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SUMMARY

PARAFAC is well known as an iterative trilinear decomposition method. In practice, an accurate estimation of
the number of underlying factors is required; otherwise it is difficult to guarantee the chemical meaning of the
results obtained. The absence of a versatile chemometric method for factor estimation has often caused problems
for analysts. With the advent of ATLD followed by SWATLD, the above relatively strict constraint can be
relaxed. Experiments have shown that the profiles of the underlying factors can be extracted by ATLD (Wu et al.,
J. Chemometrics 1998; 12: 1) and SWATLD (Chen et al., Chemometrics Intell. Lab. Syst. 2000; 52: 75) as long
as the number of factors used in calculation is no less than the number of actual factors. In other words, an
overestimation of the number of factors will not affect the obtainment of chemically meaningful results by
SWATLD and ATLD. In this paper the authors provide some simple mathematical explanations of this valuable
property of SWATLD. Along with these explanations, some other properties of SWATLD as well as some
guidelines for designing new trilinear decomposition methods are also discussed. Copyright  2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Trilinear decomposition methods have the very important advantage of being capable of determining
the contents of sought-for analytes in a mixture in spite of the existence of unknown interferences or
background [1]. Attracted by this property, more and more scientists have been engaging in the
research of designing new algorithms and their potential applications [2–7]. Trilinear decomposition
methods can be loosely classified into non-iterative algorithms, represented by GRAM [2], and
iterative ones, exemplified by PARAFAC [3,4]. The theory and properties of GRAM have been
documented elsewhere [8–10]. In this paper the focus is on iterative trilinear decomposition
algorithms. Among the family of iterative algorithms, PARAFAC, first introduced in psychology, is
the most famous and widely accepted one in chemometrics, its theory having been thoroughly
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investigated [3,4,11,12]. Although PARAFAC has been successfully applied to many chemical
problems [13–16], the requirement of an accurate estimation of the number of underlying factors is an
obstacle to its wider applications, since there is no such method which can guarantee an accurate
estimation of the number of underlying factors under all circumstances.

Recently, Wu et al. proposed an ATLD algorithm [17]. Their algorithm is characterized by the
property of being insensitive to excess factors used in calculation. In other words, the final results of
ATLD will contain the profiles of the actual factors, provided that the number of factors used in
calculation is no less than the number of actual factors. The significance of such a feature is obvious,
for it can release analysts from the troublesome chemical rank estimation tasks. Unfortunately, there
is little explanation of this feature in the original paper.

The present authors have also designed an iterative trilinear decomposition algorithm, called
SWATLD [18], which possesses the same attractive feature as ATLD. In this paper we try to give
some mathematical explanations of this feature. In addition, some other properties of SWATLD and
some guidelines for designing new trilinear decomposition algorithms are also discussed.

2. MODEL AND ALGORITHM

2.1. Nomenclature

Throughout this paper, scalars are represented by lower-case italics, vectors are denoted by bold
lower-case characters, bold capitals designate two-way matrices and underlined bold capitals
symbolize three-way arrays. Before reading the main text of this paper, readers are recommended to
refer to Appendix I for detailed nomenclature information.

2.2. The model

In second-order linear calibration the famous trilinear decomposition model proposed by Harshman
[3] and Carroll and Chang [4] has been widely accepted owing to its consistency with Beer’s law in
chemistry. Assuming there is no noise, every element xijk of data array X can be expressed as the sum
of a series of products:

xijk �
�F

f �1

a�
if b�

if c�kf � i � 1� � � � � I � j � 1� � � � � J � k � 1� � � � �K �1�

Provided that k1 � k2 � k3 � 2F � 2 (k1, k2 and k3 are the k-ranks [19] of the three underlying loading
matrices in data array X respectively) [20,21], the above decomposition is unique up to some scaling
and permutation indeterminacy.

