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Abstract

A novel constrained PARAFAC was designed to mitigate the influence of model deviations on the predictive accuracy in
second-order calibration. It combines the two steps of decomposition and calibration of PARAFAC in second-order calibration
into just one step by imposing the concentrations of the calibration samples on the model parameters in the third mode as
constraints. Such a scheme not only simplifies the whole calibration procedure, but also renders some extra advantages over
PARAFAC when model deviations such as Rayleigh scattering in fluorescence spectroscopy present in measurements. The
results for fluorescent and HPLC data arrays have demonstrated that the relative deviations of the predicted concentrations
could be significantly reduced when the constrained version of PARAFAC replaces PARAFAC to do second-order linear
calibration. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to the so-called second-order advantage, i.e.
calibration can be performed in the presence of un-
known interference(s) [1], second-order linear cal-
ibration has been one of the most active areas in
analytical chemometrics. Among all the methods for
second-order calibration [2–12], PARAFAC [2–4]
may be the most widely used one, though it has of-
ten been criticized for its low convergence rate and
requirement of a correct estimation of the underlying
factors. The popularity of PARAFAC in chemometrics
may lie in the model uniqueness and the optimality
of its results in least square sense.

The most important prerequisite for the success-
ful application of PARAFAC is that the data arrays
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should satisfy the trilinear assumption (see Section 3
for details). Such an assumption, however, may be vi-
olated in practice. Rayleigh scattering in fluorescence
spectroscopy is but one instance, where slight model
inadequacy can cause the estimated model parameters
to be misleading. Booksh and Kowalski have cata-
loged five broad classes of deviations from the trilin-
ear model that are common with chemical data [13].
Theoretically, there are two approaches to improve
the reliability of the results resolved by PARAFAC
in the presence of deviations. One is to do some pre-
treatment to the data arrays before the employment of
PARAFAC. The other is to impose some reasonable
constraints on the model parameters. The weighted
PARAFAC of Anderson et al. [14] may be classified
into the first category, for assigning weights to the data
elements is essentially a kind of pretreatment of the
data array. As for the second approach, one may argue
that constraining the PARAFAC model is superfluous
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Nomenclature

aif , bjf andckf the ifth, jfth andkfth
elements of the three
underlying loadingAAA, BBB

andCCC, respectively
AAAI×F , BBBJ×F ,
CCCK×F the three underlying loading

matrices ofXXX with dimen-
sions ofI × F , J × F ,
K × F , respectively (which
will be simply represented by
AAA, BBB andCCC, respectively, in
this paper)

diag(ccck) diagonal matrix with elements
equal to thekth row ofCCC

eijk the ijkth element of the
three-way residue arrayEEE

EEE..k thekth frontal slice of the
three-way residue arrayEEE

F the number of underlying
factors, i.e. the total number
of detectable species, includ-
ing the components of
interest and interference(s)
as well as background

I, J, K the dimensions of different
modes in three-way array

N the number of factors used
in calculation

xijk the ijkth element of three-
way arrayXXX

XXX..k = AAAI×F diag
(ccck)BBB

T
J×F + EEE..k thekth frontal slice of three-

way arrayXXX

since the model in itself is unique. However, the exis-
tence of possible model inadequacy can cause the final
results of PARAFAC to be misleading, which justifies
the necessity of reasonable constraints. Among all the
constraints used in PARAFAC model, non-negativity
is the most common one [15], since the model param-
eters in chemistry are often with non-negative char-
acteristic. For data arrays generated by HPLC-DAD,
sometimes the unimodal property of the chromato-
graphic profiles of chemical compounds can also be
an effective constraint to enhance the quality of the
final results of PARAFAC [16]. A variety of other

effective constraints and corresponding algorithms
have been summarized and supplied by Bro [17].
The successes of the introduction of constraints on
PARAFAC model as well as other multi-way chemo-
metric models [18,19] imply the advantages of incor-
porating known information into the model building.

