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Abstract

A novel trilinear decomposition algorithm for second-order linear calibration called self-weighted alternating trilinear de-
Ž .composition SWATLD has been designed in this paper. Experiments show SWATLD has the features of fast convergence

and being insensitive to the excess factors used in calculation. Due to the unique optimizing scheme employed, SWATLD is
much more efficient than the ordinary PARAFAC algorithm. In terms of the variance, the performance of SWATLD is very

Ž .stable when the number of factors used in calculation varies as long as it is no less than the actual number of factors . Such
a feature will facilitate the analysis of three-way data arrays, since it is now unnecessary to spend a lot of time and effort to
accurately determine the number of underlying factors in the system studied as does in PARAFAC. Furthermore, as far as
the deviations of the results are concerned, experiments show SWATLD can supply acceptable results in most cases. q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

For centuries, analysts have tried to design proce-
dures or contrive devices to quantitatively determine
the content of a component of interest in a mixture,
while eliminating the influence of other coexistent
compounds to the greatest extent. There are three
conventional approaches to eliminate the influence of

Ž .interference s , i.e. utilizing agents selective to the
target species, employing wavelength-selection tech-
niques in spectrometry and using masking agents.

) Corresponding author.
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Regardless of which approach is applied, however,
Ž .the influence of interference s could not be thor-

oughly eliminated. Furthermore, background ab-
sorption could also not be perfectly corrected just by
subtracting the absorption of a blank solution. The
limitation of these approaches forces analysts to re-
sort to chemometrics — a promising tool for solving
the above problems.

Due to the rapid development of chemometrics and
wide application of two-way instruments such as
HPLC-DAD and excitationremission matrix spec-
trofluorometer, theoretically, it is now possible to

w xsolve the above problems 1,2 . The first attempt to
solve these problems may be symbolized by the in-
troduction of PARAFAC algorithm proposed by
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w x w xHarshman 3 and Caroll and Chang 4 . PARAFAC
is actually an alternating least square algorithm which
is sensitive to the number of the factors used in cal-
culation. With the correct estimation of the number of
components in mixtures, PARAFAC can accurately
determine the contents of specific components re-

Ž .gardless of the existence of interference s and back-
ground absorption. Such a favorable feature has at-
tracted many researchers to engage in the studies of
theoretical aspects and practical application of

w xPARAFAC 5–8 . Consequently, people found that
the implementation of PARAFC is not an easy task,
since PARAFAC requires an exact determination of
the number of components in mixtures, which is very
difficult even for experts with much experience.
Though there are many sophisticated methods for de-

w xtermining the number of factors in mixtures 9–15 ,
due to the complexity of the problem none of them
can guarantee the correctness of its results under all
circumstances. Algorithms, which do not require an
accurate estimation of the number of factors in mix-
tures, are therefore of utmost importance. As far as
we know, little attention has been paid to construct
iterative algorithms that do not require an accurate
estimation of the number of factors in mixtures.

Another annoying characteristic of PARAFAC is
w xits low convergence rate 7 . In chemical data arrays,

the size of at least two models is rather large, and
hence they generally show at least mild degrees of
multicollinearity, which tends to cause PARAFAC to
require very many iterations before convergence. The
large size of the data arrays causes each iteration to
be computationally expensive, which further worsens
the situation. Several approaches have been proposed

w xto remedy this demerit of PARAFAC 16–23 . Kiers
w xand Krijnem 16 studied the problem caused by large

numbers of observation units and suggested the com-
putation of some combinations of loading matrix and
data sets instead of the loading matrixes themselves
in iterative procedure. Since much smaller matrixes
have been stored and calculated, a great decrease in
computation time can be gained. Alsberg and Kval-

w xheim 17,18 have described in a series of papers a
method to accelerate the convergence of PARAFAC
by compressing high dimensional data arrays, which
is essentially equivalent to the CANDELINE ap-

w x w xproach 19 . Bro and Andersson 20 have also devel-
oped an efficient method for compressing large ar-

w xrays using a fast Tucher3 algorithm 21 . All the
above approaches try to estimate the model parame-
ters from much smaller data matrixes to decrease the
computation time in each iteration. There are also
some other methods, which speed the optimizing
procedure of PARAFAC by reducing the number of

w xiterations required. Mitchell and Burdick 22 sug-
gested avoiding ‘‘swamping’’ due to ‘‘degeneracy’’
by stopping a run as soon as it enters a swamp area
and randomly starting a new run. Paatero introduced
a penalty term with decreasing impact to accelerate

w xthe optimizing procedure 23 . Recently, Kiers pro-
posed a three-step algorithm, which can greatly re-

w xduce the number of iterations required 24 . Though
these methods have their different advantages, they
all suffer form the same problem as PARAFAC, i.e.
requiring accurate estimation of the number of fac-
tors. Thus methods which can converge fast and do
not require accurate estimation of the factors are
preferable and badly in need.

