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Abstract

PARAFAC is a popular model for trilinear data analysis in analytical chemistry. The prerequisite for the successful appli-
cation of PARAFAC in analytical chemistry is that the three-way data array should follow a trilinear model, which is always
violated by the presence of deviations such as Rayleigh scattering in fluorescence spectroscopy. In order to mitigate the
influence of model deviations, background constraining and iterative correcting techniques are advocated in this contribution.
The method established on these two techniques can nearly eliminate the effect of model deviation on the chemical loading
parameters estimated. Compared with other methods for mitigating model deviations, the proposed method requires no prior
knowledge about the chemical loading parameters. It is also unnecessary to assign weights to data entities as the weighted
PARAFAC of Anderson does. Its implementation is comparable to PARAFAC-ALS and can be programmed to be completely
automatic. Its performance has been demonstrated by fluorescent and chromatographic experiments.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to the so-called second-order advantage[1],
trilinear data analysis has been one of the most active
areas in analytical chemometrics and attracted atten-
tions of many chemometricians. Researches on the
theoretical and application aspects of trilinear data
analysis have being vigorously flourished[2–12].
Among the decomposition algorithms for trilinear
data analysis, PARAFAC-ALS[2–4] might be one of
the two most popular ones (the other is GRAM[5]),
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for the uniqueness and optimality of its results. The
most important prerequisite for the successful appli-
cation of PARAFAC model in analytical chemistry is,
however, that the data arrays should follow a trilinear
model, which might be violated in practice. Rayleigh
scattering in fluorescence spectroscopy is but one
instance. Other deviations (thereafter, “deviations”
denotes the “deviations from trilinear model”) in
chemical data had been classified by Booksh and
Kowalski [13]. Hence, measures should be taken to
mitigate the influence of model deficiency in analyzing
data arrays contaminated with deviations, otherwise
the estimated model parameters would be misleading.

The presence of deviations justifies the necessity
to impose some reasonable constraints on the trilinear
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model parameters. Among all the constraints used,
non-negativity is the most common one[14]. Uni-
model property of chromatograms is also an effec-
tive constraint in decomposing chromatographic data
arrays [15]. Furthermore, the known concentration
matrix of the calibration samples was also used as
constraints in second-order linear calibration, which is
an important application branch of trilinear data anal-
ysis [16]. A variety of other effective constraints on
model parameters have been summarized by Bro[17].
Some times, the loading parameters in one or two
modes of the underlying factors designating chemical
variations are known before decomposition. So, it is
natural to preset them equal to the prior known val-
ues. It seems that the quality of the final results could
be improved to some extent through adopting this
kind of constraints, the least squares fitting procedure
of PARAFAC-ALS in essence, however, would dis-
tort the loading parameters in the rest unconstrained
modes with a view to account for data variations as
large as possible. Therefore, the estimated loading pa-
rameters in the unconstrained mode(s) would be even
worse than the corresponding ones when the loading
parameters in all the three modes are unconstrained.
Theoretically, an efficient way to alleviate the influ-
ence of deviations is to include extra factors other than
those representing chemical variations in the trilinear
model to account for background deviations. How-
ever, the sensitivity of PARAFAC-ALS to the number
of factors used in calculation hinders a straightforward
utilization of such technique. The goals of mitigating
the influence of deviations and simultaneously stabi-
lizing the results of PARAFAC-ALS may be attained
through constraining the loading parameters of the
added factors accounting for background deviations.

Besides the constraints on the model parameters,
constraints on the original data entities can also be
used to enhance the quality of final results under the
circumstance of model deficiency. Anderson et al.
suggested assigning different weights to data enti-
ties measured by fluorescent spectroscopy according
to prior knowledge and then performing a weighted
PARAFAC [18]. Though better results can be ob-
tained by weighted PARAFAC, it is not an easy task
to assign appropriate weights to data entities for data
arrays produced by instruments other than fluores-
cent spectroscopy. In order to avoid the difficulty in
presetting weights for data entities, an iterative cor-

recting procedure has been suggested. Along with the
aforementioned background constraining technique,
it can be expected to significantly enhance the quality
of the decomposing results. The power of combin-
ing background constraining and iterative correcting
procedures in mitigating deviations in three-way data
analysis has been demonstrated by two kinds of real
data arrays, one produced by the fluorescence spec-
trometer, and the other by HPLC–DAD.

