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ABSTRACT 

The nonnegative rank of a nonnegative matrix is the smallest number of nonnega- 
tive rank-one matrices into which the matrix can be decomposed additively. Such 
decompositions are useful in diverse scientific disciplines. We obtain characterizations 
and bounds and show that the nonnegative rank can be computed exactly over the 
reals by a finite algorithm. 

1. INTRODUCTION 

Consider matrices all elements of which belong to a given ordered field G 
such as the rational numbers Q or the real numbers R. A rank-one matrix 
can be written as xyT, where x and y are column vectors over G and T 
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denotes the transpose operator. Given a matrix A over G, the central 
problem of this paper is to find the smallest number 4 of rank-one nonnega- 
tive matrices over G such that A equals their sum. Following Gregory and 
Pullman (19831, we call this (smallest) number q the nonnegative rank of A. 
The problem of obtaining such decompositions of nonnegative matrices, or 
corresponding approximations, arises in a variety of scientific contexts like 
demography, quantum mechanics, combinatorial optimization, complexity 
theory, probability, and statistics; see Section 6 for details. 

In a special symmetric version of our problem, Berman and Hershkowitz 
(1987) define a matrix A to be completely positive if there exists q nonnega- 
tive column vectors b,, . . . , b, such that A = Cj= i bib,?, and they call the 
smallest such q the factorization index of A. We do not deal with this 
problem here. 

The organization of the remainder of this paper is as follows. In Section 
2, we obtain a number of characterizations and bounds of the nonnegative 
rank of nonnegative matrices; some resemble standard facts about regular 
ranks. In Section 3 we establish relationships with bivariate probability 
matrices, stochastic matrices, and the geometry of polytopes. In Section 4 
we examine matrices with rank 2 or less. Using Tarski’s principle and a 
quantifier elimination algorithm due to Renegar, we show in Section 5 that 
the nonnegative rank can be computed (finitely) over the reals, and we 
describe the complexity of the calculation. Finally, applications are discussed 
in Section 6. 

2. NONNEGATIVE RANKS OF NONNEGATIVE MATRICES 

Let G be a given ordered field such as the rationals Q and the reals R. 
We use the standard notation for operations in ordered fields. For a matrix 
A in Gmxn, for i = 1,. . . , m and for j = 1,. . . , n, let Ai denote the 
ith row of A, let Aj denote the jth column of A, and let A{ denote 
the Yth element of A. So, Ai = ( Ai)j = (Ai),. A matrix A is called 
nonnegative, written A > 0, if all of its elements are nonnegative. 

Let A be a nonnegative matrix in G”’ “. We define the nonnegative 
column rank of A, denoted c-rank+(A), as the smallest nonnegative integer 
q for which there exist nonnegative (column) vectors ul, u2,. . . , u9 in G” 
such that each column of A has a representation as a linear combination with 
nonnegative coefficients of ul, u2,. . . , ~4 (following standard convention, we 
define the empty sum as zero). The nonnegative row rank of A, denoted 
r-rank+(A), is defined as the nonnegative column rank of AT, the transpose 
of A. 
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LEMMA 2.1. Let A be a nonnegative matrix in G”” “, and let q be a 
nonnegative integer. Then the following are equivalent: 

(a> q 2 c-rank+(A), 
6) q > r-rank+ ( A), 
cc> there exist two nonnegative matrices V E G” ‘4 and U E Gq Xn such 

that A = VU, and 
Cd) there exist nonnegative vectors v’, I?, . . . , vq in G” and vectors 

ul, u2,. . . , uq in G” such that A = C!= 1 v*(u”>~. 

Proof. The case where q = 0 is trivial; thus, assume that q > 1. 
(a) * Cc): Assume that (a> holds. By possibly augmenting the spanning 

vectors in an arbitrary way we have that there exist vectors u’, v2, . . . , vq in 
G” such that each column of A is a linear combination with nonnegative 
coefficients of these vectors. For j = 1,2,. . . , n, let uj be the vector whose 
coordinates are the nonnegative coefficients corresponding to Aj, i.e., Aj = 
C;= l(uj)$. Let V E G”“q and U E Gqx” be the matrices whose columns 
are u’, v2, . . . , vq and ul, u’,. . . , u*, respectively. Then V and U are non- 
negative, and for i = 1,2,. . . , m and j = 1,2,. . . , n, 

So VU = A and (c) follows. 

(c) * (a): Suppose that (c) holds and V E G”” 4 and U E Gq Xn are 
nonnegative matrices such that A = VU. Then, for i = 1,2,. . . , m and 
j = 1,2 ,***> n, 

A{ = (Vu); = i VJJ;’ = , 
t=1 

i.e., Aj = Q= 1 U/V t. So each column of A is a linear combination with 
nonnegative coefficients of the nonnegative vectors V ‘, V 2, . . . , Vq. 