In second-order calibrations, other than the non-
negativity of the model parameters and unimodal
property of chromatographic profiles, the concentra-
tions of the calibration samples are also known. In
PARAFAC for second-order calibration, all the model
parameters (including the concentration matrixCCC)
of the trilinear model are regarded to be unknown
and initialized randomly. After the model param-
eters being estimated by the so-called alternating
least squares algorithm, the estimated concentrations
are finally regressed on the known concentrations to
predict the unknown samples. The known concentra-
tion matrix of the calibration samples is not utilized
in the trilinear decomposition step. In our opinion,
the incorporation of the concentration matrix of the
calibration samples in trilinear decomposition may
render some advantages when the data arrays devi-
ate from a strictly trilinear model. Therefore, in this
paper, a novel constrained PARAFAC algorithm is
proposed and its performance has been demonstrated
by two kinds of real data arrays, one is produced by
fluorescence spectrometer, the other, by HPLC-DAD.

2. Nomenclature

Throughout this paper, scalars are represented by
lower-case italics, vectors by bold lower-case char-
acters, bold capitals designate two-way matrices and
underlined bold capitals symbolize three-way arrays.
Before reading the following parts of this paper, read-
ers are recommended to refer the nomenclature for
detailed information.

3. Theory

PARAFAC is actually a trilinear model:

xijk =
F∑

f =1

aifbjfckf + eijk, i = 1, . . . , I ;

j = 1, . . . , J ; k = 1, . . . , K (1)
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The matrix form of this trilinear model is as follows:

XXX..k = AAA diag(ck)BBB
T + EEE..k, k = 1, . . . , K (2)

In chemistry, the columns of loading matricesAAA and
BBB are always assigned with certain physical mean-
ings, i.e. excitation and emission spectra in fluores-
cence spectrometry, and chromatographic profiles
and ultraviolet-visible spectra in HPLC-DAD. The
columns of loading matrixCCC often represent concen-
trations of components in mixtures.

In second-order calibration, PARAFAC first treats
all the loading matricesAAA, BBB and CCC as unknowns,
these loading matrices are then estimated by alternat-
ing least squares algorithm after random initialization.
The concentrations of the components in unknown
samples are predicted by regressing the loading matrix
CCC estimated by PARAFAC on the known concentra-
tions of the calibration samples. It is evident that the
known concentrations of the calibration samples have
not been used in the trilinear decomposition procedure.

For data arrays which strictly follow a trilinear
model, no matter whether the known concentrations
being utilized in the decomposition procedure or
not, the final results of both approaches will have no
significant differences. Unfortunately, the deviations
of data arrays from trilinear model are common in
practice. For data arrays contaminated by deviations
(thereafter, ‘deviations’ denotes the ‘deviations from
trilinear model’, otherwise, specified), the response
can be decomposed into four parts as follows:

XXX = XXX(AAA,BBB,CCC)+DDDindependent+DDD(AAA,BBB,CCC)+EEE (3)

whereXXX(AAA,BBB,CCC) contains the linear responses of
chemical species.DDDindependent represents deviations
independent of the loading matricesAAA, BBB and CCC

which are associated with chemical species. Gener-
ally, it does not follow a trilinear model.DDD(AAA,BBB,CCC)

denotes deviations which have certain relationship
with the three loading matrixAAA, BBB andCCC. EEE signifies
random noise.

If DDD(AAA,BBB,CCC) 6= 0, PARAFAC cannot be at least
directly applied to such data arrays. Some subtle pre-
treatment is necessary. For this kind of data arrays,
there is no versatile solution to improve the relia-
bility of the estimated model parameters. For data
arrays satisfying the conditionDDD(AAA,BBB,CCC) = 0, the
influence ofDDDindependenton the accuracy of the esti-
mated model parameters can be reduced by putting

some constraints on the model parameters [15,16].
Like non-negativity and unimodality, reasonable con-
straints should be based on information known in a
priori. In second-order linear calibration, the concen-
tration matrix of the calibration samples is known,
it can also be used as constraint in trilinear decom-
position. Therefore, a novel constrained PARAFAC
algorithm is designed (For the convenience of presen-
tation, the proposed constrained PARAFAC algorithm
will be just simply represented by CPARAFAC, though
it actually does not deserve a new acronym).