2. Nomenclature

Throughout this paper, scalars are represented by
lower-case italics, vectors by bold-italics lower-case
characters, bold capitals designate two-way matrices
and underlined bold capitals symbolize three-way data
arrays.

3. Theory and algorithm

The matrix form of trilinear model can be expressed
as follows:

X..k = AI×F diag(ck)(BJ×F )T + E..k,

k = 1, 2, . . . , K. (1)

In the above series of equations,X..k is thekth frontal
slice of three-way data arrayX

¯
; E..k the kth frontal

slice of residue arrayE
¯

. Elements of loading ma-
trixesAI×F , BJ×F andCK×F are related to chemical
species in the mixtures (in the rest part of this pa-
per, they will be simply represented byA, B and
C). I, J andK are the dimensions of three modes in
three-way data array, respectively.F is the number of
underlying factors, i.e. the total number of detectable
chemical species. In general, the columns of loading
matricesA and B are assigned with certain physi-
cal meanings, i.e. excitation and emission spectra in
fluorescence spectrometry, and chromatograms and
ultraviolet-visible spectra in HPLC–DAD, etc. Note
that diag(ck) is a diagonal matrix with diagonal ele-
ments equal to thekth row of loading matrixC, ck,
which designates the concentration vector of chemical
components in mixturek.

If data arrays follow the above trilinear model, the
three underlying loading matrixesA, B and C can
be accurately estimated by PARAFAC-ALS algorithm.
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Unfortunately, the deviations of data arrays from tri-
linear model are common in chemistry. Instead of the
above trilinear model, data arrays contaminated by de-
viations can be decomposed into four parts:

X..k = A diag(ck)B
T + D1..k + D2..k(A, B, C)

+ E..k, k = 1, 2, . . . , K. (2)

Here D1..k represents deviations independent of the
chemical loading matrixesA, B and C (such as
Rayleigh scattering in fluorescent data arrays and
background fluctuation in chromatographic ones).
D2..k(A, B, C) denotes deviations originated in the
non-linear response in certain wavelengths or reten-
tion time points, which are associated with the three
chemical loading matrixA, B andC.

Generally, imposing reasonable constraints on the
loading parameters of underlying factors representing
chemical variations (for convenience of presentation,
‘ loading parameters of factors representing chemical
variations’ will be simplified to ‘chemical loading
parameters’ in the following parts) was considered
an effective measure to mitigate the influence of
D1..k. Sometimes satisfactory results may be ob-
served with the adoption of this technique in practice.
However, due to the least square fitting procedure of
PARAFAC-ALS, if chemical loading parameters in
only one or two modes are constrained to equal to
prior known values, the estimated chemical loading
parameters in the rest unconstrained mode(s) would
be distorted so as to explain data variations as large as
possible. Therefore, they might be getting even worse
than the counterparts when chemical loading param-
eters in all the three modes are free of constraints. A
straightforward solution to this problem might be to
include extra factors in trilinear model to account for
D1..k. SinceD1..k does not follow a trilinear model,
the employment of a trilinear model with factors
larger than the number of chemical species in mix-
tures would cause the estimated loading parameters of
PARAFAC-ALS to lose their chemical meanings. In
order to retain the chemical meaning assigned to load-
ing matrixesA, B andC, the present authors advocate
exerting constraints on the loading parameters of the
extra factors in two modes. With the space spanned
by the extra factors being confined, the estimated
chemical loading parameters can thus be stabilized.
The presence of extra factors will account for parts of

the deviationsD1..k, and hence diminishes the distor-
tion of estimated chemical loading parameters during
the least squares fitting procedure. It is obvious that
the efficiency of the above approach in mitigating the
influence ofD1..k on the chemical loading parameters
is directly related to the overlapping degree between
the space spanned by extra factors and that ofD1..k.
The higher the overlapping degree, the smaller the
distortion of the chemical loading parameters esti-
mated. Hence, the choice of constraints for the extra
factors is of utmost importance. Generally, the space
spanned by the extra factors can be constrained to be
the space spanned by the response matrixes of blank
solutions. A high degree of overlapping between the
space spanned by extra factors and that ofD1..k can
then be expected. The mathematical representation of
this approach is as follows. Suppose the singular value
decomposition ofXblank, the response matrix of the
blank solution, is expressed asXblank = USVT. Then,
the decomposition of the original data array with the
space spanned by extra factors being constrained is:

