and resolved
profiles are still not perfect. Taking the presence of
varying backgrounds into consideration, which do not
abide by a triliear model, the results seem reasonable
and acceptable. Further increase of the factors used

Fig. 2. The chromatographic (a) and spectral (b) profiles of
the four components for the simulated HPLC data array with
abackground = 0.07 (solid line: resolved by PARAFAC with N = 4,
dotted line: real).

in PARAFAC sees a rapid deterioration of the results
resolved (not shown), which means a five-component
model is most appropriate for the specific data array,
just as predicted by ADD-ONE-UP.



304 Z.-P. Chen et al. / Analytica Chimica Acta 444 (2001) 295–307

Fig. 3. The chromatographic (a) and spectral (b) profiles of
the four components for the simulated HPLC data array with
abackground = 0.07 (solid line: resolved by PARAFAC with N = 5,
dotted line: real). The extra profiles numbered with 5 are intro-
duced by varying backgrounds.

7.5. Real data arrays

For the two excitation–emission fluorescent data
arrays, data array I and data array II, the three

Table 6
The performances of four factor-determining methods for the two
fluorescent data arrays

ADD-ONE-UP IND ER VPVRS

Data array I 3 9 3 3
Data array II 3 8 3 3

methods ADD-ONE-UP, ER and VPVRS all offer
correct results (Table 6). The reason for the success
of ER and VPVRS for this two fluorescent data ar-
rays may lies in the mild collinearity in emission
and excitation spectra (the 2-norm condition numbers
are in the range of (2.25, 7.5)) and the well-known
good trilinear character of fluorescent data arrays.
Background and other deviation levels are rather low.
Though they are too low to affect ER and VPVRS,
they are still high enough to deceive IND and make
it exaggeratedly overestimated the underlying factors
for the two fluorescent data arrays (9 for data array I,
and 8 for data array II). Therefore, in practice, IND
should be used with great care. Otherwise the results
will be rather puzzling.

Things are much complicated for the HPLC–DAD
data array. When the data array is unfolded in the
retention time direction, ER reaches its maximum at
the second value implying only two components de-
tected (Table 7). VPVRS suggests that there are five

Table 7
Results of IND, ER and VPVRS for HPLC–DAD data array
unfolded in chromatographic direction

i IND (×105) ER VPVRS

1 219.9 17.14 16.64
2 42.34 33.04 33.99
3 13.17 17.42 2.6.12
4 8.614 2.692 1.967
5 5.562 7.155 143.2
6 5.224 1.045 0.1699
7 4.676 1.359 0.8204
8 4.099 1.779 2.017
9 3.729 1.629 1.668

10 3.485 1.605 2.178
11 3.353 1.385 0.6097
12 3.264 2.713 8.686
13 3.436 1.246 2.313
14 3.657 1.119 0.7965
15 3.916 1.175 5.356
16 4.233 1.034 1.025
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Table 8
Results of IND, ER and VPVRS for HPLC–DAD data array
unfolded in spectral direction

i IND (×105) ER VPVRS

1 885.1 6.108 9.002
2 544.8 2.312 1.317
3 51.35 252.9 429.9
4 38.58 2.415 2.334
5 30.33 2.541 5.488
6 26.22 1.390 1.007
7 20.47 1.633 0.8418
8 12.49 4.032 3.682
9 8.656 5.661 7.385

10 8.406 2.711 12.72
11 9.143 1.155 0.3587
12 10.02 1.764 5.517
13 11.58 1.161 2.084
14 13.65 1.083 2.008
15 16.42 1.043 0.2877
16 20.16 1.178 3.188

underlying factors (Table 7). For data set unfolded in
wavelength direction, both ER and VPVRS support the
conclusion of three components (Table 8). The failure
of ER to detect the existence of another component
in spectral mode lies in its weak ability to cope with
severe collinearity in the spectra with the 2-norm con-
dition number equaling to 19.5. The very reason also
lead to the puzzling results of VPVRS. It is well known
that in HPLC–DAD experiments, the run-to-run varia-
tions in retention times and chromatogram shapes may
introduce extra underlying factors in chromatographic
mode. Therefore, unless some chemical components
elute in and out simultaneously, the underlying factors
in chromatographic mode are often one or more fac-
tors larger than that of the spectral mode. Contrarily,
VPVRS find more factors in spectral mode than in
chromatographic mode. Though according to the rule
set in the former section that the smaller one of the
two estimations for their corresponding modes should
be taken as the number of the underlying factors
for the data array, VPVRS seems to offer a correct
estimation. Due to the obvious contradiction of its
intermediate results with the common belief, it might
be reasonable to own its specious success for this spe-
cific data array to lottery rather than its competence.