SupposeXXX = {XXX..1,XXX..2, . . . ,XXX..r ,XXX..r+1, . . . ,

XXX..K}, XXX..1,XXX..2, . . . ,XXX..r are response matrices of
r calibration samples.XXX..r+1, . . . ,XXX..K are response
matrices ofK − r samples under test. Therefore

XXX..k = [AAAcalibration,AAAinterf]

×
[

diag(ck,calibration) 0
0 diag(ck,interf)

]

× [BBBcalibration,BBB interf]
T , k = 1, . . . , r

XXX..k = [AAAcalibration,AAAinterf]

×
[

diag(ck,sought-for) 0
0 diag(ck,interf)

]

× [BBBcalibration,BBB interf]
T, k = r + 1, . . . , K

Here,AAAcalibration andBBBcalibration are the two loading
matrices of the known components in calibration sam-
ples, whileAAAinterf and BBB interf are those of possible
unknown interference(s) in mixtures.ccck,calibration is a
vector with elements equal to the concentrations of the
components in thekth calibration sample.ccck,sought-for
contains the concentrations to be determined of the
interested components in thekth unknown sample.
ccck,interf represents the concentrations of possible inter-
ference(s) in thekth sample. In CPARAFAC, with the
ccck,calibration(k = 1, . . . , r) fixed,AAA, BBB andccck,sought-for
(k = r + 1, . . . , K) are obtained by alternating least
squares algorithm after random initialization.

With the incorporation of the concentrations of
the calibration samples into the decomposition pro-
cedure, the response modes of the sought-for species
are constrained. Hence, the influence of the possible
deviations on the sought-for species can be mitigated.
Other than the potential capability of coping with de-
viations, the proposed algorithm has another feature
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of combing the two-step calibration procedure into
just one step. A great increase in the convergence rate
has also been observed for CPARAFAC. Since this
paper focuses mainly on the ability of CPARAFAC
to cope with model inadequacy, its other properties
such as fast convergence will be omitted.

4. Experimental

4.1. Programs

All the programs used in the paper were written
in-house in the Matlab 5.2 environment and run on
a 400 MHz Pentium (Intel) with 64 MB RAM under
Window 98 operating system.

4.2. Excitation–emission fluorescent data arrays

4.2.1. Reagents and stock solutions
All reagents used were of analytical grade.

Stock solutions ofl-phenylalanine (0.011 mg ml−1),
l-tyrosine (0.012 mg ml−1) and l-tryptophan (0.011
mg ml−1) were prepared by accurately weighting
correspondingly appropriate amount of reagents and
dissolving them in distilled water (Table 1). A total
of 10 working solutions with different concentration
ratios of the three components were made by taking
appropriate volumes of stock solutions and 2 ml of
buffer solution (NaOH–KH2PO4, pH = 7.4) into a
25 ml volumetric flask and then making them to 25 ml
with distilled water.

Table 1
Compositions of the 10 samples for fluorescent data arrays

No. Concentration (mg ml−1)

Tyrosine Tryptophan Phenylalanine

1# 8.80× 10−4 0 0
2# 0 19.20× 10−5 0
3# 0 0 4.40× 10−3

4# 4.40× 10−4 9.60× 10−5 0
5# 0 9.60× 10−5 2.20× 10−3

6# 4.40× 10−4 0 2.20× 10−3

7# 4.40× 10−4 9.60× 10−5 2.20× 10−3

8# 8.80× 10−4 9.60× 10−5 2.20× 10−3

9# 4.40× 10−4 19.20× 10−5 2.20× 10−3

10# 4.40× 10−4 9.60× 10−5 4.40× 10−3

Fig. 1. The excitation (solid line) and emission (dotted line) spectra
of phenylalanine (1-1′), tyrosine (2-2′) and tryptophan (3-3′) for
the excitation–emission fluorescent data array.