The equivalence (b) e (c) follows by applying the established equiva- 
lence of (a) and (c) to AT and from the fact that A = VU if and only if 
AT = U TV T. Finally, the equivalence (c) = (d) follows from the fact that if 
V E Gmxq and U E Gqxn, then VU = C!,, V’U,. W 
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COROLLARY 2.2. Let A be a nonnegative matrix in G”” n and let q be a 

nonnegative integer. Then the following are equivalent: 

(a) q = c-rank+(A) 
(b) q = r-rank+(A): 
(c) q is the small es integer for which there exist two nonnegative t 

matrices V E G”‘q and U E Gqxn such that A = VU, and 

(d) q is the smallest integer for which there exist nonnegative vectors 

vi, v2,. . . , vq in G” and vectors ul, u2,. . . , uq in G” su& that A = 

cg, 1 v%#-. 

Given a nonnegative matrix A in Gmx”, we define the nonnegative rank 

of A, denoted rank+(A), as the integer q for which the four equivalent 
conditions of the above corollary apply. Gregory and Pullman (1983) use (cl, 
in the context of semirings, to define the nonnegative rank; further, they 
observe the equivalence of the four conditions of Corollary 2.2. 

When we rely on condition (c), we refer to a representation of a 
nonnegative matrix A of the form A = VU, where V and U are nonnegative 
matrices, as a nonnegative factorization of A. When we rely on condition cd), 
we refer to a representation of the nonnegative matrix A of the form 
A = CTzl v~(u*>~, where v’, v2,. . . , vq and ul, u2,. . . , uq are nonnegative 
vectors, as a nonnegative rank-one decomposition of A. 

Herbert Robbins (private communications) gave easily computable lower 
and upper bounds on the nonnegative rank of a matrix; see also Gregory and 
Pullman (1983). 

LEMMA 2.3 (H. Robbins). Let A be a nonnegative matrix in Gmx n. Then 

rank( A) < rank+(A) Q min(m, n>. 

Let AEGEAN be nonnegative. We call two entries A( and A[ of A 

independent if A{ A[ > 0 and A’Ajk = 0. The following observation by an 
anonymous referee provides lower bounds on the nonnegative rank. It is 
easily verified from the characterization of nonnegative ranks via nonnegative 
rank-one decompositions. 

LEMMA 2.4. Let A E Gmx” be nonnegative. If A contains a set of q 

pairwise independent entries, then rank+(A) >, q. 

The above definition of independence is stronger than the one given by 
Gregory and Pullman (1983, p. 2251, and the inequality of Lemma 2.4 is in 
the reverse direction from the one in their Lemma 1.2. 
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It is shown in Section 4 that if a matrix has fewer than four rows or fewer 
than four columns, then its rank and nonnegative rank coincide. H. Robbins 
(private communications) constructed the following 4 X 4 real matrix whose 
rank differs from its nonnegative rank. 

EXAMPLE (H. Robbins). Let 

1 1 0 0 

A= i 10 10 I 0 10 1’ 
0 0 1 1 

It is straightforward to determine that rank(A) = 3. Also, Lemma 2.3 implies 
that rank+(A) < 4. Finally, as the entries A:, AZ, Ai, and Ai are pairwise 
independent, Lemma 2.4 implies that rank+ ( A) > 4. 

We next give bounds on the nonnegative ranks of outcomes of some 
matrix operations. 

LEMMA 2.5. Let A and B be nonnegative matrices in G”” n. Then 

(a) rank+(A) = rank+( AT), and 

(b) rank+(A + B) < rank+(A) + rank+(B). 

Proof Parts (a) and (b) are immediate from the characterizations of the 
nonnegative rank via nonnegative factorization and nonnegative rank-one 
decomposition, respectively. n 

LEMMA 2.6. Let A and B be nonnegative matrices in Gmx” and G”‘“, 

respectively. Then 

rank+ ( AB) < min{rank+ ( A), rank, ( B)}. 

Proof. Let rank+(A) = 9 and rank+(B) = 9 ‘. Then there exist factor- 
izations of A and B, respectively, of the form A = W and B = U’V’ where 
U E G”‘q, V E G+‘, U’ E Gsx q’, and V’ E Gq’ ’ n are nonnegative matri- 
ces. Then the factorizations AB = U(VU’V’) = (WU’)V’ show that rank+ 
CAB) < min{q, 9’) = min{rank+(A), rank+(B)}. n 
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LEMMA 2.7. Let A(1) and A(2) be nonnegative matrices in Gmxno) 

and Gmx”@), respectively, and consider the matrix A = [A(l), A(2)] E 
Gmx[fl(l)+n(z)l. Then 

max(rank+ [A(l)], rank+ [ A(2)]} Q rank+(A) < rank+ [ A(l)] 

+ rank+ [ A(2)]. 

Corresponding inequalities holds for “row partitions.” 

A positive diagonal scaling of a matrix A E GmX n is a matrix B E G”’ n 

having a representation B = DAE where D and E are, respectively, m X m 
and n X n diagonal matrices having positive diagonal elements. 

LEMMA 2.8. Let A be a nonnegative matrix in G”” “, and let B be a 

positive diagonal scaling of A. Then rank+(A) = rank+(B). 