In the present paper, a novel algorithm called
self-weighted alternating trilinear decomposition
Ž .SWATLD is designed, which alternatively mini-
mizes three objective functions with intrinsic rela-
tionship rather than the objective function of
PARAFAC. The proposed algorithm not only can re-
sist the influence of the excess factors used in calcu-
lation, but also largely reduce the number of itera-
tions required, which will be illustrated by simulated
and real data arrays.

2. Nomenclature

Throughout this paper, scalars are represented by
lowercase italics, vectors by bold lowercase charac-
ters, bold capitals designate two-way matrices and
underlined bold capitals symbolize three-way arrays.
The letters I, J, K are kept for denoting the dimen-
sions of different modes in three-way arrays; F, for
the number of actual underlining factors, and N, for
the number of factors used in calculation. X repre-
sents three-way data array. A, B, C with dimensions
of I=F, J=F, K=F respectively are the three
loading matrixes of X. If three-way array X is as-
sembled by several data matrixes of different sam-
ples recorded by HPLC-DAD, loading matrixes A, B,
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Fig. 1. The frontal, lateral and horizontal slices of a three-way array X.

C would be called the relative chromatogram matrix,
the relative spectral matrix and the concentration ma-
trix, respectively. As depicted in Fig. 1, X s. . k

Ž . T Ž .A diag c B qE ks1, 2, . . . , K , X sI=F k J=F . .k . j.
Ž . T Ž .C diag b A qE js1, 2, . . . , J and XK=F j I=F . j. i. .
Ž . T Ž .sB diag a C qE is1, 2, . . . , I are theJ=F i K=F i. .

k th frontal slice, jth lateral slice and ith horizontal
slice of three-way array X, respectively. E , E and. .k . j.

E are the corresponding slices of the three-wayi. .
Ž . Ž .residue array E. Note that diag c , diag b , and arek j

diagonal matrixes with elements equal to the k th, jth
and ith rows of matrixes A, B and C, respectively.

Ž T .diagm A A is a vector with elements equal to the
T Ž .corresponding diagonal ones of matrix A A. cond A

signifies the 2-norm condition number of loading
matrix A.

3. Model and algorithm

In second-order linear calibration, the famous tri-
linear decomposition model proposed by Harshman
w x w x3 and Caroll and Chang 4 has been widely ac-
cepted, due to its consistence with Beer law in chem-
istry. The model can be expressed as the following
matrix form:

X sA diag c BT qE ,Ž .. .k I=F k J=F . .k

ks1, 2, . . . , K 1Ž .
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or

X sC diag b AT qE ,Ž .. j . K=F j I=F . j .

js1, 2, . . . , J 2Ž .

or

X sB diag a CT qE ,Ž .i . . J=F i K=F i ..

is1, 2, . . . , I 3Ž .
w xAlong with the above model, Harshman 3 and Car-

w xoll and Chang 4 proposed an alternating least
Ž .squares approach often referred to as PARAFAC to

solve the problem by successively assuming the
loading matrixes in two modes known and estimat-
ing the unknown parameters of the last mode, which
minimizes the following objective function.

K
T 2S A,B,c , PPP ,c s IX yAdiag c B IŽ . Ž .Ý1 K . .k k F

ks1

4Ž .

where IPI represents the Frobenius matrix norm.F

Though PARAFAC has many merits in statistic
sense such as optimal unbiased estimations of the fi-
nal results in least square sense, it suffers from low
convergence rate and the requirement of an accurate
estimation of the number of factors in mixture. The
true and estimated loading matrixes A, B and C will
coincide only when the number of factors has been

w xcorrectly estimated 3,25,26 . As mentioned in the in-
troduction section, the slow convergence is mainly
resulted from the high multicollinearity in chemical
data arrays, which makes the response surface of the
loss function extremely flat, i.e. considerable differ-
ences in the estimated parameters induce only a slight
difference in terms of loss function value. Therefore,
a straightforward way to speed the optimizing proce-
dure is to change the response behavior of the loss
function by introducing some reasonable penalty

w x w xterms 23 . As pointed out by Kiers 24 , it requires a
certain amount of tinkering to choose penalty param-
eters. Another possible approach is to optimize some
other objective functions with favorable response
surface instead of that adopted in PARAFAC. Cer-
tainly, the objective functions employed should have
intrinsic relationship with the trilinear model and their
solutions should be equivalent to the actual underly-

ing loading matrixes. In the following sections, we
will study the feasibility of such an idea.