Along with the model, Harshman [3] and Carroll and Chang [4] proposed an alternating least
squares approach to solve the above decomposition problem by successively assuming the loading
matrices in two modes to be known and estimating the unknown parameters of the third mode. It has
been pointed out that only when the number of underlying factors has been correctly estimated can
uniqueness be guaranteed for the results obtained by the alternating least squares algorithm. A wrong
choice of the number of factors used in calculation generally leads to erroneous results. In practice,
the absence of a versatile method for component estimation limits the application of this algorithm.
Such a situation calls for new algorithms with mild constraints. As far as we know, ATLD of Wu et al.
[17] is the only iterative algorithm published so far with the property of being insensitive to excess
factors used in calculation. Unfortunately, there is little explanation of this feature in their original
paper. Recently, the present authors have also proposed an algorithm, called self-weighted alternating
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trilinear decomposition (SWATLD) [18]. It also possesses this attractive property, which will be
explained with more or less mathematical rigour in the following sections.

2.3. Self-weighted alternating trilinear decomposition (SWATLD)

Before the explanations of the property, a brief description of SWATLD is necessary. In fact,
SWATLD aims to alternately minimize the following three objective functions (i.e. assuming A and
B are known, minimize S(C) to obtain loading matrix C; with A and the new C, minimize S(B) to
renew B; and then minimize S(A) with the latest B and C to obtain a new A):

S�C� �
�K

k�1

���XT
��k�AT�� � Bdiag�cT

k ��diag�sqrt�1��diagm�BTB����2
F

� ��X��k�BT�� � Adiag�cT
k ��diag�sqrt�1��diagm�ATA����2

F� �2�

S�B� �
�J

j�1

���XT
�j��CT�� � Adiag�bT

j ��diag�sqrt�1��diagm�ATA����2
F

� ��X�j��AT�� � Cdiag�bT
j ��diag�sqrt�1��diagm�CTC����2

F� �3�

S�A� �
�I

i�1

���XT
i���BT�� � Cdiag�aT

i ��diag�sqrt�1��diagm�CTC����2
F

� ��Xi���CT�� � Bdiag�aT
i ��diag�sqrt�1��diagm�BTB����2

F� �4�

Here �⋅�F represents the Frobenius matrix norm; ./ denotes array division, e.g. suppose x = (xi) and
y = (yi), then x./y = (xi/yi); sqrt(⋅) is a square root operator; and 1 is a vector of length N with all
elements equal to one. The three diagonal matrices diag(sqrt(1./diagm(ATA))), diag(sqrt(1./
diagm(BTB))) and diag(sqrt(1./diag(CTC))) function as weight matrices to balance the two parts of
each objective function.

Based on objective functions (2)–(4), SWATLD was designed as follows.

1. Randomly initialize loading matrices A and B.

2� cT
k � 1

2 �diagm�B�XT
��kA���diagm�ATA� � diagm�A�X��kB���diagm�BTB��� k � 1� � � � �K �5�

3� bT
j � 1

2 �diagm�A�XT
�j�C���diagm�CTC� � diagm�C�X�j�A���diagm�ATA��� j � 1� � � � � J �6�

4� aT
i � 1

2 �diagm�C�XT
i��B���diagm�BTB� � diagm�B�Xi��C���diagm�CTC��� i � 1� � � � � I �7�

5. Update C, B and A according to steps 2–4 until a certain stop criterion has been reached.
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Like ATLD, our experiments showed that SWATLD is also insensitive to excess factors used in
computation. It can extract the actual profiles of underlying factors even if N � F.

3. EXPLANATIONS OF THE PROPERTY OF SWATLD BEING INSENSITIVE TO EXCESS
FACTORS USED IN CALCULATION

All the theorems and explanations in the following are based on the assumption of absence of noise.

Theorem 1

If the ranks of the underlying loading matrices Å, B̊ and C̊ are equal, say F, and no noise exists, then
there are matrices A, B and C with N columns (N � F) which satisfy S(C) = 0, S(B) = 0 and S(A) = 0.