X..k = A diag(ck)B
T + Um diag(c̃k)V

T
m + D̃..k

+ E..k, k = 1, . . . , K. (3)

Here,Um andV m are matrixes assembled by the first
m columns ofU and V , respectively. Thekth row
of loading matrix C̃, c̃k, signifies the contributions
of m extra factors to mixturek. D̃..k is the deviation
remained which cannot be explained by the addition
of excess factors. The unknown loading matrixesA,
B, C and C̃ can be estimated through minimizing∑K

k=1||X..k − (A diag(ck)B
T + Um diag(c̃k)V

T
m)||2F

by alternating least square algorithm.
Unlike D1..k, the main part of the influence of

D2..k(A, B, C) on the estimation of the chemical
loading parameters can only be diminished by as-
signing relatively small weights (even zeros) to data
entities with large deviations. For fluorescent data ar-
ray, assigning relatively small weights to data entities
in the Rayleigh scattering regions and relatively large
weights (even ones) to other entities is a reasonable
scheme. However, for data arrays produced by other
instruments such as HPLC–DAD and GC–MS, there
is no generalized guideline to preset weights. With a
view to circumvent such dilemma, the present authors
advocate the following iterative correcting procedure
as an alternative.
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1. Decomposing the original data arraysX
¯

by PARA-
FAC-ALS to obtain the fitted valueŝX..k (k =
1, 2, . . . , K), fitness value and accumulated square
residue matrixR = ∑K

k=1(X..k − X̂..k)
2.

2. Creating a new data arrayX
¯

new through replac-
ing the data entities inX..k (k = 1, 2, . . . , K)

whose counterparts in accumulated square residue
matrixR are larger than a predefined thresholdrcut
with the corresponding fitted values in̂X..k (k =
1, 2, . . . , K), and retaining the rest data entities in
X..k (k = 1, 2, . . . , K) unchanged.

3. Decomposing the newly created data arrayX
¯

new by
PARAFAC-ALS to obtain new fitted values, fitness
value and accumulated square residue matrix.

4. Repeating the steps 2–3, until the difference be-
tween fitness values of two successive decomposi-
tions reaches a predefined small valueε1 (1×10−6,
for instance).

The basic assumption, on which the iterative cor-
recting procedure is established, is that the residues
corresponding to the data entities contaminated with
large deviation are larger than those of others. This
assumption can be satisfied on condition that the per-
centage of the data entities with large deviations is
small compared with those contaminated by small de-
viations. When fitted with PARAFAC-ALS, the data
entities with large deviations will be also the ones
with large residues. During the iterative correcting
procedure, they are replaced by the fitted values of
PARAFAC-ALS. Hence, their influence on the chem-
ical loading parameters can be gradually mitigated. It
is obvious that the preset threshold value ofrcut has
a great impact on the quality of final results. Since in
each cycle of iterative correcting procedure, the mag-
nitude of the entities in accumulated square residue
matrix R is different, employing a fixedrcut for each
cycle may be unreasonable. It is necessary to set differ-
entrcut values for different iterations. A simple but ef-
fective solution for this problem is to connectrcut with
the magnitude of the entities in accumulated square
residue matrixR. In this contribution, the following
scheme is adopted.

rcut = Min(R) + (1 + α)

2
(Max(R) − Min(R)) ,

0 ≤ α ≤ 1. (4)

Here, Min(R) and Max(R) signify the minimum and
maximum values of accumulated square residue ma-

trix R, respectively;α is a parameter controlling the
magnitude ofrcut. Once the value ofα is set,rcut will
vary with R in each iteration.

The background constraining technique can be
used to mitigate the influence of relatively common
deviations in each data matrixes of the three-way data
array. While the iterative correcting procedure aims
at preventing the distortion effect of large unique
deviations and non-linear response in each data ma-
trixes. These two techniques complement each other.
Combining them into one algorithm will definitely
provide better performance than employing any one
of them alone. The scheme of combining background
constraining and iterative correcting techniques is
straightforward. Detailed discussion on this subject
is unnecessary. For the convenience of readers, im-
plementing guidelines have been supplemented in
Appendix AandAppendix B.