As a comparison, the results of ADD-ONE-UP are
in fine accordance with the prior knowledge. It recom-
mends three components for the spectral mode under

Table 9
Results of ADD-ONE-UP for HPLC–DAD data array unfolded in
chromatographic direction

I s2
i SSRi

1 7.872 × 105 1.201 × 105

2 4.593 × 104 5.136 × 104

3 1389 382.5
4 79.80 317.6
5 29.65 162.7

the second criterion (Table 9). Though SSRi shows no
minimum, which indicates the presence of unfavorable
interference(s) or backgrounds, they are still in level
of harmlessness to ADD-ONE-UP procedure. For the
chromatographic mode (Table 10), the SSR attains
its minimum when a three-component model being
considered. So a three-component model is adopted
for the HPLC–DAD data array. Further scrutinizing
the values of s2

i and SSRi , one can observe that the
variance s2

4 introduced by the inclusion of the fourth
component is slightly larger than the corresponding
residual SSR4. It may suggest the existence of some
model deviations, which may be brought in by the
possible retention time shifts or run-to-run variation
in chromatogram shapes. Since the difference is rela-
tively small, one can imagine that though the model
deviations would have certain degree of influence on
the decomposition results of the data array, they might
not be so great to significantly distort the loading pro-
files. Such conjecture has been at least partly sup-
ported by the results obtained by PARAFAC with N =
3 (Fig. 4). The slight differences between the real
profiles and the resolved ones imply the presence of
run-to-run variations. Nevertheless, the distortions are
small; the results of a three-component mode as rec-
ommended by ADD-ONE-UP are acceptable.

Table 10
Results of ADD-ONE-UP for HPLC–DAD data array unfolded in
spectral direction

i s2
i SSRi

1 6.758 × 105 7670
2 1.106 × 105 5172
3 4.786 × 104 165.0
4 189.2 165.6
5 78.33 294.4
6 30.83 178.2
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Fig. 4. The chromatographic (a) and spectral (b) profiles of the
three components for the real HPLC data array (solid line: resolved
by PARAFAC with N = 3, dotted line: real).

8. Conclusion

A new method called ADD-ONE-UP is contrived
mainly for factor determination of trilinear data ar-
rays. ADD-ONE-UP method involves the following
three main steps: (1) truncating the unfolded two-way

data matrix, (2) refolding the trimmed two-way data
matrix into a new three-way data array, and (3) fit-
ting the newly constructed three-way data array by
PARAFAC model and then examining the residual
sum of squares. The proposed method distinguishes
itself from other conventional factor-determining
methods originally designed for two-way data sets in
the way that it takes the advantages of both the eigen-
values of factor analysis and the residuals of trilinear
decomposition. The factor-determining procedure of
ADD-ONE-UP is simple and can be automatically
implemented. Unlike other methods such as F-test,
no threshold value or confidence degree is required.
ADD-ONE-UP has a strong ability to cope with het-
eroscedastic noise, heavy collinearity and varying
backgrounds. Moreover, it can supply more infor-
mation about the system studied rather than just an
arbitrary decision on the number of underlying fac-
tors as many other methods do. Experimental results
show the all-around performance of ADD-ONE-UP
is superior to many other factor-determining methods,
hence, it is recommended as a promising alternative
for factor estimation in trilinear decomposition.
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Appendix A

The procedure to determine the number of compo-
nents in two-way data sets using IND, ER and VPVRS.

1. Using SVD algorithm to find the eigenvalues λi

(i = 1, 2, . . . , n; assume n ≤ m) of the covariance
matrix X′X, and do the following calculations:

INDi =



n∑
j=i+k

λj




1/2

m−1/2(n − i)−5/2,

i = 1, 2, . . . , n (A.1)

ERi = λi

λi+1
, i = 1, 2, . . . , n − 1 (A.2)
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VPVRSi = λi − λi+1

λi+1 − λi+2
, i = 1, 2, . . . , n − 2

(A.3)

Here, m and n are the number of rows and columns
of data matrix X, respectively.

2. The number of components can then be determined
through examining the values of the above indexes.
Suppose INDi reaches its minimum with i equaling
to c, then c is considered as the number of com-
ponents in data set X. As for ER and VPVRS, the
number of components in mixture is defined by the
value of i corresponding to their respective maxi-
mums.
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