Ž . TFor a trilinear model X sA diag c B. .k I=F k J=F
Ž .q E k s 1, 2, . . . , K , the following equations. .k

hold.

AqX sdiag c BT qAqE ,Ž .. .k k . .k

T Tq qX B sAdiag c qE B ,Ž . Ž . Ž .. .k k . .k

ks1, 2, . . . , K , 5Ž .
Similarly,

BqX sdiag a CT qBqE ,Ž .i . . i i . .

T Tq qX C sBdiag a qE C ,Ž . Ž . Ž .i . . i i . .

is1, 2, . . . , I , 6Ž .
CqX sdiag b AT qCqE ,Ž .. j . j . j .

T Tq qX A sCdiag b qE A ,Ž . Ž .Ž .. j . j . j .

js1, 2, . . . , J , 7Ž .
where q symbolizes the Moore–Penrose general-
ized inverse.

With a view to establish an algorithm with high
convergence rate, the present authors consider the
possibility to solve the trilinear model by alterna-
tively optimizing the following three objective func-
tions rather than that utilized in PARAFAC.

K
Tq TS C s I A X ydiag c BŽ . Ž .Ž .Ý ž . .k k

ks1

=diag sqrt 1.rdiagm BT B I 2Ž .Ž .Ž . F

TqqI X B yAdiag cŽ . Ž .Ž .. .k k

=diag sqrt 1.rdiagm ATA I 2 8Ž . Ž .Ž .Ž . /F

Ž Ž . .with A and B fixed, minimizing S C to obtain C

J
Tq TS B s I C X ydiag b AŽ . Ž .Ž .Ý . j . jž

js1

=diag sqrt 1.rdiagm ATA I 2Ž .Ž .Ž . F

qTqI X A yCdiag bŽ . Ž .ž /. j . j

=diag sqrt 1.rdiagm CTC I 2 9Ž . Ž .Ž .Ž . F /
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Ž Ž . .with A and C fixed, minimizing S B to renew B

I
Tq TS A s I B X ydiag a CŽ . Ž .Ž .Ý i . . iž

is1

=diag sqrt 1.rdiagm CTC I 2Ž .Ž .Ž . F

qTqI X C yBdiag aŽ . Ž .ž /i . . i

=diag sqrt 1.rdiagm BT B I 2 10Ž . Ž .Ž .Ž . F /

Ž Ž . .with B and C fixed, minimizing S A to estimate A
Here, 1 is an identity vector with appropriate size;

the operator ‘‘.r’’ denotes array division, for exam-
Ž . Ž . Ž . Ž .ple, xs x , ys y , then x.rys x ry ; sqrt P isi i i i

a square root operator. The three empirically selected
Ž Ž Ž T ...diagonal matrixes, diag sqrt 1.rdiagm A A ,

Ž Ž Ž T ... Ž Ždiag sqrt 1.rdiagm B B and diag sqrt 1.r
Ž T ...diagm C C function as weight matrixes to bal-

ance two parts of each objective function.
The reason for us to alternatively minimize the

above three different objective functions is that they
have strong intrinsic relationships, and their solutions
are equal to the actual underlying loading matrixes of
the error-free trilinear model. With the presence of
noise, the three objective functions have different re-
sponse surfaces. Thus it can be expected that alterna-
tively minimizing the three objective functions may
avoid possible ‘‘swamp areas,’’ which can hardly be
circumvented by optimizing only one loss function as
in PARAFAC.

Based on the above three objective functions, the
present authors developed the following algorithm
called self-weighted alternating trilinear decomposi-

Ž .tion SWATLD .
1. Randomly initialize loading matrixes A and B.
2.

1
q T Tc s diagm B X A .rdiagm A AŽ .Ž .Žk . .k2

qdiagm AqX B .rdiagm BT BŽ .Ž . .. .k

ks1, . . . , K 11Ž .

3.

1
q T Tb s diagm A X C .rdiagm C CŽ .Ž .žj . j .2

qdiagm CqX A .rdiagm ATAŽ .Ž . /. j .

js1, . . . , J 12Ž .
4.