4. Experimental

4.1. Excitation–emission fluorescent data arrays

Reagents and stock solutions: All reagents used
were of analytical grade. Stock solutions of 1-naphthol
(0.1006 mg ml−1) and 2-naphthol (1.001 mg ml−1)
were prepared by accurately weighting correspond-
ingly appropriate amount of reagents and dissolving
them in distilled water. In the preparation of naphtha-
lene (0.1025 mg ml−1), sufficient amount of NaOH
(0.1 M) was added to enhance the solubility of naph-
thalene in distilled water. A total of 10 working so-
lutions with different concentration ratios of the three
components were made by taking appropriate vol-
umes of stock solutions, 2.5 ml of C2H5OH and 2.5 ml
of NaOH (pH= 13) into a 25 ml volumetric flask and
then making them to 25 ml with distilled water.

Apparatus: The excitation–emission response ma-
trices of all the samples plus four blank solutions
were recorded by a HITACHI 4500 fluorescence
spectrophotometer scanning at 240 nm min−1 with
excitation wavelength in the range of 220–300 nm and
emission wavelength ranging from 315 to 600 nm.
The intervals for excitation and emission wavelength
were 2 nm and 5 nm, respectively. The slit width
in both excitation and emission monochromators
was 10 nm.
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4.2. HPLD–DAD data arrays

Nine mixtures of three compounds, i.e.o-dichloro-
benzene, p-chlorotoluene ando-chlorotoluene, in
different concentration ratios were prepared. The cor-
responding nine data sets, recorded by HPLC with
diode array detector under the same conditions, were
used to construct data arrays. This data array was
kindly provided by Dr. H.L. Wu (for experimental
details see[19]).

4.3. Programs

The program of weighted PARAFAC (WPARAFAC)
was kindly supplied by Booksh and coworkers[18].
All the other programs used in this paper were written
in-house in the Matlab 5.2 environment and run on
a 400 MHz Pentium (Intel) with 64 MB RAM under
Window 98 operating system. Random initialization
was carried out to start the iterative optimizing pro-
cedures of PARAFAC-ALS, WPARAFAC and the
proposed method. The optimizing procedures of all
the three algorithms are terminated when any one of
the following two criterions are satisfied.

S(n) =
K∑

k=1

||X..k − X̂..k(n)||2F ,

∣∣∣∣∣
S(n) − S(n−1)

S(n−1)

∣∣∣∣∣
≤ ε2 or MAXIN ≥ 5000

Here, n is the current iteration number;ε2 a preset
small value (e.g. 1× 10−6 in this paper), MAXIN is
maximal iteration number allowed.

5. Results and discussions

For fluorescent and HPLC–DAD data arrays, com-
parisons have been made between PARAFAC-ALS,
WPARAFAC and the proposed method. For the con-
venience of presentation, the proposed method will be
simply referred to as MPARAFAC. The fluorescent
data array input into PARAFAC-ALS, WPARAFAC
and MPARAFAC employing only iterative correcting
procedure is assembled by the response matrixes of 10
samples with the Rayleigh scattering being roughly
corrected through subtracting the average response
matrix of four blank solutions. While the fluorescent

Fig. 1. Accumulated square residue matrix after fitting the
excitation–emission fluorescent data arrays by PARAFAC-ALS.

data array under the process of MPARAFAC with the
two mitigating techniques embedded is composed of
the original response matrixes of 10 samples and the
mean response matrix of four blank solutions. Since
HPLC–DAD data array consists of only the response
matrixes of nine samples, and no response matrixes
of blank solution are available, PARAFAC-ALS,
WPARAFAC and MPARAFAC have to treat the same
data array. Hence, the background constraining tech-
nique cannot be adopted. Only iterative correcting
procedure will be employed in MPARAFAC to miti-
gate the influence of deviations in HPLC–DAD data
array. In WPARAFAC, a parameter, cutoff value for
assigning weights, should be preset first. Different cut-
off values for both fluorescent and HPLC–DAD data
arrays were tried. Only the best results were reported.