Proof. Suppose B has the representation B = DAE where D and E 

are, respectively, m X m and n X n diagonal matrices having positive diago- 
nal elements. As B = (DA)E, Le mma 2.6 implies that rank+(B) < rank+ 

(DA) < rank+(A). Also, as A = D-‘BE-‘, a symmetric argument shows 
the reverse inequality rank+(A) < rank+(B). W 

LEMMA 2.9. Let D E GnX” be a nonnegative diagonal matrix. Then 

rank+(D) = rank(D). 

Proof. By Lemma 2.3, rank+(D) 2 rank(D). Next, for t = 1, . . . , m let 
et be the tth unit vector in G”. Then D = Xii: o:,Oj Di(eij(eijT, and this 
decomposition shows that rank+ (0) < rank( 0). H 

A nonnegative matrix A is defined to be row-allowable if each row of A 
contains at least one positive element. A nonnegative matrix A is defined to 
be nondegenerate if both A and AT are row-allowable. 

LEMMA 2.10. Let A E Gmx” be a nonnegative, row-allowable (respec- 

tively, nondegenerate) matrix with q = rank+(A). Zf A = VU where V E 

G mx9 and U E Gsx” are nonnegative matrices, then V and U are both 

row-allowable (nondegenerate). 
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3. REDUCTION TO BIVARIATE PROBABILITY MATRICES AND 
STOCHASTIC MATRICES 

A probability vector is a nonnegative vector with element sum 1. A 
nonnegative matrix is called a bivariate probability matrix if its element sum 
is 1. A nonnegative matrix is called row-stochastic (column-stochastic) if the 
element sum of each of its rows (columns) is 1. For each positive integer k, 

let eck) be the vector in Gk in which all coordinates are 1. Then r E Gk is a 
probability vector if and only if r > 0 and rTeCk) = 1. Also, a nonnegative 
matrix P E GmXn is a bivariate probability matrix, a row-stochastic matrix, or 
a column-stochastic matrix if and only if e(m)TPe(“) = 1 Pe(“) = ecm), or 
[e(m)]TP = [e’“‘]r, respectively. A bivariate probability matrix is called inde- 

pendent if P = rsT for some probability vectors r E G” and s E G”. 
Consider a nonnegative nonzero matrix A E Gmxn. By dividing the 

matrix A by the sum of its elements, we obtain a nonnegative matrix P 
which is a bivariate probability matrix. Further, as P is a scaling of A, 
Lemma 2.8 assures that rank+(P) = rank+ (A). Also, by dropping the zero 
rows of A and by dividing each remaining row by its element sum we obtain 
a row-stochastic matrix S. As dropping zero rows of a matrix and the division 
by rows by positive scalars preserve the nonnegative rank (Lemma 2.8), we 
have that rank+(S) = rank+(A). Finally, by dropping the zero columns of A 
and dividing each of the remaining columns by its element sum, we obtain a 
column-stochastic matrix T with rank+(T) = rank+ ( A). So, when examining 
nonnegative ranks, we can restrict attention to any of the following classes: 
bivariate probability matrices, row-stochastic matrices, or column-stochastic 
matrices. 

The next two results provide useful modifications of the decomposition 
and factorization criteria of nonnegative ranks which apply, respectively, to 
bivariate probability matrices and to row- and column-stochastic matrices. 

THEOREM 3.1. Let P E G”‘” be a bivariate probability matrix. Then 

rank, ( A) is the smallest nonnegative integer p such that P can be expressed 

as a convex combination of p independent bivatiate probability matrices. 

Proof. Let 4 = rank+(P), and let p be the smallest nonnegative integer 
such that P can be expressed as a convex combination of p independent 
bivariate probability matrices. Then, trivially, 4 < p. To see the reverse 
inequality, consider a representation of P as Cl= i ut(ut)r where Y’, u2, . . . , uq 
and ui, up >..*> uq are nonnegative vectors in G” and G”, respectively. Then 
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none of the vectors IJ’, 2, . . . , vq, ul, u2, . . . , uq is the zero vector and 

1 = g i p;i = [e(qP[e(“q = 5 ([e(m’]Tv”)((u’)T[e’n,]). 
i=lj=l t=1 

For t = 1,. . . , q, let p, = {[e’“‘]Tu”)((u”>T[e’“‘3), u’~ = v”/{(u”)T[e’“‘]], 

and utt = ut/[e(m)]Tut. Then the representation P = Cs= 1 v”(u”>~ = Cl= 1 
&(u’~>(u’~)~ proves that p < rank+(P) = 9. W 

THEOREM 3.2. Let P E GmXn be a row-stochastic (column-stochastic) 

matrix. Then rank,(P) is the smallest nonnegative integer q such that there 

exist row-stochastic (column-stochastic) matrices R E Gmx9 and S E GqXn 

where P = RS. 