4.2.2. Apparatus
The excitation–emission response matrices of all

the samples plus a blank solution were recorded by a
HITACHI 850 fluorescence spectrophotometer scan-
ning at 240 nm min−1 with excitation and emission
wavelength ranging from 205 to 290 nm and from
270 to 385 nm at an interval of 5 nm, respectively.
The excitation and emission spectra of phenylalanine,
tyrosine and tryptophan are depicted in Fig. 1. The
slit width in both excitation and emission monochro-
mators is 10 nm.

4.2.3. Data arrays
Rayleigh scattering in all response matrices was

roughly corrected just by subtracting the response ma-
trix of the blank solution. Data arrays were assem-
bled by the Rayleigh scattering corrected response
matrices.

4.3. HPLD-DAD data arrays

Nine mixtures of three compounds, i.e.o-dichloro-
benzene, p-chlorotoluene ando-chlorotoluene, in
different concentration ratios were prepared. The con-
centrations of three compounds in the nine samples
were listed in Table 2. The corresponding nine data
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Table 2
Compositions of the nine samples for HPLC data arrays

No. Concentration (mg ml−1)

o-Dichlorobenzene p-Chlorotoluene o-Chlorotulene

1# 0.0 75.6 0.0
2# 0.0 0.0 91.2
3# 0.0 50.4 30.4
4# 0.0 25.2 60.8
5# 15.2 12.6 152.0
6# 152.0 12.6 15.2
7# 60.8 25.2 91.2
8# 91.2 50.4 30.4
9# 30.4 75.6 60.8

sets, recorded by HPLC with diode array detector at
same conditions, were used to construct data arrays.
For detail information of this experiments readers
please refer to [20].

5. Results and discussions

5.1. The implementation of CPARAFAC and
PARAFAC

Random initialization was carried out to start the
iterative optimizing procedures of both CPARAFAC
and PARAFAC. The optimizing procedures are ter-
minated when the following criterion reaches certain
thresholdε (ε = 1 × 10−6 in present paper).

SSR(m) =
K∑

k=1

‖XXX..k − AAA(m)diag((ccc(m))k)BBB
(m)T‖2

F

∣∣∣∣∣
SSR(m) − SSR(m−1)

SSR(m−1)

∣∣∣∣∣ ≤ ε

Where, SSR is the residual sum of squares,m is the
current iteration number.

As for N, the number of factors used in calculation,
both CPARAFAC and PARAFAC take the same value
for the same data array. To be specific,N took value
of 3 for fluorescent data arrays. For HPLC data arrays,
both 3 and 4 were tried.

The constraint on the loading matrixCCC in
CPARAFAC is set as follows:

CCC = [ CCC1 CCC2 CCC3 ] CCC1 =
[

CCCcalibration
CCCsought-for

]

CCC2 =
[

0
CCCchemical-interference

]

whereCCCcalibration is the known concentration matrix
of the compounds in calibration samples.CCCsought-for
contains the concentrations of the sought-for com-
pounds in sample under test, which will be calculated
by CPARAFAC.CCCchemical-interferencesignifies the con-
tents of chemical interferences in samples under test,
which do not present in calibration samples.CCC3 de-
notes the degrees of the influences of other possible
deviations.