Fig. 1 shows the accumulated square residue
matrix after fitting the fluorescent data array by
PARAFAC-ALS. It is clear that the Rayleigh scatter-
ing in fluorescent data array have not been completely
corrected just by subtracting the mean response
matrix of blank solutions. The Rayleigh scatter-
ing remained causes the data array to deviate from
a trlinear model, and hence affect the results of
PARAFAC-ALS (Table 1). Therefore, WPARAFAC,
background constraining and iterative correcting tech-
niques are employed to mitigate the influence of
the embedded Rayleigh scattering. To our surprise,
WPARAFAC provided almost the same results as
those of PARAFAC-ALS (Table 1). The reason for
the consistency between the results of WPARAFAC
and PARAFAC might lie in the factor that the average
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Table 1
Correlation coefficients between the real concentration profiles and those resolved by PARAFAC-ALS, WPARAFC and MPARAFAC with
five extra factors andα = 5% for fluorescent data array

PARAFAC-ALS WPARAFAC MPARAFAC MPARAFAC1a MPARAFAC2b

Naphthalene 0.9963 0.9963 0.9996 0.9992 0.9956
1-Naphthol 0.9970 0.9971 0.9990 0.9982 0.9982
2-Naphthol 0.9977 0.9977 0.9994 0.9977 0.9993

a MPARAFAC1 represents MPARAFAC with only background constraining technique being embedded.
b MPARAFAC2 signifies MPARAFAC with only iterative correcting procedure being adopted.

response of four blank solutions has been subtracted
from the original data sets of samples. Assigning
weights of zero to the pretreated data entities in the
area with intensity of the blank above a predetermined
cutoff value might not be as effective as the original
data sets being used. Such a speculation has at least
partly supported by the results of WPARAFAC for
the original data sets without any pretreatment. The
correlation coefficients between the real concentra-
tion profiles and those resolved by WPARAFAC are
0.9323, 0.9783 and 0.9964, respectively. Comparing
with those of PARAFAC-ALS for the original data sets
(0.9310, 0.9770 and 0.9963, respectively), some im-
provements over PARAFAC-ALS can be seen. But the
results are still not satisfying, which indicates the ne-
cessity to subtract the average response from the orig-
inal data sets of samples. FromTable 1, it is obvious
that employing any one of the two techniques, back-
ground constraining and iterative correcting, alone
can enhance the results to some extent. Background
constraining technique enhanced the correlation
coefficients between the resolved and real concen-
tration vectors of naphthalene and 1-naphthol from
0.9971 and 0.9970 to 0.9992 and 0.9982, respectively,
and retained that of 2-naphthol unchanged. While
iterative correcting procedure favors 2-naphthol and
1-naphthol. These results at least partly support our
assumption that the two techniques can mitigate dif-
ferent types of deviations and they supplement each
other. The effectiveness of combining the background
constraining and iterative correcting techniques in
MPARAFAC can be also demonstrated by the results
listed in Table 1. The number of extra factors used
in MPARAFAC equals to 5. The value ofα is set to
5%. The three correlation coefficients between the
estimated concentration profiles by MPARAFAC and
the corresponding real ones are 0.9996, 0.9990 and

0.9994, respectively, which are significantly superior
to the counterparts of PARAFAC-ALS, i.e. 0.9971,
0.9970 and 0.9977, respectively. It should be noted
that such improvements are attained without using
any prior knowledge such as non-negativity and uni-
modelity of chemical loading parameters, and also
requiring no extra experiments. It is even unneces-
sary to assign weights to data entities as the weighted
PARAFAC does.

Similar conclusion can also be drawn from the re-
sults of HPLC–DAD data array. The chromatograms
resolved by PARAFAC-ALS shows negative parts
during the region between the 4th and 10th retention
time points (Fig. 2a). The difference between re-
solved spectra and the actual ones are also perceptible
(Fig. 2b). Along with the above evidences, the accu-
mulated square residue matrix (Fig. 3) after fitting the
HPLC–DAD data array by PARAFAC-ALS suggests
the existence of model deviation. Since only small
parts of the whole data entities are contaminated by
large deviations, the iterative correcting technique
might be effective in reducing the influence of model
deviations. As expected, the chromatograms and
spectra estimated by MPARAFAC are in perfect con-
sistency with the actual ones (Fig. 2a and b). The cor-
relation coefficients between the three concentration
vectors obtained by MPARAFAC and the real ones
are 0.9992, 0.9992 and 0.9991, respectively (Table 2).
Comparisons between the results of PARAFAC-ALS
demonstrate the capability of MPARAFAC in treating
data arrays with deviations. A similar improvement
is also obtained by WPARAFAC. The results of
WPARAFAC for the HPLC–DAD data sets are ob-
viously superior to those of PARAFAC-ALS which
manifesting it ability to cope with non-linearity.
Though both MPARAFAC and WPARAFAC can
effectively mitigate the influence of non-linearity,
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Fig. 2. (a) The chromatograms and (b) ultraviolet visible spectra for HPLC–DAD data array (solid line, real; dotted line, resolved by
PARAFAC-ALS; dash line, obtained by MPARAFAC1 withα = 5%).