Proof. We consider only the case where P is row-stochastic. Let p be 
the smallest nonnegative integer such that P = RS for some row-stochastic 
matrices R E G”‘P and S E GpXn. Also, let q = rank+(P). Then, trivially, 
q Q p. To see the converse inequality, let V E Gmx q and U E GqX” be 
nonnegative matrices for which P = VU. By the minimality of q, U has no 
zero rows. Consider the diagonal matrix D E Gqxq whose diagonal elements 
are the corresponding row sums of U. Then D is nonsingular and D-lU is 
row-stochastic. Further, as P is row-stochastic, we have that ecrn) = Pe(“) = 

VUe(“) = (VD)( D-l U)e(“) = (VD)e(q), s h owing that VD is row-stochastic. 
So, R = VD E Gmx9 and S = D-‘U E Gq”’ are row-stochastic matrices 
that satisfy P = RS. Hence, p 6 rank+(P) = q. W 

Let P E GmXn be a column-stochastic matrix. The problem of find- 
ing column-stochastic matrices R E Gmx9 and S E Gq”’ where P = RS 

amounts to finding q probability vectors in G”, say r’, r2, . . . , rq (corre- 
sponding to the columns of R), and n probability vectors in G9, say 
s1,s2,...,sn (corresponding to the columns of S), such that for j = 
1,2, . . . ) n, Pj = Cg, 1(sj)t rt, i.e., Pj is a convex combination of r’, r2, . . . , 
rq. So the problem of computing the nonnegative rank and a corresponding 
nonnegative factorization of an m X n column-stochastic matrix P reduces to 
finding the smallest number of probability vectors in G” such that each of 
the probability vectors P’, P2, . . . , P” can be expressed as a convex combina- 
tion of these vectors. As the set of probability vectors in G” is the convex hull 
of the m unit vectors, the problem can be formulated in the following 
broader geometric perspective: 
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INSCRIBING-P• LYTOPE PROBLEM. Given vectors ul, a’, . . . , a”, b’, 
b2,..., bP in G”, where each of the vectors b’, b2,. . . , bP is contained in 
the convex hull of a’, u2,. . . , u”, find the smallest number of vectors 
cl, c2, . . . ) cq such that conv{u’, u2, . . . , a”) 2 conv(c’, c2, . . . , cq) 2 
conv(b’, b2,. . . , b P). Further, find the representation of each of the b”s as a 
convex combination of the ct’s. 

4. COMPUTING THE NONNEGATIVE RANK AND 
CORRESPONDING FACTORIZATIONS WHEN 
THE RANK IS 2 OR LESS 

THEOREM 4.1. Let A E G”‘” be a nonnegative matrix with rank(A) Q 
2. Then rank+(A) = rank(A). 

Proof. If rank(A) = 0, A is the zero matrix and the asserted equality is 
trivial. 

Next assume that rank(A) = 1. Then A = ZEUS where u E G” and 
u E G”. So, for i = 1,2,. . . , m and j = 1,2,. . . , n, we have A;’ = viuj, 

and the nonnegativity of A implies that A{ = 1 A{1 = 1~~1 1~~1. So A = 12/l 1~1~ 
for the vectors 1~1 E G” and 1~1 E G” whose coordinates are the absolute 
values of the coordinates of u and u, respectively. 

Finally, assume that rank(A) = 2. As discussed in Section 3, we may 
assume that A is column-stochastic. So the columns of A are probability 
vectors. As rank(A) = 2, there exist two vectors in G” such that each column 
of A is a linear combination of these vectors. After possible rearrangement of 
the columns of A, standard results from linear algebra show that we may 
assume that these vectors are A’ and A2. For j = 1,. . . , n, let Aj have the 
representation Aj = aj A1 + pj A2. As A1 and A2 are probability vectors, 

1 = [e(m)]TAj = aj[e(“‘)lTA’ + pj[e(m)]TA2 = aj + pj, 

implying that oj = 1 - fiJ. Now, let fi* = maxi pj : j = I, 2,. . . , n), let 

p* = min{ pj : j = 1,2, . . . , n}, and let i* and i * be the corresponding 
indices. Then 

A” = (1 - p*) A’ + p*A2 and A”* = (1 - p,) A’ + p.+ A2. 
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Further, for j = 1,2, . . . , n, /3* < pj < P *, implying that there exists a 
scalar Sj with 0 < Sj < 1 such that pj = (1 - S,>p, + aj p *. Thus, 

Aj = (1 - Pj)A1 + /IjA” 

= (l - [(l - sj)P* + S,P*])A’ + [(l - a,)& + tYij/3*]A2 

= ((1 - a,)(1 - p,) + Sj(l - P*)}A’ + [(l - S,)p* + cTjP*]A2 

= (1 - s,)[(l - &)A’ + @*A’] + s,[(’ - P*)A’ + /3*A2] 

= (1 - Sj)Ai* + cSjA”*. 

As A’* and A”* are columns of the original matrix A, they are nonnegative. 
So each column of A is a convex combination of these two nonnegative 
vectors, and therefore rank+ ( A) < 2 = rank(A). The reverse inequality is 
given in Lemma 2.3. n 

As the rank of a matrix is easily computable by standard algorithms (e.g., 
Gaussian elimination), matrices having rank two or less are easy to identify. 
Theorem 4.1 shows that the nonnegative rank of such matrices equals their 
rank; hence, it is easy to determine. Further, our proof of Theorem 4.1 
provides an efficient computational method for determining the correspond- 
ing nonnegative factorization (over arbitrary ordered fields) for matrices in 
this restrictive class. 