1
q T Ta s diagm C X B .rdiagm B BŽ .Ž .Ži i . .2

qdiagm BqX C .rdiagm CTCŽ .Ž . .i . .

is1, . . . , I 13Ž .
5. Update C, B and A according to steps 2–4, un-

til certain stop criterion has been reached.
SWATLD is unique in the way that it tries to avoid

possible ‘‘swamp areas’’ by alternatively minimizing
three different objective functions with intrinsic rela-
tionships. It is obvious that the optimizing procedure
of SWATLD may not be a monotonically decreasing
one. Simulation studies, therefore, will be carried out
in the following sections to investigate the perfor-
mance of this new method.

4. Experimental

In this paper, several data arrays including real
HPLC-DAD data arrays and simulated ones have
been used to demonstrate the performance of the new
algorithm proposed. Since most of the sophisticated
methods mentioned in the Introduction employ some
compression techniques to speed the optimizing pro-
cedure, which can also be combined into the pro-
posed method in this paper, while the rest require
much experience to choose some penalty parameters,
the proposed method has, therefore, been tested by
comparing it with PARAFAC only.

4.1. Simulated data arrays

4.1.1. Randomly simulated data arrays
In order to investigate the feasibility and acceler-

ating capacity of this unique optimizing approach of
SWATLD, 20 noise-free data arrays with size 20=

20=20 were simulated. For each data array, under-
lying loading matrixes A, B, C of order 20=3 were
randomly constructed. Their elements were drawn

Ž .from uniform 2,4 distribution. Loading matrixes A
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Ž . Ž .Fig. 2. The normalized chromatographic a and spectral b pro-
files of the simulated HPC-DAD type data array.

and B were column-wisely normalized to unite
length. The condition numbers of A, B and C range
from 8 to 11. Homoscedastic random noises gener-
ated with zero expectation and four different levels of
standard deviations from 0.1% to 2% of the maxi-
mum absorbance were added to each data array which
were constructed as follows.

X p sAdiag c BT ks1, 2, . . . , KŽ .. .k k

E sMax X p =randn=a ,Ž .. .k . .k noise

ks1, 2, . . . , K
X sX p qE , ks1, 2, . . . , K. .k . .k . .k

P Žwhere X represents the pure data set without. .k
.noise of k th sample, randn is a matrix with appro-

priate size and random entries chosen from a normal
distribution with mean zero and variance one, anoise

a parameter controlling the noise level, and Max
Ž p . PX , the maximal entry of matrix X .. .k . .k

4.1.2. Simulated HPLC-DAD type data arrays
With a view to study the results’ qualities of

SWATLD, a four-component system was simulated
Ž .in HPLC-DAD data structure with cond A s2.82,

Ž . Ž .cond B s4.1 and cond C s11.90. The simulated
Ž .pure chromatographic loading matrix A and spec-

Ž .tral profiles loading matrix B of the four compo-
nents are depicted in Fig. 2a and b, respectively. Six
concentration levels of each of the four components
were set randomly to construct six samples, which
were assembled to form a three-way data array. Then
homoscedastic random noises generated with zero
expectation and three different levels of standard de-
viations from 0.5% to 2% of the maximum ab-
sorbance were added.

TpX s a a a a diag c b b b bŽ . Ž . Ž .. .k 1 2 3 4 k 1 2 3 4

ks1, 2, . . . , K

E smax X p =randn=aŽ .. .k . .k noise

ks1, 2, . . . , K
X sX p qE ks1, 2, . . . , K. .k . .k k

where, a and b are the pure chromatographic andi j

spectral profiles of ith component, c is a row vec-k

tor with elements equal to the concentration levels of
the four components in the k th sample.

Table1
The concentrations of o-dichlorobenzen, p-chlorotoluene and o-
chlorotoluene in nine real HPLC-DAD samples

y1Ž .Sample Concentration mgPml

o-Dichlorobenzene p-Chlorotoluene o-Chlorotoluene
a1 0.0 75.6 0.0
a2 0.0 0.0 91.2
a3 0.0 50.4 30.4
a4 0.0 25.2 60.8
a5 152.0 12.6 15.2
a6 15.2 12.6 152.0
a7 60.8 25.2 91.2
a8 91.2 50.4 30.4
a9 30.4 75.6 60.8
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4.2. Real HPLD-DAD data arrays

Nine mixtures of three compounds, i.e. o-dichlo-
robenzene, p-chlorotoluene and o-chlorotoluene, in
different concentration ratios were prepared. The
concentrations of three compounds in the nine sam-
ples are listed in Table 1. The corresponding nine data
sets, recorded by HPLC with diode array detector at
same conditions, were used to construct three arrays.
Data array I was assembled by data sets 1a, 2a, 3a,
4a, 6a and 7a; data array II, by data sets 1a–6a; data
array III, by data sets 1a, 2a, 7a and 9a. The last data
sets of the three data arrays were considered as un-
known samples, the rest as calibration samples. In
sample 7a of data array I and sample 6a of data ar-
ray II, o-dichlorobenzene and o-chlorotoluene were
considered as interferences, all the compounds in
sample 9a of data array III are components of inter-
est. For detailed information on these experiments

w xreaders are referred to ref. 27 .