Table 2
Correlation coefficients between the real concentration profiles and
those resolved by PARAFAC-ALS, WPARAFAC and MPARA-
FAC2 with α = 5% for HPLC data array

PARAFAC-
ALS

WPARAFAC MPARAFAC2

o-Dichlorobenzene 0.9900 0.9962 0.9992
p-Chlorotoluene 0.9968 0.9994 0.9992
o-Chlorotulene 0.9977 0.9991 0.9991

MPARAFAC has an advantage of easy parameter set-
ting (which will be discussed in the following sector).

In the implementation of MPARAFAC, there are
two parameters to be preset first. One ism, the number
of extra factor used, the other isα. Theoretically, in or-
der to guarantee a high degree of overlapping between
the space spanned by extra factors and that ofD1..k,
a largem is preferred. Actually, whenm is larger than
certain value, further increase ofm will not bring
further improvement on the decomposition results.
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Fig. 3. Accumulated square residue matrix after fitting the HPLC–
DAD data arrays by PARAFAC-ALS.

Therefore, a moderatem with which the most part
of the response of blank solution (say 95% of the
total variance) can be accounted byUmSmV T

m is rec-
ommended for most cases. For the fluorescent data
array, the results of MPARAFAC show no signifi-
cant differences form larger than 3 (Table 3). Hence,
satisfactory results can be expected by choosing a
moderatem such as 5. As far asα is concerned, the
variation of α from 0 to 50% hardly has impact on
the final results of both fluorescent and HPLC–DAD
data arrays (Tables 4 and 5). This phenomenon results
from the iterative property of iterative correcting pro-
cedure. It is, therefore, preferable to select a largeα

(say 50%). Due to the robustness of MPARAFAC to
the variation ofα, it is recommended to setα = 50%
for general applications. The simplicity of the imple-
mentation of MPARAFAC can thus be comparable
to PARAFAC-ALS. However, better results might be
expected from MPARAFAC.

Table 3
Correlation coefficients between the real concentration profiles and
those resolved by MPARAFAC withα = 5% and different extra
factors (m) for fluorescent data array

m Naphthalene 1-Naphthol 2-Naphthol

2 0.9967 0.9919 0.9991
3 0.9996 0.9987 0.9994
4 0.9997 0.9988 0.9994
5 0.9996 0.9990 0.9994
6 0.9994 0.9989 0.9994
7 0.9995 0.9989 0.9993

Table 4
Correlation coefficients between the real concentration profiles and
those resolved by MPARAFAC with five extra factors and different
α for fluorescent data array

α (%) Naphthalene 1-Naphthol 2-Naphthol

50 0.9993 0.9989 0.9998
40 0.9994 0.9989 0.9998
30 0.9995 0.9990 0.9997
20 0.9995 0.9990 0.9995
10 0.9996 0.9990 0.9994
5 0.9996 0.9990 0.9994
0 0.9996 0.9990 0.9993

Table 5
Correlation coefficients between the real concentration profiles and
those resolved by MPARAFAC1 with differentα for HPLC data
array

α (%) o-Dichlorobenzene p-Chlorotoluene o-Chlorotulene

50 0.9993 0.9993 0.9996
40 0.9993 0.9993 0.9996
30 0.9993 0.9992 0.9993
20 0.9992 0.9992 0.9993
10 0.9992 0.9992 0.9990
5 0.9992 0.9992 0.9991
0 0.9991 0.9992 0.9990

6. Conclusions

The background constraining and iterative cor-
recting techniques developed in this contribution
are effective in alleviating the influence of model
deviations on the chemical loading parameters in
trilinear data analysis. Since the two techniques are
designed to mitigate different types of deviations,
they supplement each other. Their combination,
MPARAFAC, can provide further advantages over
any one of them. Comparisons of MPARAFAC with
PARAFAC-ALS and WPARAFAC for the treatment
of fluorescent and HPLC–DAD data arrays demon-
strated that the influence of model deviation on the
chemical loading parameters could be significantly
abated by MPARAFAC. It should be noted that such
improvements are attained without using any prior
knowledge such as non-negativity and unimodelity of
chemical loading parameters, and requiring also no
extra experiments. It is even unnecessary to assign
weights to data entities as the weighted PARAFAC
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does. The cost is only a small increase in computation
time.