COROLLARY 4.2. Let A E GmXn be a nonnegative matrix. Zf either 
m E {1,2,3} or n E {l, 2,3), then rank+(A) = rank(A). 

Proof. If min{m, n) < 2, Theorem 4.1 applies. The only remaining 
case is when m = n = 3. if ranHA) = 2, Theorem 4.1 again applies. If 
rank(A) = 3 = m = n, Lemma 2.3 applies. n 

5. COMPUTING THE NONNEGATIVE RANK OVER THE REALS 

In this section we describe a procedure for computing the nonnegative 
rank of an arbitrary nonnegative matrix over the reals. The procedure 
employs a quantifier elimination algorithm for first-order formulae over the 
reals. 
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Let A E RmX” be a nonnegative matrix. Lemma 2.3 shows that rank 

(A) < rank+(A) < min{m, n}. Hence, to compute the nonnegative rank of 
A it suffices to check for 4 = rank( A), ranl<( A) + 1, . . . , min{m, n} whether 
rank+(A) < 4. By using a bisection procedure, the number of required tests 
is of the order log{min{m, n} - rank(A)}. 

From condition (c) of Lemma 2.1, deciding whether rank+(A) < 9 for a 
positive integer 9 is equivalent to checking whether there exist nonnegative 
matrices VE RmXq and UE R9’” such that VU = A, i.e., testing the 
feasibility of the (nonlinear) system given by 

5 Xjktjkj = A;, 
k=l 

(5.1) 

Xjk >, 0 for i=l,..., m and k=l ,...I 9, (5.2) 

and 

Ykj a ’ for k=l,..., 9 and j=l,..., n. (5.3) 

The variables in this system are the x&‘s and ykj’s. The Ai’s constitute the 
data. 

The solution of a nonlinear system like (5.1)-(5.3) is not easy. Still, as 
(5.1)-(5.3) is a system of polynomial equations and inequalities over the reals, 
it is possible to eliminate the existential quantifiers that assert feasibility of 
the system and obtain an (alternative) set of polynomial equations and 
inequalities in the data that will characterize the feasibility of (5.1)~(5.3). 
Tarski (1951), Seidenberg (1954), Cohen (1969), Collins (1969), and Renegar 
(1992) show that when a problem is presented by polynomial equations and 
inequalities that are tied by connectors like V (“or”), A (“and”), + 
(“implies”), ++ (“is equivalent”), and 7 (“ negation”) and by quantifiers like 
V (the universal quantifier “for all”) or 3 (the existential quantifier “for 
some”), it is possible to obtain an equivalent problem which has no quanti- 
fiers. The operations that are required to eliminate the quantifiers are 
restricted to the five elementary operations of ordered fields-additions, 
subtractions, multiplications, divisions and comparisons-and to the evalua- 
tion of Boolean functions. Renegar (1992) surveys the results about the 
complexity of quantifier elimination over the reals and introduces a new 
method for quantifier elimination. 

We next summarize the complexity of the quantifier elimination algorithm 
of Renegar (1992). We then apply his results to the problem of determining 
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the solvability of (5.1)~(5.3). C onsider a first-order formula over the reals 
having the form 

(Q#' E R"~)-~(Q,x[~~ E R"-)P(y, d,..., dwl), (5.4) 

where each Qk is one of the two quantifiers 3 (“there exists”) or 
V (“for all”), where y = ( yr, . . . , y,,) are free (unquantified) variables 
and where P( y, xtl],. . . , doI) is a quantifier-free Boolean formula. The 
atomic predicates of P( y, x[rl, . . . , XL”‘]) are assumed to have the form 

gic y, Y, . . . , dwl) Ai 0, i = 1,. . . , M, where gi : II;= ,, R”k * R is a poly- 
nomial of degree at most d >, 2 and Ai is any one of the standard relations 

2, >, =, +, Q, and <, and I’(*) is determined by a Boolean function 
P : {0, l}M + (0, 1) and a function B : R”o X l-I;= 1 R”t + {O, l}, where for 
y E R”o and x E nr=, Rn~, P( y, x) = P[ B( y, xl], and for i = 1,. . . , M, 

B( Y> x)i s 
1 if gi( y, x> Ai 0, 

o othetise 

The uantifier elimination algorithm of Renegar (1992) requires at most 
(~~)““‘~%‘i multiplications and additions, and at most ( Md)“(Eknt) calls to 
8. The method requires no divisions. The method can be implemented in 
parallel, requiring at most [20(fIk nk)log( Md)] O(l) 

tions on each of ( Md)20(u)nk “k 

additions and multiplica- 
processors that execute such operations and 

( Md)“(‘~“~) parallel calls to P by N( Md)“(x~“~) corresponding processors, 
where each call to P is executed by N parallel processors (where N is any 
positive integer). 