5. Results and discussion

5.1. Programs

All the programs used in the paper were written
in-house in the Matlab 5.2 environment and run on a

Ž .400 MHz Pentium Intel with 64 MB RAM under
Windows 98 operating system.

5.2. The implementation of the algorithms

For each data array, random initialization was car-
ried out to start the iterative optimizing procedures of

both SWATLD and PARAFAC. The optimizing pro-
cedures of both SWATLD and PARAFAC are termi-
nated when the following criterion reaches a certain

Ž y6 .threshold ´ ´s1=10 in the present paper . A
maximal number of 5000 iterations are adopted to
avoid possible undue slow convergence.

SSRŽm.

K Ž .mŽ . Ž . Tm m 2s IX y A diag c B IŽ . Ž . . Ž .Ž .Ý . .k k F
ks1

Ž . Ž .m my1SSR ySSR
F´Ž .my1SSR

where SSR is the residual sum of squares, m is the
current iteration number.

5.3. Results and discussion

5.3.1. The conÕergence property and accelerating
capacity of SWATLD

For all the 20 randomly simulated data arrays, four
different noise levels were added and each noise level
has been replicated five times. Therefore, there are
actually a total of 400 data arrays. For each data ar-
ray, 10 runs of both SWATLD and PARAFAC with
random initialization were carried out. All of the 4000
runs of SWATLD have converged to satisfactory re-
sults within much fewer iterations than PARAFAC.
Table 2 lists the typical performances of SWATLD
and PARAFAC for a randomly simulated data array
with severe multicollinearity. At low noise level
a s0.001, out of the 10 trials, PARAFAC has notnoise

converged within 5000 iterations for five times. With

Table2
The average number of iterations and computation time of SWATLD and PARAFAC for a randomly simulated three-component data arrays
Ž Ž . Ž . Ž . .cond A s11.35, cond B s9.83 and cond C s10.58 with four different noise levels

a Iterations and timenoise

SWATLD PARAFAC
aMin Max Average Min Max Average

b
Ž . Ž . Ž . Ž .0.001 85 3.7s 172 7.6s 116 5.1s 2864 116.4s 5000 213.8s 4394 179.4sŽ . Ž .
Ž . Ž . Ž . Ž . Ž . Ž .0.005 74 3.2s 115 5.4s 89 3.9s 1348 54.3s 3257 131.6s 2495 100.8s
Ž . Ž . Ž . Ž . Ž . Ž .0.01 55 2.4s 92 4.1s 72 3.2s 171 6.9s 1900 76.6s 911 36.7s
Ž . Ž . Ž . Ž . Ž . Ž .0.02 52 2.3s 110 4.8s 70 3.1s 88 3.6s 1495 60.4s 430 17.3s

a The values listed are averaged over 10 trials with random initialization.
bOut of the 10 trials, PARAFAC has not been converged with 5000 iterations for five times.
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the increase of the noise level, the average conver-
gence rate of PARAFAC has a corresponding in-
crease tendency, which is consistent with the obser-

ww xxvations of Kiers 24 . However, even if the noise
level is as high as a s0.02, PARAFAC still re-noise

quires many iterations to converge. In contrast,
SWATLD can converge much faster. Even at low
noise level a s0.001, SWATLD requires only annoise

Ž .average number of 116 iterations i.e. 5.1 s to find
the correct results, which is at least 37 times in terms
of iterations and 35 times in terms of computation
time faster than PARAFC. A similar increase ten-
dency of the convergence rate is also observed with
the increase of the noise level. However, the influ-
ence of the noise level on the convergence rate of
SW ALTD is not so striking compared with
PARAFAC. In conclusion, either in terms of itera-
tions or computation time, SWATLD has a faster
convergence rate than PARAFAC. All these results
have demonstrated that the unique optimizing scheme
of SWATLD is feasible and can speed the conver-
gence rate through alternatively minimizing three
different objective functions with intrinsic relation-
ships to avoid possible ‘‘swamp areas.’’