Proof. (a) When N = F. Assuming A = Å, B = B̊ and C = C̊, since rank(Å) = rank(B̊) = rank(C̊) = F,
the following equations hold:

XT
��k�AT�� � B

�
diag�c�T

k �A
� T

�A
� T

�� � B
�

diag�c�T

k � � Bdiag�cT
k �� k � 1� 2� � � � �K

X��k�BT�� � A
�

diag�c�T

k �B
� T

�B�
T

�� � A
�

diag�c�T

k � � Adiag�cT
k �� k � 1� 2� � � � �K

Consequently, S(C) = 0. Similarly, it can be demonstrated that S(A) = 0 and S(B) = 0.
(b) When N � F. For simplicity of description it is assumed that F = 4 and N = 6 (note that the

values of F and N are set randomly; they will not affect the generality of the following conclusions).

A
�
� a

�
1� a

�
2� a

�
3� a

�
4

� �
� B

� � b
�

1� b
�

2� b
�

3� b
�

4

� �
� C

�
� c

�
1� c

�
2� c

�
3� c

�
4

� �

Suppose

A � �A1�A2�� A1 � A
�
� A2 � �a�1� a

�
2�

B � �B1�B2�� B1 � B
�
� B2 � b

�
1� b

�
2

� �

C � 1
2 c
�

1�
1
2 c
�

2� c
�

3� c
�

4�
1
2 c
�

1�
1
2 c
�

2

� �

According to Reference [22],

A� �
A�

1 � A�
1 A2K�1

A AT
2 �A�

1 �TA�
1

K�1
A AT

2 �A�
1 �TA�

1

�
�

�
�� B� �

B�
1 � B�

1 B2K�1
B BT

2 �B�
1 �TB�

1

K�1
B BT

2 �B�
1 �TB�

1

�
�

�
�

KA � I � AT
2 �A�

1 �TA�
1 A2� KB � I � BT

2 �B�
1 �TB�

1 B2
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Suppose

A1
� �

paT
1

paT
2

paT
3

paT
4

�
�����

�
				�� B1

� �

pbT
1

pbT
2

pbT
3

pbT
4

�
�����

�
				�

Then

A� �

1
2 paT

1

1
2 paT

2

paT
3

paT
4

1
2 paT

1

1
2 paT

2

�
������������

�
											�
� B� �

1
2 pbT

1

1
2 pbT

2

pbT
3

pbT
4

1
2 pbT

1

1
2 pbT

2

�
������������

�
											�

After some simple calculations one has

S1�C� �
�K

k�1

��XT
��k�A��T � Bdiag�cT

k ��diag�sqrt�1��diagm�BTB����2
F

�
�K

k�1

��B� diag�c�T

k �A
� T

�A��T � Bdiag�cT
k ��diag�sqrt�1��diagm�BTB����2

F

� 0

S2�C� �
�K

k�1

��X��k�B��T � Adiag�cT
k ��diag�sqrt�1��diagm�ATA����2

F

�
�K

k�1

��A
�

diag�c�T

k �B
� T

�B��T � Adiag�cT
k ��diag�sqrt�1��diagm�ATA����2

F

� 0

Therefore S(C) = S1(C) � S2(C) = 0. Similarly, it can also be easily verified that S(B) = 0 and
S(A) = 0.

This means that there exist solutions for loading matrixes A, B and C with N columns (N � F)
which satisfy the three equations S(C) = 0, S(B) = 0 and S(A) = 0.

Theorem 2

The columns of the loading matrices A, B and C obtained by SWATLD are linear combinations of the
columns of Å, B̊ and C̊ respectively.
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Proof. Through some simple transformations, Equations (5)–(7) can be rewritten as

C � 1
2

�I

i�1

XT
i��Bdiag�pati�diag�1��diagm�BTB�� �

�J

j�1

X�j�Adiag�pbtj�diag�1��diagm�ATA��

 �

B � 1
2

�K

k�1

XT
��kAdiag�pctk�diag�1��diagm�ATA�� �

�I

i�1

Xi��Cdiag�pati�diag�1��diagm�CTC��

 �

A � 1
2

�J

j�1

XT
�j�Cdiag�pbtj�diag�1��diagm�CTC�� �

�K

k�1

X��kBdiag�pctk�diag�1��diagm�BTB��

 �

where pctk is the kth row of matrix (C�)T, pati is the ith row of matrix (A�)T, and pbtj is the jth
row of matrix (B�)T.