When restricted to formulae involving only polynomials with inte- 
ger coefficients of bit length at most L, the algorithm becomes a bit- 
model quantifier elimination method requiring at most L(log LXlog log L) 

(Md) 20 Ojnk”k sequential bit operations and ( Md)“(E’“h) calls to P’. When 
implemented in parallel the algorithm requires at most (log L)[2°(lIknk> 
log( Md)]‘(” sequential bit operations on each of L2(Md)2 (W’nk”k 
sors that execute such operations and ( Md)OcEknk) parallel calls tc!??i 
N(Md)“(Eknk) corresponding processors, where each call to P is executed 
by N parallel processors (where N is any positive integer). 

The quantifier elimination method constructs a quantifier-free formula of 
the following simple form: 
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where Z < ( ZVZ~)~~‘“““~“~, where Ji < (MG!)~~‘“‘~~“~ for each i = 1, . . . , I, 
where the degree of each of the polynomials hij is at most (i~Zd)~~(~)~~~~, 
and where each A.. is one of the standard relations 2, > , = , z , < , 
and <. If the toe Rcients of each gi are all integers of bit length L, the ?I 
coefficients of each of the polynomials hij will be integers of bit length at 
most (L + ~xJ(M~)~~‘~‘“~~~. 

The system (5.1)-(5.3) has (m + n)9 q uantified variables (the xij’s and 
yij’s) and mn unquantified variables (the Ai’s). Further, (5.1) consists of mn 

polynomial equations where each polynomial has degree two, and (5.2)-(5.3) 
consist of 9( m + n) nonnegativity constraints which are polynomial inequali- 
ties where the degree of the corresponding polynomial is one. Testing for the 
feasibility of (5.I)-(5.3) can be cast via a formula of the type given in (5.4) 
with 

w= 1, 

%I = mn, 

n, = q(m + n) < 2mn, 

M = mn + y(m + n) < 3mn, 

d = 2, 

where P:{O, l}mn+9(m+n) -+ {O, 1) is the Boolean function defined for u E 

(0, I1 
mn+q(m+n) 

bY 

p(u) = i 
if u.=lforalll~i~mn+9(m+n), 

otherke. 

The evaluation of P is simple, as it will not always require the evaluation of 
all the coordinates of its argument. Further, the evaluation of IP can be 
executed in parallel by mn + 9( m + n> < 3mn parallel univariate Boolean 
processors. 

As usual, the notation O(e) denotes an arbitrary real-valued function over 
the reals (or over the integers) such that for some positive number K, 
lO( x)1 < K 1 x 1 for every x in its domain. 

Renegar’s complexity results yield the following theorem: 

THEOREM 5.1. Let n > 1. There is an algorithm for determining the 

feasibility of (5.lH5.3) that requires at most 

(6mn) 
20(1),2,2 

multiplications and additions 
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(6mn) OCrnn) calls to P. 

The method requires no divisions. The method can be implemented in 
parallel, requiring at most [4m2n2 log(6mn)]‘(‘) additions and multiplica- 

tions on each of (6mn)20(‘)m2n2 processors that execute such operations and 

3mn(6mn)“(mn) univariate Boolean processors. 

When restricted to formulae involving only polynomials with integer 

coeflicients of bit length at most L, the algorithm becomes a bit-model 

quantifier elimination method requiring at most 

L( log L) (log log L) ( 6mn)20(‘)mzn’ sequential bit operations 

and 

(6mn) OCrnn) calls to P. 

When implemented in parallel the algorithm requires at most (log L)[4m2n2 

log(6mn)]“(‘) sequential bit operations on each of L2(6mn)20(‘)n2n2 proces- 

sors that execute such operations and 3mn(6mn)“(mn) univariate Boolean 

processors. 

The quantifier elimination method constructs a quantifier-free formula 

I Ii 

V A [hij(Y)Aijo]T 
j-1 j=l 

where 

Ji < ( 6mn)zo”‘m”n2, 

hij : R”‘” + R is a polynomial whose degree is at most (6mn)20(“mzn2, and 

Aij is one of the standard relations 2, >, =, Z, <, and <. Zf the 

coeflicients of each gi are all integers of bit length L, the coeflicients of each 

of the polynomials hij will be integers of bit length at most L(6mn)20(“n2n2. 

The complexity of an algorithm that relies on Renegar’s method will 

be obtained by multiplying the complexity asserted in Theorem 5.1 by 
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log[min{m, n} - rank(A)], the number of times that the feasibility of 
(5.1)-(5.3) has to be tested in order to compute rank+(A). 

The solvability of (5.I)-(5.3) depends on the ordered field over which the 
question is posed, not just on the ordered field which contains the Afs. For 
example, when the Afs are rational numbers, the question about the 
feasibility of (5.1)-(5.3) h w en the rij’s and the yi .‘s are required to be 
rationals and the related question when the xij’s an d yij’s can be arbitrary 
real numbers could have different answers. Renegar’s algorithm, like all other 
known methods for eliminating quantifiers, is applicable over the reals and 
not over the rationals. When all the elements of the given matrix are rationals, 
these methods determine feasibility of (5.I)-(5.3) over the reals; but not 
necessarily over the rationals. 