5.3.2. The property of SWATLD being insensitiÕe to
the excess factors used in calculation

Other than the fast convergence rate, SWATLD
has another attractive feature of being insensitive to

Ž .the excess factors used in calculation Table 3 . For a
simulated four-component HPLC-DAD data array
with noise level a s0.01, the increase of N fromnoise

4 to 6 greatly influenced the results’ qualities of
PARAFAC. For N)F, the results of PARAFAC are
the linear combinations of the actual underlying fac-
tors instead of the actual underlying factors them-
selves. Interestingly, the increase of N seems have
hardly influences on the results of SWATLD. For in-
stance, when Ns6, the four columns of the loading
matrixes resolved by SWATLD coincide with those

Ž .of the true underlying loading matrixes Fig. 3 . The
excess columns represent noise, which can be easily
discriminated from the desired ones. In many other
simulations, it has also been observed that provided
NGF, SWATLD can always find the true solutions

Žrather than their linear combinations the theoretical
base of this feature is out of the scope of this paper,

.and will be discussed in detail elsewhere . It means
that SWATLD does not require an accurate estima-
tion of the number of factor in mixtures. Only a large
gross estimation can guarantee the correctness of the
results, which will relieve the analysts from the trou-
blesome determination of the number of factors.

5.3.3. The influence of noise leÕel on the results’
qualities obtained by SWATLD

Theoretically, for noise-free data array, the results
obtained by SWATLD should be the same as those

Table 3
The influence of N on the final results obtained by SWATLD and PARAFAC for a simulated four-component HPLC-DAD type data array
with noise level a s0.01noise

Mode 4 5 6

SWATLD PARAFAC SWATLD PARAFAC SWATLD PARAFAC
aA a 0.9999 1.0000 0.9999 0.9843 0.9998 0.96961

a 0.9999 1.0000 0.9998 0.9990 0.9998 0.98272

a 0.9999 1.0000 0.9998 0.8930 0.9997 0.98233

a 0.9999 0.9999 1.0000 0.9566 1.0000 0.97794

B b 0.9996 0.9999 0.9993 0.8840 0.9993 0.95361

b 0.9997 0.9998 0.9996 0.8212 0.9996 0.88892

b 0.9997 0.9999 0.9998 0.9713 0.9997 0.93673

b 0.9998 0.9999 0.9998 0.9879 0.9998 0.85194

C c 1.0000 1.0000 1.0000 0.9362 1.0000 0.99881

c 1.0000 1.0000 1.0000 0.9970 1.0000 0.99012

c 1.0000 1.0000 1.0000 0.8487 1.0000 0.99073

c 1.0000 1.0000 1.0000 0.9759 1.0000 0.83924

a 0.9999 is the related coefficient between the resolved and the true profile, averaged over four runs with random initialization. For the
convenience of presentation, all the related coefficients in this paper have only four significant digits after the decimal point.
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Ž . Ž . ŽFig. 3. The true dotted line and resolved solid line profiles a:
normalized chromatographic profiles, b: normalized spectral pro-

. Ž .files by SWTLD Ns6 for the simulated HPLC-DAD type data
array with a s0.01.noise

supplied by PARAFAC. In real world, noise always
presents in chemical data arrays. Since different ob-
jective functions rather than that employed in
PARAFAC were utilized in SWATLD, the influence
of the noise level on the results’ qualities should,
therefore, be carefully investigated. A comparison
between the results obtained by SWATLD and
PARAFAC for a simulated four-component HPLC
type data array with three different noise levels is
shown in Table 4. It can be seen that when at rela-
tively low noise level a s0.005, the results ofnoise

SWATLD are in perfect consistence with the real

underlying loading matrixes. The related coefficients
between the resolved and true profiles are no less than
0.9999. When a increases to 0.01, the results’noise

qualities of SWATLD are still very satisfactory with
the lowest related coefficient equal to 0.9996. Fur-
ther increase of the noise level will deteriorate the
results’ qualities to some extent. However, even when
the noise level a is as high as 0.02, the results ofnoise

SWATLD are still acceptable, though they are
slightly inferior to those of PARAFAC. In practice,
noise level seldom exceeds 2% of the maximal ab-
sorbance of the data sets, so SWATLD is suitable for
practical use in chemometrics, which will be demon-
strated by real HPLC-DAD data arrays in the forth-
coming sectors.

5.3.4. The results of HPLC-DAD data arrays
The results of both SWATLD and PARAFAC for

the three HPLC-DAD data arrays are shown in Ta-
bles 5, 6 and 7, respectively. From all the three ta-
bles, one can see that with N taking a value of 3, both
algorithms converged comparatively fast. However,
the increase of N put heavy computation burden on
PARAFAC. W hen N exceeds certain value,
PARAFAC can not converge within 5000 iterations.
For all the data arrays, SWATLD generally con-
verged within several seconds. The longest time
needed by SWATLD is 16.7 s. Furthermore, the value
of N just slightly affects the computation time re-
quired. In terms of either computation time or itera-
tions, SWATLD converged obviously much faster
than PARAFAC, and its performance with respect to
N is much more stable.