Therefore the columns of loading matrix A are linear combinations of the columns of matrices
XT

�j��j � 1� 2� � � � � J� and X..k (k = 1,2, …, K), the columns of loading matrix B are linear combinations
of the columns of matrices XT

��k�k � 1� 2� � � � �K� and Xi.. (i = 1, 2, …, I), and the columns of loading
matrix C are linear combinations of the columns of matrices XT

i���i � 1� 2� � � � � I� and X.j. (j = 1, 2, …,
J). As defined in Appendix I, X��k = Ådiag(c̊T

k)B̊
T (k = 1, 2,…, K), X.j. = C̊diag(b̊T

j)Å
T ( j = 1, 2,…, J)

and Xi.. = B̊diag(åT
I) C̊T (i = 1, 2,…, I), so the columns of loading matrices A, B and C are linear

combinations of the columns of the underlying loading matrices Å, B̊ and C̊ respectively.

Theorem 3

If A, B and C all have rank F, then X��k =Adiag�cT
k �BT�k � 1� 2� � � � �K�, X�j� =

Cdiag�bT
j �AT�j � 1� 2� � � � � J� and Xi�� � Bdiag�aT

i �CT�i � 1� 2� � � � � I� when S(C) = 0, S(B) = 0 and
S(A) = 0.

Proof. When S(C) = 0, S(B) = 0 and S(A) = 0, the following equations hold:

A�X��k � diag�cT
k �BT � 0� k � 1� 2� � � � �K

X��k�B��T � Adiag�cT
k � � 0� k � 1� 2� � � � �K

C�X�j� � diag�bT
j �AT � 0� j � 1� 2� � � � � J �8�

X�j��A��T � Cdiag�bT
j � � 0� j � 1� 2� � � � � J

B�Xi�� � diag�aT
i �CT � 0� i � 1� 2� � � � � I

Xi���C��T � Bdiag�aT
i � � 0� i � 1� 2� � � � � I
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Then

AA��X��k � Adiag�cT
k �BT� � 0� k � 1� 2� � � � �K

�X��k � Adiag�cT
k �BT��B��TBT � 0� k � 1� 2� � � � �K

CC��X�j� � Cdiag�bT
j �AT� � 0� j � 1� 2� � � � � J

�Xj� � Cdiag�bT
j �AT��A��TAT � 0� j � 1� 2� � � � � J

BB��Xi�� � Bdiag�aT
i �CT� � 0� i � 1� 2� � � � � I

�Xi�� � Bdiag�aT
i �CT��C��TCT � 0� i � 1� 2� � � � � I

Owing to Theorem 2, one has

R�X��k � Adiag�cT
k �BT� 	 R�A� � R��A��T�

R�X�j� � Cdiag�bT
j �AT� 	 R�C� � R��C��T�

R�Xi�� � Bdiag�aT
i �CT� 	 R�B� � R��B��T�

Therefore

X��k � Adiag�cT
k �BT� k � 1� 2� � � � �K

X�j� � Cdiag�bT
j �AT� j � 1� 2� � � � � J

Xi�� � Bdiag�aT
i �CT� i � 1� 2� � � � � I

�9�

Theorem 4

Provided that N � F and A, B and C all have rank F, the profiles of the underlying factors will be
contained in the results obtained by SWATLD, i.e. regardless of some scaling indeterminacy, for
every column of the underlying loading matrices Å, B̊ and C̊ an equivalent column always exists in
the corresponding loading matrices A, B and C resolved by SWATLD.