How sensitive is a question to the ordered field over which it is asked? 
Any condition (as in Corollary 2.2) used to define the nonnegative rank of a 
matrix requires the specification of the ordered field over which it is applied. 
We pose an open problem: 

PROBLEM. Show that the nonnegative ranks of a rational matrix over the 
reals and over the rationals coincide, or provide an example where the two 
ranks are different. 

Section 4 shows that if rank(A) = 2, the nonnegative ranks of A over all 
ordered fields coincide. 

An ordered field G is called real closed [e.g., Jacobson (1964, pp. 
273-277)] if every positive element of G has a square root and any polyno- 
mial of odd degree with coefficients in G has a root in G. For example, 
the reals are a real closed field. Also, every ordered field has an extension 
which is real closed; see Jacobson (1964, p. 285). 

Seidenberg (1954) b o served that the quantifier elimination method of 
Tarski (1951) applies to all real closed fields. He concluded that two formulae 
are equivalent over the reals if and only if they are equivalent over all real 
closed fields. It follows from this observation, known as Tarski’s principle, 

that every quantifier elimination method over the reals, including Renegar’s 
algorithm, applies to all real closed fields. So Renegar’s algorithm can be used 
to compute nonnegative ranks of matrices over any real closed field with the 
complexity stated in Theorem 5.1. Of course, the results about bit operations 
are not applicable if the given matrix contains noninteger coefficients. Eaves 
and Rothblum (1989) discuss the use of an algorithm for solving a problem 
over one real closed field to solve corresponding problems over arbitrary real 
closed fields. 
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6. APPLICATIONS 

The problem of expressing a nonnegative matrix, exactly or approximately, 
as a sum of nonnegative matrices of rank 1 arises in several sciences. We list 
several examples. 

In quantum mechanics, Suppes and Zanotti (1981) propose that if X and 
Y are two correlated random variables, then a random variable 2 “explains” 
the correlation between X and Y if, conditional on Z, X and Y are 
independent. Suppose X takes m distinct values i = 1,. . . , m, Y takes n 
distinct values j = 1,. . . , n, and Z takes p values k = 1,. . . , p. Let P E 
R”” ” represent the joint probability distribution of X and Y, and let 
x E R”, y E R”, and z E RP represent, respectively, the probability distri- 
butions of X, Y, and Z, i.e., for relevant values of i, j, and k, P,r’ = Prob{ X = i 
and Y = j}, xi = Prob( X = i} = Cj”= 1 P/, yj = Prob(Y = j} = Cr= i P{, and 
2 k = Prob{Z = k}. Also, for k = 1,. . . , p, let rck) E R” and yck) E R” be, 
respectively, the conditional probability vectors of X and Y when {Z = k}, 
i.e., xi”) = Prob{X = i 1 Z = k} and y!k) = Prob{Y =j 1 Z = k}. The X and 
Y are conditionally independent give: Z if for all relevant values of i, j, 
and k. 

Prob{X = i and Y =jlZ = k} = Prob{X = ilZ = kj 

X Prob{ Y = jl Z = k} = xjk)yik), 

in which case 

P,I’ = 5 Prob{ Z = k} Prob{ X = i and Y =jlZ = k} 
k=l 

= i ik{ X(k)[ yqT)f, 
k=l 

i.e., 

P = k~13k(x(kq y’k’]T). (6.1) 

Alternatively, assume that P E R mx n is a matrix having a representation 
as in (6.1), where z is a probability vector in RP, x(l), . . . , x(P) are probabil- 
ity vectors in R”, and y(l), . . . , y(P) are probability vectors in R”. We show 
that in this case there exist random variables X, Y, and Z such that Z takes 
p values, the joint distribution of X and Y is given by P, and X and Y are 
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conditionally independent given Z. Consider the sample space R = 

11,. . . > p} x {l)..., m) x 11, . . . . n} with the probability distribution having 
Prob{(i,j, k)} = .zkxi yj . ck) ck) This definition yields a probability distribution as 

k=l i=l j=l 

Let the random variables X, Y, and Z be defined on R by 

X(i,j, k) = i, Y(i,j,k) =j, and Z(i,j,k) = k. 

Then, for k = 1,. . . , p, Pr(Z = k) = Cy! 1 C;= 1 zk xik’yjk’ = zk, and for 
i = l,..., m and j = 1, . . . , n, (6.1) implies that 

Prob{X=iandY=j} = iProb{(i,j,k)} = k.zkrjl)yjk)=~/, 
k=l k=l 

i.e., the joint distribution of X and Y is represented by P; further, if zk # 0, 

Prob{ X = i and Y =jl Z = k} = xik)yjk) 

= Prob(X = i/Z = k} Prob{Y =jlZ = k}, 

i.e., X and Y are conditionally independent given Z. 
We have seen that an m X n nonnegative matrix P represents the joint 

probability distribution of a pair of random variables which are conditionally 
independent given a random variable taking p values, if and only if P has a 
representation as in (6.1) where z is a probability vector in RP, r(l), . . . , x(P) 
are probability vectors in R”‘, and y(l), . . . , y(P) are probability vectors in 
R”. By Theorem 3.1, rank+(P) is th e smallest integer p for which the latter 
can be accomplished. In the terminology of Suppes and Zanotti (1981), 
rank+(P) is the smallest support of a “hidden” random variable which 
explains the correlation between a pair of random variables whose joint 
distribution is represented by P. 