5.2. Excitation-emission fluorescent data arrays

In fluorescence spectroscopy the Rayleigh scatter-
ing is one of the important factors which deviate the
data arrays from a strict trilinear model. Though its
influence can be partly corrected by subtracting the
response matrix of a blank solution from those of the
samples. However, due to the ingredient difference
between samples and blank solution, the influence
of Rayleigh scattering can not be thoroughly elimi-
nated, which will affect the reliability of the results of
PARAFAC. Therefore, some constraints on the model
parameters may render some advantages. For instance,
Fig. 2 shows the excitation and emission spectra of
tyrosine and tryptophan resolved by PARAFAC and
CPARAFAC for data array composed of samples 1#,
2#, 4# and 8# with sample 1#, 2# and 4# as calibration
set. Obvious differences between the emission spec-
tra resolved by CPARAFAC and those by PARAFAC
can be observed. The emission spectrum of trypto-
phan resolved by PARAFAC shows a negative part in
the range 270–300 nm. While the emission spectra of
tryptophan and tyrosine obtained by CPARAFAC are
in good consistence with the real ones. The difference
between the residual sum of squares of PARAFAC
(1.568×104) and that of CPARAFAC (2.0828×104)
indicates that the relatively poor results of PARAFAC
may be caused by the over-fitting of deviations.
As in multivariate calibration using PCA and PLS,
it is also the case in second order calibration that
better fitting does not necessarily mean better pre-
dictive ability. By imposing constraint on the load-
ing matrix CCC, CPARAFAC tries to avoid modeling
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Fig. 2. The emission (a) and excitation (b) spectra of tyrosine
and tryptophan for the excitation–emission fluorescent data array
assembled by samples 1, 2, 4 and 8 (solid line — real, dotted line
— resolved by PARAFAC, dash line — obtained by CPARAFAC
with sample 8 as unknown).

deviations, and hence can improve the accuracy of
prediction.

The quantitative results of CPARAFA and PARAFAC
for fluorescent data arrays are listed in Tables 3–5. In
Table 3, samples 1#, 3# and 6# were taken as calibra-
tion set to predict the contents of tyrosine and pheny-

lalanine in samples 7#, 8#, 9# and 10#. The concentra-
tion of tyrosine in sample 8#, predicted by PARAFAC
is satisfactory with a relative deviation of 1.0%. Un-
fortunately, the content of phenylalanine in the same
sample determined by PARAFAC shows large devi-
ation (10.5%) from the expected one. For samples
7#, 9# and 10#, the concentrations of both tyrosine
and phenylalanine determined by PARAFAC have
relatively large deviations. These phenomena may be
resulted from the model deviations (DDDindependent) such
as Rayleigh scattering, which may be reduced by
CPARAFAC. As expected, the relative large devia-
tions are greatly reduced by exerting constraint of the
known concentrations of the components in calibra-
tion samples on the loading matrixCCC. Specifically, the
large deviations of 10.5 and 10.0% for phenylalanine
in sample 8# and sample 10# are reduced to 3.6 and
3.2%, respectively. Those of tyrosine in samples 7#, 9#

and 10# decreased from 7.5, 6.1 and 9.6% to 5.2, 3.6
and 5.7%, respectively. Except for tyrosine in samples
8#, all the relative deviations of the concentrations cal-
culated by CPARAFAC are significantly smaller than
those of PARAFAC. When samples 1#, 2# and 4# are
regarded as calibration set to determine the contents
of tyrosine and tryptophan in samples 7#, 8# and 9#,
10# (Table 4), similar results are observed. Though the
relative deviations of CPARAFAC for tyrosine in 7#,
8# and 9# increased slightly compared with those of
PARAFAC, such increases are reasonable and accept-
able, since relatively large decreases in the relative
deviations for tryptophan are obtained (from 10.3 to
3.1%, and 4.9 to 0.1%). Moreover, the increases are
so small that the qualities of the results see no obvious
deterioration. The preferable feature of CPARAFAC
— capable of reducing large relative deviations to
acceptable range, is also observed in Table 5, which
lists the results of CPARAFAC and PARAFAC for
samples 4#–10# with calibration sets assembled by all
samples from 1# to 10# except the sample under test.