Proof. From (8) and (9) one has

A�Adiag�cT
k �BT � diag�cT

k �BT� k � 1� 2� � � � �K

Suppose

A � �AF �AN�F�� B � �BF �BN�F�� diag�cT
k � �

diag�cT
k�F� 0

0 diag�cT
k�N�F�


 �

where AF of size I 
 F is a column full-rank matrix. Since one has
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A� �
A�

F � A�
F AN�FK�1AT

N�F�A�
F �TA�

F

K�1AT
N�F�A�

F �TA�
F

�
�

�
�

K � I � AT
N�F�A�

F �TA�
F AN�F

hence

�A��Adiag�cT
k �BT �

A�
F � A�

F AN�FK�1
1 AT

N�F�A�
F �TA�

F

K�1
1 AT

N�F�A�
F �TA�

F

�
�

�
��AF �AN�F�



diag�cT

k�F� 0

0 diag�cT
k�N�F�

�
�

�
��BF �BN�F�T

�
diag�cT

k�F� 0

0 diag�cT
k�N�F�

�
�

�
��BF �BN�F�T

Consequently,

�I � A�
F AN�FK�1

1 AT
N�F�A�

F �T�diag�cT
k�F�BT

F

� A�
F �I � AN�FK�1

1 AT
N�F�A�

F �T�AN�Fdiag�cT
k�N�F�BT

N�F � diag�cT
k�F�BT

F

K�1
1 AT

N�F�A�
F �Tdiag�cT

k�F�BT
F � K�1

1 AT
N�F�A�

F �TA�
F AN�Fdiag�cT

k�N�F�BT
N�F

� diag�cT
k�N�F�BT

N�F

Thus we have

AT
N�F�A�

F �Tdiag�cT
k�F�BT

F � AT
N�F�A�

F �TA�
F AN�Fdiag�cT

k�N�F�BT
N�F

� K1diag�cT
k�N�F�BT

N�F

This can be rewritten as

�K1 � AT
N�F�A�

F �TA�
F AN�F�diag�cT

k�N�F�BT
N�F � AT

N�F�A�
F �Tdiag�cT

k�F�BT
F

Finally we have the equation

diag�cT
k�N�F�BT

N�F � AT
N�F�A�

F �Tdiag�cT
k�F�BT

F

If AN � F = 0, the following equation obviously holds:

X��k � AFdiag�cT
k�F�BT

F

446 Z.-P. CHEN, H.-L. WU AND R.-Q. YU

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 439–453



If AN � F � 0,

X��k � AFdiag�cT
k�F�BT

F � AN�Fdiag�cT
k�N�F�BT

N�F

� �AF � AN�FAT
N�F�A�

F �T�diag�cT
k�F�BT

F

According to the definition in Appendix I,

X��k � A
�

I
Fdiag�c�T

k �B
� T

J
F

Suppose that the columns of BF and B̊J 
 F are arranged according to the same criterion. Hence,
according to the theorem of Kruskal [19,20], the F columns of loading matrix BF should be the
profiles in the second mode of the F underlying factors with physical meaning, i.e. BF = B̊J 
 F�,
where � is a diagonal matrix. This conclusion implies that loading matrix BF is also a column
full-rank matrix. Therefore it can easily be demonstrated that the columns of loading matrices AF

and CF should also be the corresponding profiles in the first and third modes respectively of the
underlying factors with physical meaning. For any column of A, ai � 0, there exist F � 1 other
columns AF � 1 which satisfy rank([AF � 1,ai]) = F. Thus the corresponding bi should be the
profile in the second mode of a certain underlying factor, which indicates that ai and ci are the
respective profiles in the first and third modes of the certain underlying factor. In conclusion, the
columns of the loading matrices A, B and C obtained by SWATLD should be the profiles in the
corresponding modes of the underlying factors, otherwise zero.

It should be noted that the above conclusion holds only when A, B and C all have rank F, which is
generally satisfied when SWATLD is used.

4. SIMULATION STUDIES OF THE PROPERTY OF SWATLD BEING INSENSITIVE TO
EXCESS FACTORS USED IN CALCULATION IN THE PRESENCE OF RANDOM NOISE

The property of SWATLD being insensitive to excess factors used in calculation has been proved
under the assumption E = 0. Its performance in the presence of noise has to be demonstrated by
simulation studies. Data arrays were simulated according to the scheme in Appendix II. The
initialization and stopping criterion of SWATLD are also given in Appendix II.