Another advantage of SWATLD over PARAFAC
is the property of being insensitive to the excess fac-
tors used in calculation. This conclusion is drawn
from simulation studies, and corroborated by the three
real HPLC-DAD arrays. For data array I, though there
are only three chemical species, the sharp decreases
of the relative deviations of the two algorithms with
the increase of N from 3 to 4 may suggest data array
I is a four-factor system. The extra factor may denote
the presence of background or other possible inter-
ference. The content of p-chlorotoluene predicted by
SWATLD with N taking values of 4, 5 and 6, are
satisfactory and stable. The predicted contents with
relative deviations ranging from 0.4% to 2.8% are
virtually equivalent. While PARAFAC can obtain an
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Table 4
The influence of noise level a on the final results obtained by SWATLD and PARAFAC with Ns4 for a simulated four-componentnoise

HPLC-DAD type data array

Mode 0.005 0.01 0.02

SWATLD PARAFAC SWATLD PARAFAC SWATLD PARAFAC

A a 1.0000 1.0000 0.9999 1.0000 0.9997 0.99991

a 1.0000 1.0000 0.9999 1.0000 0.9996 0.99992

a 1.0000 1.0000 0.9999 1.0000 0.9995 0.99973

a 1.0000 1.0000 0.9999 0.9999 0.9997 0.99994

B b 0.9999 1.0000 0.9996 0.9999 0.9981 0.99961

b 0.9999 1.0000 0.9997 0.9999 0.9987 0.99932

b 0.9999 1.0000 0.9997 0.9999 0.9988 0.99963

b 1.0000 1.0000 0.9998 0.9999 0.9992 0.99964

C c 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001

c 1.0000 1.0000 1.0000 1.0000 1.0000 0.99992

c 1.0000 1.0000 1.0000 1.0000 1.0000 0.99973

c 1.0000 1.0000 1.0000 1.0000 0.9998 0.99984

acceptable result only when N is equal to 4, the ex-
act number of the underlying factors. With excess
factors used, PARAFAC converged to erroneous re-

Ž .sults not shown in Table 5 . The perfect agreement
among the concentrations predicted by SWATLD
with different N values of 3, 4 and 5 for data array
III further verified that SWATLD is immune from the
influence of the excess factors used in calculation.

Table 5
Ž y1 . aConcentration mgPml of p-chlorotoluene in sample 7 of data

array I estimated by SWATLD and PARAFAC with N taking 3,
4, 5 and 6

Algorithm N Known Predicted Iterations and time
aŽ . Ž .SWATLD 3 25.2 22.1 12.3% 19 0.8s

Ž . Ž .PARAFAC 3 25.2 20.4 19.0% 311 7.2s
Ž . Ž .SWATLD 4 25.2 25.6 1.6% 55 2.8s
Ž . Ž .PARAFAC 4 25.2 23.4 7.1% 2327 58.3s
Ž . Ž .SWATLD 5 25.2 25.1 0.4% 141 7.5s

c
bPARAFAC 5 25.2 – 5000 143.5sŽ .

Ž . Ž .SWATLD 6 25.2 24.5 2.8% 137 7.7s
PARAFAC 6 25.2 – 5000 152.1sŽ .

a For real HPLC-DAD data arrays, all the values listed are av-
eraged over five runs with random initialization. The value in the
bracket is the absolute value of the relative deviation.

b The bar ‘‘–’’ means when the algorithm stopped within 5000
iterations, the loading matrixes obtained have no physical mean-
ings. Therefore the contents of the interested compounds cannot be
determined.

c The underline means the algorithm did not converge within
5000 iterations.