5.3. HPLC data arrays

Table 6 presents the results of CPARAFAC and
PARAFAC for HPLC-DAD data arrays. A first glance
of the results will give one an impression that the
relative deviations for HPLC data arrays are much
larger than those for fluorescent data arrays. This
phenomenon may be partly attributed to the presence
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Table 3
The concentrations and their relative deviations, predicted by PARAFAC and CPARAFAC with fluorescent samples 1#, 3#, and 6# as
calibration set

No. Tyrosine (10−4 mg ml−1) Phenylalanine (10−3 mg ml−1)

PARAFAC CPARAFAC Known PARAFAC CPARAFAC Known

7# 4.07 (7.5%a) 4.17 (5.2%) 4.40 2.05 (6.8%) 2.18 (0.9%) 2.20
8# 8.89 (1.0%) 8.69 (1.3%) 8.80 1.97 (10.5%) 2.12 (3.6%) 2.20
9# 4.13 (6.1%) 4.24 (3.6%) 4.40 1.98 (10.0%) 2.13 (3.2%) 2.20

10# 4.82 (9.6%) 4.65 (5.7%) 4.40 4.67 (6.1%) 4.65 (5.7%) 4.40

a The absolute value of the relative deviation.

Table 4
The concentrations and their relative deviations, predicted by PARAFAC and CPARAFAC with fluorescent samples 1#, 2#, and 4# as
calibration set

No. Tyrosine (10−4 mg ml−1) Tryptophan (10−5mg ml−1)

PARAFAC CPARAFAC Known PARAFAC CPARAFAC Known

7# 4.49 (2.1%) 4.55 (3.4%) 4.40 9.65 (0.5%) 9.63 (0.3%) 9.60
8# 9.00 (2.3%) 9.07 (3.1%) 8.80 10.59 (10.3%) 9.90 (3.1%) 9.60
9# 4.50 (2.3%) 4.53 (3.0%) 4.40 20.14 (4.9%) 19.22 (0.1%) 19.20

10# 5.28 (20.0%) 5.26 (19.6%) 4.40 9.97 (3.8%) 9.81 (2.2%) 9.60

Table 5
The concentrations and their relative deviations, predicted by PARAFAC and CPARAFAC with calibration sets assembled by fluorescent
samples 1#–10# except the sample under test

No. Tyrosine (10−4 mg ml−1) Tryptophan (10−5 mg ml−1) Phenylalanine (10−3 mg ml−1)

PARAFAC CPARAFAC Known PARAFAC CPARAFAC Known PARAFAC CPARAFAC Known

4# 4.08 (7.3%) 4.21 (4.3%) 4.40 9.82 (2.3%) 10.3 (7.3%) 9.60 – – –
5# – – – 8.70 (9.4%) 9.13 (4.9%) 9.60 2.35 (6.8%) 2.35 (6.8%) 2.20
6# 4.30 (2.3%) 4.43 (0.7%) 4.40 – – – 1.94 (11.8%) 2.28 (3.6%) 2.20
7# 4.25 (3.4%) 4.25 (3.4%) 4.40 9.25 (3.7%) 9.46 (1.5%) 9.60 2.00 (9.1%) 2.06 (6.4%) 2.20
8# 8.77 (0.3%) 8.65 (1.7%) 8.80 9.64 (0.4%) 9.54 (0.6%) 9.60 2.11 (4.1%) 2.18 (0.9%) 2.20
9# 4.31 (1.9%) 4.25 (3.4%) 4.40 18.60 (3.1%) 18.23 (5.1%) 19.20 2.14 (2.8%) 2.13 (3.2%) 2.20

10# 5.10 (16.0%) 5.00 (13.6%) 4.40 9.41 (1.9%) 9.18 (4.4%) 9.60 4.71 (7.1%) 4.32 (1.7%) 4.40

of the deviations (DDD(AAA,BBB,CCC)) related to the chem-
ical species — the possible run-to-run variability in
chromatographic peak shape and position. Neverthe-
less, a significant improvement in the accuracy of the
concentration prediction for this kind of data arrays
is also observed by the introduction of constraints on
the model parameters. WithN taking 3, out of the 12
concentrations ofo-dichlorobenzene,p-chlorotoluene
and o-chlorotoluene predicted by PARAFAC, eight
estimated concentrations are of poor quality with
relative deviations larger than 10.0%. The relative