Table I lists the results of SWATLD for a randomly simulated three-component data array of size
20 
 20 
 5. The results show that SWALTD can always find the correct profiles of the underlying
factors in the three modes within a reasonable number of iterations. The property of SWATLD being
insensitive to excess factors used in calculation is also observed in the presence of noise. As expected,
an increase in the number of excess factors has little effect on the quality of the results obtained by
SWATLD. Even when an N that is three times the number of underlying factors (N = 9) is employed,
the quality of the results of SWATLD shows no obvious deterioration, the resolved profiles of the
underlying factors in the three modes being in good agreement with the true ones (Figure 1). With the
noise level parameter anoise varying from 0⋅002 to 0⋅02, the results of SWATLD with N = 4 or 5 are
essentially the same as those when N = 3, the same as the number of underlying factors in the
simulated system. These results have fully demonstrated that the attractive property of SWATLD
being insensitive to excess factors used in calculation also holds in the presence of noise.
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Table I. Influence of N on final results of SWATLD for a randomly simulated three-component data array with
anoise ranging from 0⋅002 to 0⋅02 (for each N value, five randomly initialized runs were performed)

anoise N INDa

RA
b RB RC

ITc1 2 3 1 2 3 1 2 3

0⋅002 3 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 26
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 23
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 25

4 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 92
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 33
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 59

5 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 270
Min 0⋅9991 1⋅0000 0⋅9998 0⋅9994 1⋅0000 0⋅9998 0⋅9994 1⋅0000 0⋅9999 26
Ave 0⋅9998 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 101

0⋅004 3 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 27
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 24
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 25

4 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 612
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 58
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 430

5 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 182
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 94
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 148

0⋅006 3 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 29
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 21
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 23

4 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 125
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 27
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 74

5 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 94
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 34
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 64

0⋅008 3 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 23
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 20
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 22

4 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 93
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 30
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 50

5 Max 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 88
Min 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 60
Ave 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 73

0⋅01 3 Max 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 25
Min 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 15
Ave 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 22

4 Max 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 89
Min 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 43
Ave 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 69

5 Max 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 122
Min 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 43
Ave 0⋅9999 1⋅0000 1⋅0000 0⋅9999 1⋅0000 1⋅0000 1⋅0000 1⋅0000 1⋅0000 70

0⋅02 3 Max 0⋅9997 0⋅9999 0⋅9998 0⋅9997 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9998 25
Min 0⋅9997 0⋅9999 0⋅9998 0⋅9997 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9998 15
Ave 0⋅9997 0⋅9999 0⋅9998 0⋅9997 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9998 20

4 Max 0⋅9997 0⋅9999 0⋅9998 0⋅9997 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9999 113
Min 0⋅9997 0⋅9999 0⋅9998 0⋅9996 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9998 28

448 Z.-P. CHEN, H.-L. WU AND R.-Q. YU

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 439–453



5. SOME DEDUCTIONS FROM THE EXPLANATIONS

The previous sections not only offer some mathematical explanations of the property of SWATLD
being insensitive to excess factors used in calculation, but also give clues for further understanding
other properties of SWATLD and guidelines for designing new trilinear decomposition algorithms.

5.1 In order to decompose data arrays into loading matrices with chemical meanings, SWATLD
requires that the underlying loading matrices Å, B̊ and C̊ should have equal rank, say F

Assume rank(Å) = rank(B̊) = F and rank(C̊) = F � 1. Suppose S(C) = 0, S(B) = 0 and S(A) = 0 when
SWATLD stops. Then

X�j� � �CF�1 � CF�1CT
N�F�1�C�

F�1�T�diag�bT
j�F�1�AT

I
�F�1�� j � 1� 2� � � � � J

These equations are contradicted by the equations

X�j� � C
�

diag�b�
T

j �AT
I
F � j � 1� 2� � � � � J

This contradiction results from the assumptions S(C) = 0, S(B) = 0 and S(A) = 0. It means that if
rank(Å) = rank(B̊) = F and rank(C̊) = F � 1, then S(C) � 0, S(B) � 0 and S(A) � 0 when SWATLD
stops.