As far as the accuracy of the predicted concentra-
tion is concerned, the performance of SWATLD is
also very satisfactory. For data array I, the relative
deviation of the concentration of p-chlorotoluene
calculated by SWATLD with N taking 4 is 1.6%
while that of PARAFAC is 7.1%. An even better re-
sult with relative deviation of 0.4% was found by
SWATLD when N s 5. Coincidentally, SWATLD
with N equal to 5 gave the best result with relative
deviation of 0.8% for data array II. The results of
SWATLD for data array III are more than accept-
able. All the contents of the three components are ac-
curately determined. Surprisingly, for all the three
data arrays, the results of PARAFAC are inferior to
those of SWATLD, though it can not thus to con-
clude that SWATLD is superior to PARAFAC in term

Table 6
Ž y1 . aConcentration mgPml of p-chlorotoluene in sample 6 of data

array II estimated by SWATLD and PARAFAC with N taking 3,
4, 5 and 6

Algorithm N Known Predicted Iterations and time

Ž . Ž .SWATLD 3 12.6 15.9 26.2% 30 1.4s
Ž . Ž .PARAFAC 3 12.6 14.6 15.9% 220 5.1s
Ž . Ž .SWATLD 4 12.6 14.3 13.5% 118 5.9s
Ž . Ž .PARAFAC 4 12.6 14.8 17.1% 1171 29.3s
Ž . Ž .SWATLD 5 12.6 12.7 0.8% 314 16.7s

PARAFAC 5 12.6 – 5000 144.1sŽ .
Ž . Ž .SWATLD 6 12.6 13.6 7.9% 181 10.2s

PARAFAC 6 12.6 – 5000 156.5sŽ .
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Table 7
Ž y1 . Ž . Ž . Ž . aConcentrations mgPml of o-dichlorobenzene ODB , p-chlorotoluene PCT and o-chlorotoluene OCT in sample 9 of data array III

estimated by SWATLD and PARAFAC with N taking 3, 4 and 5

Compound Known Predicted by SWATLD Predicted by PARAFAC

3 4 5 3 4 5
a

Ž . Ž . Ž . Ž .ODB 30.4 32.2 5.9% 30.7 1.0% 30.9 1.5% 32.1 5.6% 33.5 10.2% –Ž .
Ž . Ž . Ž . Ž .PCT 75.6 77.7 2.8% 77.6 2.7% 76.8 1.6% 76.2 0.8% 75.8 0.3% –Ž .
Ž . Ž . Ž . Ž .OCT 60.8 61.7 1.5% 62.0 2.0% 62.7 3.2% 60.8 0.0% 60.3 0.8% –Ž .

Iterations 23 39 71 184 703 5000
Ž . Ž . Ž . Ž . Ž .Time s 1.0s 1.8s 3.5s 3.2s 13.3s 112.5sŽ . Ž .

aOut of the five runs, only three have been converged with 5000 iterations, the values listed are based on the three trials.

of predictive ability, it at least demonstrates that
SWATLD is suitable for real data arrays.

It was observed in experiments that there is a
symmetry assumption on data array analyzed by
SWATLD, i.e. all the ranks of the loading matrixes
A, B and C should be no less than F. The intrinsic
reasons introducing such symmetric constraint is un-
clear now. In quantitative analysis, the loading ma-
trixes A and B are chromatographic or spectral pro-
files of chemical compounds, they generally satisfy
the above constraint. In order to make loading matrix
C also satisfy the requirement, one should prepare

Žmore calibration samples no less than the number of
.components in calibration samples .

6. Conclusions

A novel optimizing scheme for trilinear decompo-
sition is proposed. It is unique in that it alternatively
minimizes three different objective functions related
to the trilinear model. Based on the proposed scheme,
a new algorithm called self-weighted alternating

Ž .trilinear decomposition SWATLD was therefore
contrived for second-order linear calibration. Simula-
tions have been carried out to investigate the perfor-
mance of SWATLD. Experiments demonstrated that
SWATLD has the properties of fast convergence and
being insensitive to the excess factors used in calcu-
lation. To be specific, SWATLD can generally
converge within 100 iterations. Compared with
PARAFAC that always requires several hundreds and
thousands of iterations to converge, SWATLD is
much more efficient either in terms of iterations or
computation time. For large data arrays, compression
techniques can be combined with SWATLD to fur-

ther accelerate the optimizing procedure. The prop-
erty of being insensitive to excess factors used in
calculation means that SWATLD can decompose data
arrays into the actual underlying loading matrixes as
long as NGF. It is, therefore, unnecessary to spend
a lot of effort to accurately determine the number of
underlying factors in the system studied as it is in
PARAFAC. Only a large rough estimation can guar-
antee SWATLD to find the correct results. As far as
the deviations of the results are concerned, SWATLD
can offer satisfactory results under moderate noise
level. This conclusion drawn from simulation studies
was corroborated by three real HPLC-DAD data ar-
rays.

Since almost all the properties of SWALD were
drawn from experiments, our future work will pursue
to provide some more or less rigorous mathematical
explanations on these properties as well as the condi-
tions required by SWATLD in analyzing three-way
data arrays.
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