In MPARAFAC, there are two controlling pa-
rameters, i.e. the number of extra factor (m) used
in background constraining andα in iterative cor-
recting procedure. Fortunately, the performance of
MPARAFAC is robust to the variations of these two
parameters. Hence, they cause no trouble in imple-
menting MPARAFAC. For general applications, it is
recommended to employ a moderatem with which
most part of the response of blank solution can be
accounted byUmSmV T

m and setα = 50%. The sim-
plicity of the implementation of MPARAFAC is thus
comparable to PARAFAC-ALS.
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Appendix A

Implementation guideline for combining back-
ground constraining and iterative correcting tech-
niques in mitigating model deviations

1. Determining the number of chemical species (F) in
the three-way data arrayX

¯
.

2. Decomposing the response matrix of blank solu-
tion, Xblank by SVD: Xblank = USVT, and then
constraining the loading parameters ofmextra fac-
tors in two modes of the PARAFAC model to be
Um andV m (consisting of the firstm columns of
U andV , respectively).

3. Decomposing the original data arrayX
¯

through
minimizing the

∑K
k=1||X..k − (A diag(ck)B

T +
Um diag(c̃k)V

T
m)||2F by constrained PARAFAC-

ALS with F + m loading factors to obtain the
fitted valuesX̂..k (k = 1, 2, . . . , K), fitness value
and accumulated square residue matrixR =∑K

k=1(X..k − X̂..k)
2 (seeAppendix B).

4. Creating a new data arrayX
¯

new through replacing
the data entities inX..k (k = 1, 2, . . . , K) whose
counterparts in accumulated square residue ma-
trix R are larger than a predefined thresholdrcut

with the corresponding fitted values in̂X..k (k =
1, 2, . . . , K), and retaining the rest data entities in
X..k (k = 1, 2, . . . , K) unchanged.

5. Decomposing the newly created data arrayX
¯

new by
constrained PARAFAC-ALS withF + m loading
factors to obtain new fitted values, fitness value and
accumulated square residue matrix.

6. Repeating the steps 4–5, until the difference be-
tween fitness values of two successive decomposi-
tions reaches a predefined small valueε1 (1×10−6,
for instance).

Appendix B

Implementation guideline for decomposing data
array X

¯
through minimizing the

∑K
k=1||X..k −

(A diag(ck)B
T + Um diag(c̃k)V

T
m)||2F by constrained

PARAFAC-ALS

1. XA = [X..1|X..2| · · · |X..K], XB = [XT
..1|XT

..2| · · ·
|XT

..K];
2. Randomly initialize loading matrixesA andB;
3. Acomb = [A|Um], Bcomb = [B|V m];
4. Z = ((AT

combAcomb) ◦ (BT
combBcomb))

+
(where ‘◦’ is element wise, or Hadamard product);
ccomb,k = [ck|c̃k] = (Z diag(AT

combX..kBcomb))
T,

k = 1, . . . , K;
5. YA = [diag(ccomb,1)B

T
comb|diag(ccomb,2)B

T
comb| · · ·

|diag(ccomb,K)BT
comb];

YA,(F+1):(F+m) =




yA,F+1
yA,F+2

...

yA,F+m


 ,

YA,1:F =




yA,1
yA,2

...

yA,F


 ;

(yA,f , (f = 1, 2, · · · , F+m) is thefth row ofYA);
A = (XA − UmYA,(F+1):(F+m))Y

T
A,1:F (YA,1:F Y T

A,1:F )+;
6. YB = [diag(ccomb,1)A

T
comb|diag(ccomb,2)A

T
comb| · · ·

|diag(ccomb,K)AT
comb];
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YB,(F+1):(F+m) =




yB,F+1
yB,F+2

...

yB,F+m


 ,

YB,1:F =




yB,1
yB,2

...

yB,F


 ,

(yB,f , (f = 1, 2, · · · , F+m) is thefth row ofYB);
B = (XB − V mYB,(F+1):(F+m))Y

T
B,1:F (YB,1:F Y T

B,1:F )+;

7. Updatingccomb,k, A andB according to steps 3–6,
until certain stop criterion has been reached.
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