The symmetry constraint is introduced by the three objective functions employed in SWATLD.
Although the constraint limits the applications of SWATLD, its features of fast convergence and
stable performance under different conditions are attractive in second-order linear calibration
problems [18], since the symmetry constraint can be satisfied simply by preparing several more
calibration samples.

5.2. Other possible iterative trilinear decomposition algorithms with the property of being
insensitive to the number of factors chosen

From the above explanations it can be seen that the property of being insensitive to excess factors
used in calculation originates from the objective functions adopted. Actually, it is unnecessary to
employ three objective functions as in SWATLD if only the above property is concerned. The feature
can be guaranteed simply by optimizing objective function (10) on condition that

Table I. (continued)

anoise N INDa

RA
b RB RC

ITc1 2 3 1 2 3 1 2 3

Ave 0⋅9997 0⋅9999 0⋅9998 0⋅9997 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9999 56
5 Max 0⋅9997 0⋅9999 0⋅9998 0⋅9997 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9999 161

Min 0⋅9997 0⋅9999 0⋅9998 0⋅9996 0⋅9999 0⋅9998 0⋅9999 0⋅9999 0⋅9998 32
Ave 0⋅9997 0⋅9999 0⋅9998 0⋅9996 0⋅9999 0⋅9998 1⋅0000 0⋅9999 0⋅9998 76

a IND, Max, Min and Ave denote ‘index’, ‘maximum’, ‘minimum’ and ‘average’, respectively.
� RA� RB ��� RC ��� �	� ��
����� 
�����
����� ������� �	� ����
��� ��� �	� 
������������ ���� �����
�� ���� N � F� ��
�
�	��� 
�
���� �� �	� ����
��� 
������ �����
�� A, B ��� C ��� ���� �� ����������� �	� ���������
� �� ������� ���
�
�	� ���� ��������� �������

  � ������� �	� ���������� ��!����� �� �������
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rank�A� � rankc�
�K
k�1

X��k� or optimizing objective function (11) on condition that

rank�B� � rankF�
�K
k�1

X��k�:

S�C� �
�K

k�1



A�X��k � diag�cT
k �BT



2
F �10�

S�C� �
�K

k�1



X��k�B��T � Adiag�cT
k �


2

F �11�

where rankc( ) and rankr( ) are the column and the row rank of a matrix respectively.

Figure 1. True (�) and resolved (�) loadings in three modes by SWATLD (N = 9) for a randomly simulated
three-component data array of size 20 
 20 
 5 with anoise = 0⋅01 (for the resolved loading matrices (a) A, (b) B
and (c) C, only three of their columns have been depicted, since the rest represent noise).
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Using only one objective function can avoid the introduction of the symmetry constraint on the
ranks of loading matrices Å, B̊ and C̊. However, there are still some extra assumptions on the loading
matrices A and B obtained in order to draw the conclusion that the final results will not influenced by
excess factors used in calculation. Furthermore, it should be pointed out that algorithms established
on one of the above objective functions suffer from the same annoying problem of slow convergence
as PARAFAC.

A much more theoretically favourable algorithm can be designed by alternately optimizing the
following three objective functions (i.e. supposing A and B are known, minimize S(C) to obtain
loading matrix C; with A and the new C, minimize S(B) to renew B; and then minimize S(A) with the
latest B and C to obtain a new A):

S�C� �
�K

k�1

�2

�X��k � Adiag�cT
k ��BT



2
F � ��

A�X��k � diag�cT

k �BT


2

F

� 

X��k�B��T � Adiag�cT
k �


2

F
�� �12�

S�B� �
�K

k�1

�

X��k � Adiag�cT
k �BT



2
F � �



A�X��k � diag�cT
k �BT



2
F� �13�

S�A� �
�K

k�1

��X��k � Adiag�cT
k �BT�2

F � ��X��k�B��T � Adiag�cT
k ��2

F� �14�

where � is a scalar. It can easily be verified that without any extra constraints such as the symmetry
constraint on the data array or assumptions on the loading matrices A, B and C calculated, the above
algorithm has the feature of being insensitive to excess factors used in calculation. Its potential
applications will appear in the near future.