In the demography of marriage [Henry (1969a, 196913, 1972), Saboulin 
(1985)] men are classified into a finite number m of age categories, e.g., 
under age 25, 25-29, 30-34, etc., and women are similarly classified into a 
finite number of n of age categories. An m X n matrix A tabulates the ages 
of grooms and brides on marriage licenses issued during a certain time 
period, where A: is the number of marriages between grooms in age 
category i and brides in age category j. Henry proposed that a marriage 



166 JOEL E. COHEN AND URIEL G. ROTHBLUM 

matrix is a sum of “panmictic components,” which are nonnegative matrices 
each of rank 1. The rationale for this proposal is that a marriageable man 
aged 30, say, is surely indifferent to the exact age of a potential bride, over 
some range of age; other things being equal, he does not care if she is 28 
years and 30 days or 28 years and 31 days old, and he may not care whether 
she is 28 or 29 years old, or even whether she is 22 or 32 years old. Hence, 
over some range he is willing to pick a bride of a given age in proportion 
to the frequency with which brides of that age are present in the marriage- 
able population. Similarly, a marriageable woman is willing to pick a groom 
regardless of age, over some range of age. This indifference with respect to 
age implies that interactions between male and female age classes behave like 
the chemical law of mass action. Within a certain range of ages for brides and 
a certain range of ages for grooms, the number of marriages of men in 
category i with women in category j should be proportional to the product of 
the number of marriageable men in category i and the number of marriage- 
able women in category j. Within these age ranges, for a certain circle of 
marriageable men and women, the marriage matrix should therefore be of 
rank one. This rank-one matrix for a restricted range of ages is called a 
panmictic component. A decomposition of the matrix A into a sum that has 
the smallest number of rank-one components defines the nonnegative rank as 
in Section 2. 

In statistics, Herbert Robbins (personal communication on 10 September 
1988) considered a problem arising in the analysis of contingency tables. A 
contingency table is an m X n matrix A in which element Ai is the number 
of occurrences of events of type (i, j). The question Robbins addressed was 
how to measure dependence within a contingency table when the occurrence 
of i is not independent of the occurrence of j. According to Robbins (10 
September 1988) thirteen years previously, while talking to Michael Rabin at 
Yorktown Heights, New York, it occurred to Robbins to measure the amount 
of dependence in a contingency table A by seeing how closely A could be 
approximated, first, by a single nonnegative matrix of rank 1 (where an exact 
approximation is obtainable in the case of independence), then by a sum of 
two nonnegative matrices of rank 1, then by a sum of three nonnegative 
matrices of rank 1, and so on. The number of nonnegative summands of rank 
1 required to approximate a given nonnegative matrix A “satisfactorily” 
measures the amount of dependence in A. Robbins (personal communication 
on 28 January 1985) began thinking about this problem in 1936, as a result of 
his work on tensor products in differential geometry. Breiman (1991) com- 
puted corresponding approximations that minimize the expected squared 
residuals. 

Levin (1985) developed an algorithm that solves the following related 
problem: given a positive matrix A, find the maximal positive matrix B of 



NONNEGATIVE RANKS 167 

rank 1 such that B < A. Here “maximal” means that if C is any positive 
matrix of rank 1 such that C < A, then C < B. So far, Levin has proved that 
his algorithm converges to the globally maximal B, and he gives B in closed 
form when m = 2. 

Hayashi (1982, p. 78), apparently independently, considered the bilinear 
model A{ = Q, r X: y:, where A{ is measured, and showed that it leads to a 
kind of principal-component analysis. He pointed out that Harshman (1970) 
considered an extension to trivariate distributions A(i, j, k) = CT= 1 ~Fyj’z:. 

From this extension, a further generalization to measurements A that are 
dependent on n dimensions ii, is, . . . , i, is obvious, and was developed 
independently by Breiman (1991). 

Yannakakis (1988, p. 226) used linear programming to express combinato- 
rial optimization problems. He showed that it is possible to express a polytope 
in RN with m facets and n vertices by a linear program where the number of 
variables plus the number of constraints is bounded by the product of a 
(universal) constant and rank+(A) + N, where A is a certain nonnegative 
m x n matrix that depends on the representation of the polytope, its facets, 
and its vertices. 

In algebraic complexity theory, Nisan (1991, p. 416) showed that for a 
homogeneous algebraic function f of degree d on N variables and for 
k E {O, 1,. . . , d], a certain quantity, called the k-monotone algebraic branch- 
ing program complexity, is exactly rank+(A), when A is a nonnegative 
m x n matrix, m = Nk, n = Ndek, and the elements of A are the (nonnega- 
tive) coefficients of the monomials in the expansion of f. 
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