deviation foro-chlorotoluene in sample 6# is even as
large as 55.3%, which is by no means acceptable. In
comparison, when CPARAFAC in stead of PARAFAC
is employed to analyze the HPLC data arrays, the
number of concentrations estimated with relative de-
viation larger than 10.0% is reduced to three. The
advantages brought by the utilization of constraint on
model parameter are further verified by the prominent
differences between the chromatographic profiles re-
solved by CPARAFAC and PARAFAC (Fig. 3a). Both
the two chromatographic profiles ofp-chlorotoluene
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Fig. 3. The chromatographic (a) and spectral (b) profiles of
o-dichlorobenzene (1),p-chlorotoluene (2) ando-chlorotoluene (3)
for the HPLC data array composed of all the nine samples (solid
line — real, dotted line — resolved by PARAFAC, dash line —
obtained by CPARAFAC with sample 5 as unknown).

and o-chlorotoluene resolved by PARAFAC possess
negative parts. Though the chromatographic profile
of o-chlorotoluene obtained by CPARAFAC also
shows some aberration from the real one, the aber-
ration is much smaller in comparison with that of
PARAFAC. Moreover, the chromatographic profile of

p-chlorotoluene calculated by CPARAFAC coincides
with the actual one. Similar results also appear in
the spectra resolved by CPARAFAC and PARAFAC
(Fig. 3b).

The increase ofN from 3 to 4 has improved the
qualities of the results obtained by PARAFAC to some
extent. The improvement, however, is still not enough
to make the results of PARAFAC to be comparable to
those of CPARAFAC, even whenN in CPARAFAC
is equal to 3. Further increase ofN for PARAFAC
will cause sharp deterioration in the results’ qualities,
due to the well-known property of PARAFAC —
being sensitive to excess factors used in calculation.
Therefore, the poor qualities of the results obtained
by PARAFAC are caused by deviations, which cannot
be decomposed into a trilinear form, rather than by
insufficient number of factors used in calculation. The
results’ qualities of CPARAFAC withN = 4 also see
some improvements. For example, the relative devia-
tion of o-dichlorobenzene in sample 7# was decreased
from 17.8 to 1.2%, and that ofp-chlorotoluene in
the same sample, from 17.0 to 13.1%. Generally,
the results of CPARAFAC withN = 4 are in con-
sistence with those of CPARAFAC withN = 3.
Again, it verified that imposing constraints on model
parameters do raise some advantages over common
PARAFAC.

It is worth to point out that CPARAFAC will some-
times be trapped in local optimum. It can be relieved
just by taking the results of PARAFAC as initial
estimations, and then run CPARAFAC to refine the
results. Non-random initial estimations based on some
sophisticated chemometric methods such as EFA [21]
and OPA [22] are also effective to avoid the problem
of local optimum, and hence recommendable.

6. Conclusions

The constrained PARAFAC algorithm proposed in
this paper can reduce the influence of deviations on
the predictive accuracy in second-order calibration.
By imposing a constraint (the concentration matrix
of the calibration samples) on the loading matrix
CCC, the two steps of decomposition and calibration
of PARAFAC in second-order calibration has been
combined into just one step in CPARAFAC. The cal-
ibration procedure can thus be simplified with some
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extra advantages over PARAFAC when deviations
such as Rayleigh scattering in fluorescence spec-
troscopy present in data arrays. A comparison of the
proposed procedure with PARAFAC for the treatment
of fluorescent and HPLC data arrays demonstrated
that the relative deviations of the predicted concentra-
tions could be significantly reduced by CPARAFAC.
Though CPARAFAC will sometimes be stuck in lo-
cal optimum, a simple remedy is to take the results
of PARAFAC as initial estimations and then run
CPARAFAC to further enhance the qualities of the
results.

It should be noted that CPARAFAC is just an al-
ternative for second-order calibration, it should not
be regarded as a substitute for PARAFAC, since the
two-step scheme of PARAFAC allows non-linear
regression of estimated loading matrixCCC on the con-
centrations of calibration samples, while CPARAFAC
does not. It is, therefore, recommended that only
when the results of PARAFAC show apparent abnor-
mal characteristics such as negative parts in spectra
or chromatographic profiles, should the CPARAFAC
be tried.
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