6. CONCLUSIONS

The property of SWATLD being insensitive to excess factors used in calculation is rooted in the
objective functions utilized. As far as this property is concerned, it is unnecessary to employ three
different objective functions, which will introduce a symmetry constraint on the data array analysed.
Under some mild conditions the chemical meaning of the results can be guaranteed through
optimizing only one appropriate objective function such as

S�C� �
�K

k�1

�A�X��k � diag�cT
k �BT�2

F or

S�C� �
�K

k�1

�X��k�B��T � Adiag�cT
k ��2

F

even if N � F. At the same time it can also avoid the introduction of the symmetry constraint.
However, preliminary studies showed that algorithms based on just one objective function have the
problem of slow convergence. As long as N � F, the algorithm based on objective functions (12), (13)
and (14) can always guarantee the chemical meaning of the results, without any extra constraints on
the data array or assumptions on the loading matrices A, B and C obtained.
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APPENDIX I. NOMENCLATURE

xijk the ijkth element of the three-way array X
I, J, K the dimensions of different modes in three-way arrays
F the number of underlying factors, i.e. the total number

of detectable species, including the components of
interest and interference(s) as well as background

N the number of factors used in calculation
åif, b̊if, and c̊kf the ifth, jfth and kfth elements of the three underlying

loading matrices ÅI 
 F, B̊J 
 F and C̊K 
 F in data array
X respectively (in this paper, ÅI 
 F, B̊J 
 F and C̊K 
 F

are simply written as Å, B̊ and C̊ respectively)
AI 
 N, BJ 
 N, CK 
 N the three resolved loading matrices of X with dimen-

sions I 
 N, J 
 N and K 
 N respectively (for simpli-
city, in this paper, AI 
 N, BJ 
 N and CK 
 N are
represented by A, B and C respectively)

A� the Moore–Penrose generalized inverse of matrix A
X..k = Ådiag (c̊k

T) B̊T the kth frontal slice of the three-way array X
X.k. = C̊diag (b̊j

T) ÅT the jth lateral slice of the three-way array X
Xi.. = B̊diag (åi

T) ÅT the ith horizontal slice of the three-way array X
diag(c̊k

T), diag(åi
T) and (b̊j

T) diagonal matrices with elements equal to the kth, ith and
jth rows of C̊, Å and B̊ respectively

diag(ck
T), diag(ai

T), diag(bj
T) diagonal matrices with elements equal to the kth, ith and

jth rows of C, A and B respectively
diagm(ATA), diagm(BT B), diagm(CT C) vectors with elements equal to the diagonal elements of

matrices AT A, BT B and CT C respectively

APPENDIX II

II. 1. The scheme for simulating data arrays

A
�
� rand�I �F�

B
� � rand�J �F�

C
�
� rand�K�F�

Xp
��k � A

�
diag�c�T

k �B
� T

E��k � Max�Xp
��k� 
 randn�I � J� 
 anoise� k � 1� 2� � � � �K

X��k � Xp
��k � E��k � k � 1� 2� � � � �K

X � �X��k�

where anoise is a scalar controlling the noise level added, rand(I,F) is an I 
 F matrix with random
elements taking values in the range (0, 1), randn(I,J) is an I 
 J matrix with random entries chosen
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from a normal distribution with mean zero and variance one, and Max�Xp
��k� is the maximal element of

matrix Xp
��k .

II. 2. The initialization and stopping criterion of SWATLD

Random initialization was carried out to start the iterative optimization procedure of SWATLD. The
optimization procedure is terminated when the following criterion reaches a certain threshold �
(� = 1 
 10 � 6 in the present paper)—a maximal iteration number of 3000 is adopted to avoid
possible unduly slow convergence

SSR�m� �
�K

k�1





X��k � A�m�diag��c�m��T
k �B�m�T






2

F

SSR�m� � SSR�m�1�

SSR�m�1�

�����
����� 
 �

where SSR is the residual sum of squares and m is the current iteration number.
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